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K -shell ionization during α decay of polonium isotopes and superheavy nuclei
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The theory of K-shell ionization during α decay of the 84Po isotopes is considered in detail as a part of our
general study of the inner shell ionization probability of heavy and superheavy nuclei. Calculations of K-shell
ionization with allowance made for the α-particle tunneling through the atomic Coulomb barrier have been
performed in the framework of the fully quantum mechanical treatment developed for the first time by Anholt
and Amundsen. Further information is available [Anholt and Amundsen, Phys. Rev. A 25, 169 (1982)]. As
distinct from all previous the K-shell ionization calculations where the Dirac hydrogenlike wave functions have
been used, we have found the discrete and continuum electron wave functions in the framework of the relativistic
self-consistent Dirac-Fock method. In addition, we have taken into consideration accurately terms associated with
the α-particle tunneling. Our exact calculations show that the tunneling contribution to the ionization probability
is of great importance while Anholt and Amundsen have asserted that the contribution is small. We have obtained
that the K-shell ionization probability during α decay of five isotopes of 84Po correlate better with the available
experimental data providing the tunneling is included in calculations. New calculations for K-shell ionization
during α decay of superheavy elements 249

100Fm, 253
102No, 272

111Rg, as well as 222
86 Rn are also presented. The data may

be of importance in the combined α,γ, and conversion-electron spectroscopy used in the superheavy element
synthesis analysis.

DOI: 10.1103/PhysRevC.93.034312

I. INTRODUCTION

In research on the synthesis of superheavy elements, the
region of unstable transfermium nuclei (Z � 100) is the
most complicated from both experimental and theoretical
viewpoints. In experimental studies, combined α,γ, and
conversion-electron spectroscopy is applied which makes it
possible to investigate the excited-state features, e.g., the level
energies and spins of daughter nuclei produced in α decay
of unstable nuclei [1,2]. In recent experiments [1], excited
states of the nucleus 249

100Fm were populated by the α decay of
253
102No. Relative probabilities of the electron conversion and γ
transitions as well as their ratios, that is, the internal conversion
coefficients (ICC) were found via use of the coincidence
method. The experimental value of ICC in the K shell for
an E1 transition with an energy of 279 keV in 249Fm was
found to be four times larger than the theoretical value [3].
This anomalous value of ICC generated a need for revision of
the existing view of the structure of the nucleus 249

100Fm and its
excited states. At present there is no unambiguous answer.

The prime objective of our study is to get basic information
on the effect of inner shell ionization during the α decay of
superheavy nuclei to investigate its influence on the spectra
of internal conversion electrons. In fact, it is impossible to
distinguish only conversion electrons in the energy spectra
during the nuclear α decay. It is conceivable that the process of
direct ionization by α particles of K shells of daughter atoms
produced during the α decay may provide the predominant
contribution to the electron spectrum.

The problem of inner shell ionization during α decay has
a long history. The process of K-shell ionization during α

decay was predicted by Migdal in 1941 [4]. This process was
confirmed experimentally only in the early 1950s. The α decay
of 210

84 Po was studied in the experiments. The experimental
values of the K-shell ionization probability were found to be
in excellent agreement with theoretical estimations by Migdal
[4]. However, after appearance a number of elaborate calcula-
tions (see, e.g., short reviews of theoretical and experimental
works in Refs. [5–7]), it was inferred that the agreement was
accidental. This was associated mainly with the erroneous
assumption in Ref. [4] that the ionization was caused by only
the effective dipole field produced by the α-particle charge
and nuclear charge during α decay while the more important
monopole contribution was mistakenly neglected. There are a
variety of other drawbacks in the paper by Migdal [4] which
are thoroughly considered in Refs. [5,6].

The well-known “fully quantum treatment of ionization in
α decay” (see, e.g., [6]) was carried out for the first time
by Anholt and Amudsen [8]. Their treatment includes the
tunneling of α particles through the Coulomb barrier. The
emitted α particle was represented by an outgoing wave
function which was matched to the wave function inside the
nucleus at the nuclear radius. The total amplitude for K-shell
ionization was expressed [8] in terms of the quantum α-particle
tunneling amplitude and the standard quantum-semiclassical
amplitude for the ionization process from the Coulomb
barrier to infinity. The quantum-semiclassical amplitude was
calculated in the sudden approximation using a classical
trajectory for α particle.

Our consideration of the inner-shell ionization probability
during α decay was performed on the basis of a similar quan-
tum mechanical approach. It should be noted that all formulas
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were obtained in our paper because detailed expressions were
not presented in Ref. [8]. The α-particle tunneling through the
atomic barrier was taken into account accurately as distinct
from approximations used in Ref. [8].

The electron wave functions for the initial and final states
were approximated in Ref. [8] by Dirac hydrogenic wave
functions. However, it is known that an adequate consideration
of electron wave functions is of importance in calculations of
many processes. In particular, use of the Dirac-Fock (DF)
method for finding a discrete function as well as a continuum
wave function in ICC calculations at low electron energies
results in excellent agreement with experimental data [9,10].
As will be shown below, it is low electron energies that make a
major contribution to the probability of K-shell ionization
following α decay. Because of this we use electron wave
functions obtained in the framework of the DF method which
allows for a screening of the nuclear electric field by atomic
electrons and includes the exact exchange interaction between
electrons.

In Secs. II and III, we describe methods, basic formulas,
and a number of computational details used in calculations. In
Sec. IV, results obtained for the K-shell ionization probability
during α decay of five isotopes of 84Po are considered at
length. The results are compared with available experimental
values and with previous calculations [8]. New calculations
for the α decay of 222

86 Rn and the superheavy nuclei 249
100Fm,

253
102No, and 272

111Rg are also presented. All calculations have
been performed using our package of computer codes RAINE

[11].

II. BASIC FORMULAS

We consider ionization of an inner shell during α decay
within the united atom approximation [8], which is consistent
with prescription used by Andersen et al. [12]. The probability
Pi(Qα) of ith shell ionization at the α-particle energy Qα

is obtained as a result of integration over the final electron
energy Ef of the differential probability dPi(Ef )/dEf . After
averaging over initial electron states and summation over final
states, the differential probability may be written as

dPi(Ef )

dEf

= (Z1α)2(2ji + 1)(2�i + 1)

×
∑
L

∑
κf

(2jf + 1)(2�f + 1)

(2L + 1)2

(
CL0

�i0�f 0

)2

×W 2(�iji�f jf ; 1/2 L)
∣∣H̃ (L)

if

∣∣2
. (1)

In Eq. (1), Z1 is the α-particle charge, α is the fine structure
constant, � and j are the orbital and total angular momenta
of the active electron, respectively, L is the multipolarity
of the radiation field, κ = (� − j )(2j + 1) is the relativistic
quantum number, CL0

�i0�f 0 is the Clebsch-Gordan coefficient,
and W (�iji�f jf ; 1/2 L) is the Racah coefficient. Subscripts i
and f refer to the initial (bound) and final (continuum) electron
state, respectively. The matrix element H̃

(L)
if = H

(L)
if /Z1. We

use relativistic units where the electron Compton wavelength
�/m0c serves as unit of length and the electron rest mass m0c

2

serves as unit of energy.

The matrix element H (L)
if without considering the α-particle

tunneling through the atomic barrier may be written as

H
(L)
if = Z1

[
1

ω

∫ ∞

0
sin(ωt)Ṙ(t)

dG̃(L)
if (R)

dR
dt

− δL,1
Z2

M2
I

(1)
if

∫ ∞

0
cos(ωt)

1

R2(t)
dt

]

+ iZ1

{
1

ω

∫ ∞

0
cos(ωt)Ṙ(t)

dG̃(L)
if (R)

dR
dt

+ δL,1
Z2

M2
I

(1)
if

∫ ∞

0
sin(ωt)

1

R2(t)
dt

+ 1

ω

[G̃(L)
if (R0) − δL,0I

(−1)
if

]}
, (2)

where ω = Ef + εi is the electron transition energy and εi is
the ith shell eigenvalue. It should be noted that the perturbation
Hamiltonian in Ref. [8] involves the well-known recoil term.
The recoil term is also taken into account in our calculations.
In Eq. (2), the second term in squared brackets of the real part
and the second term in curly brackets of the imaginary part are
associated with the recoil effect.

The time function Ṙ(t) involved in Eq. (2) is related to the
α-particle trajectory over time R(t) from the atomic Coulomb
barrier with the radius R0 to infinity in the following way [7]:

Ṙ(t) = v

[
1 − R0

R(t)

]1/2

, (3)

their values at t = 0 being equal to

R(0) = R0; Ṙ(0) = 0. (4)

In Eq. (3), v is the final velocity of the α particle.
The relativistic radial form factor G̃(L)

if (R) takes the form,

G̃(L)
if (R) = 1

RL+1

∫ R

0
rL[Gi(r)Gf (r) + Fi(r)Ff (r)]dr

+RL

∫ ∞

R

1

rL+1
[Gi(r)Gf (r) + Fi(r)Ff (r)]dr.

(5)

Integrals I
(1)
if and I

(−1)
if in Eq. (2) are given by

I
(1)
if =

∫ ∞

0
r[Gi(r)Gf (r) + Fi(r)Ff (r)]dr, (6)

I
(−1)
if =

∫ ∞

0

1

r
[Gi(r)Gf (r) + Fi(r)Ff (r)]dr. (7)

In Eqs. (5)–(7), G(r) and F (r) are the large and small
components of the Dirac electron wave function multiplied
by r . Electron wave functions are calculated in the framework
of the DF method, that is, the bound and continuum wave
functions represent the solutions of the DF equations with
exact consideration of the exchange interaction between bound
atomic electrons as well as between bound and free electrons
[3,11,13]. The bound electron wave functions are normalized
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so that ∫ ∞

0

[
G2

i (r) + F 2
i (r)

]
dr = 1. (8)

The continuum electron wave functions are normalized per
unit energy range.

In the special case of the K shell (i = 1s), taking into
consideration that only multipoles L = 0 and L = 1 make a
predominant contribution, Eq. (1) is simplified to the following
form:

dPK (Ef )

dEf

= (Z1α)2

[
2
∣∣H̃ (L=0)

1s Ef s1/2

∣∣2

+ 2

9

∣∣H̃ (L=1)
1s Ef p1/2

∣∣2 + 4

9

∣∣H̃ (L=1)
1s Ef p3/2

∣∣2
]
. (9)

To take into account the α-particle tunneling through the
atomic Coulomb barrier, an additional term a

(L)
if (Ef ) has to be

included in the imaginary part of H
(L)
if in Eq. (2). According

to the treatment [8], the tunneling term may be written in our
notation as follows:

a
(L)
if (Ef ) = −i

R0

v

∫ 1

x0

xdx√
x − x2

b
(L)
if (xR0)

× exp

(
ω

R0

v

∫ x

1

x ′dx ′√
x ′ − (x ′)2

)
, (10)

where x0 = Rnucl/R0 and Rnucl is the nuclear radius. In Ref. [8],
authors used a number of approximations to estimate the
tunneling term a

(L)
if (Ef ). We have obtained exact formulas

for coefficients b
(L)
if on the basis of the relevant expression

from [8] (see Eq. (27) in Ref. [8]). The exact values of b
(L)
if for

L = 0 and L = 1 have the following forms:

b
(L=0)
if (R) = G̃(L=0)

if (R) − I
(−1)
if , (11)

b
(L=1)
if (R) = G̃(L=1)

if (R) + I
(1)
if ω2R

(
1

Z2
− μ

M2Z1

)
. (12)

In addition, the integral in the exponent of Eq. (10) was
calculated analytically with the result [14],∫ x

1

x ′dx ′√
x ′ − (x ′)2

= −π

4
−

√
x − x2 − 1

2
arcsin (1 − 2x).

(13)
Therefore the tunneling term becomes equal to

a
(L)
if (Ef ) = −i

R0

v

∫ 1

x0

xdx√
x − x2

b
(L)
if (xR0)

× exp

[
− ω

R0

v

(
π

4
+

√
x − x2 + 1

2
arcsin (1 − 2x)

)]
.

(14)

In our calculations of the ionization probability, the exact
tunneling term a

(L)
if was included in the matrix element H

(L)
if

in the form of Eq. (14) which differs from the approximate
term in Ref. [8]. The method for the accurate calculation of
the integral (14) is described in detail in Sec. III.

III. METHODS OF CALCULATION

Here we describe a number of essential details applied in
our numerical calculations. We denote the α-particle mass by
M1. The charge and mass of the daughter nucleus generated
by the α decay of the parent nucleus with a charge Z and a
mass number A are equal to Z2 = Z − Z1 and M2 = A − M1.
The final velocity of the α particle may be found using the
expression,

v =
√

2Q

μ
, (15)

where μ is the reduced mass and Q = Qα − ω. The Coulomb
radius R0 is given by

R0 = Z1Z2α

Q
. (16)

Further, the α-particle trajectory R(t) from the Coulomb
barrier to infinity may be defined in terms of the parameter
θ using the following expressions for R(θ ) and t(θ ) [7]:

R(θ ) = 1

2
R0(1 + coshθ ), (17)

t(θ ) = 1

2

R0

v
(θ + sinhθ ). (18)

We use an equidistant mesh over time t in the range 0 � t �
tmax where

tmax = Rmax

v
. (19)

The maximal distance Rmax is chosen in our calculations in
accordance with the expected value for the outermost atomic
shell. In the case of 84Po, the value was assumed to be Rmax =
1
3 < r >6p ≈ 1 a.u. It was verified that increasing Rmax by a
factor of 6 does not change values of dPK (Ef )/dEf . A number
Np of points t is chosen depending on the energy Ef so that
20 points are placed in each a half-period of the oscillation of
cos(ωt) or sin(ωt) [see Eq. (2)], Np being � 16001.

Values of θi are found in points t of the mesh solving
transcendental Eq. (18) by the tangent method where the j th
approximation to the ith root is found as

θ
(j )
i = θ

(j−1)
i − R0

[
θ

(j−1)
i + sinhθ

(j−1)
i

] − 2vti

R0
[
1 + coshθ

(j−1)
i

] . (20)

Using Eqs. (18) and (20), one may calculate values of θi and
then obtain the trajectory R(t) with Eq. (17) as well as values
of Ṙ(t) involved in Eq. (2).

To calculate the relativistic form factor G̃(L)
if (R) [Eq. (5)],

we introduce functions ZL(r) and YL(r) ≡ G̃(L)
if (R) as follows:

ZL(r) = r−(L+1)
∫ r

0
(r ′)L[Gi(r

′)Gf (r ′) + Fi(r
′)Ff (r ′)]dr ′,

(21)

YL(r) = ZL(r) + rL

∫ ∞

r

(r ′)−(L+1)

× [Gi(r
′)Gf (r ′) + Fi(r

′)Ff (r ′)]dr ′. (22)
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The form factor involves the continuum wave function
which behaves in the asymptotic region as eipr where p =√

E2 − 1 and E is the total electron energy including the rest
energy. Therefore functions ZL(r) and YL(r) are conveniently
calculated in points of a semilogarithmic mesh. The mesh is
defined so that at small r , its nodes are close to the nodes of
the logarithmic mesh used in our DF calculations for bound
wave functions:

ri = r0e
ν(τi−1), (23)

where r0 = 0.006 �/m0c, ν = 0.04, and τi = 1,2,3.... At large
r , the semilogarithmic mesh is close to the uniform one and
has to include the preassigned number of points M within one
oscillation period of the continuum wave function, that is,

pM(ri+1 − ri) ≈ 2π. (24)

Consequently, the semilogarithmic mesh depends on the
continuum electron energy Ef .

Let us introduce the following change of variables:

τi = βri + 1

ν
ln(ri/r0) + 1. (25)

To meet the requirement (24), the parameter β is chosen as

β = pM

2π
, (26)

parameters r0 and ν being the same as indicated above.
To calculate mesh nodes, one has to find roots of the
transcendental algebraic equation (25). Using new variables
τ , functions YL and ZL satisfy the system of differential
equations,

dZL

dτ
= {−(L + 1)ZL + [Gi(r)Gf (r)

+Fi(r)Ff (r)]} ν

βνr + 1
, (27)

dYL

dτ
= [−(2L + 1)ZL + LYL]

ν

βνr + 1
, (28)

as well as boundary conditions,

ZL(r)r≈0 ≈ r[Gi(r)Gf (r) + Fi(r)Ff (r)]

L + |κi | + |κf | + 1
, (29)

YL(r)r→∞ → ZL(r). (30)

The integration of Eqs. (27) and (28) is carried out from left
to right and from right to left, respectively, by the use of the
Adams four-point method with the following initial conditions
for derivatives:

dZL

dτr≈0
≈ (|κi | + |κf |)[Gi(r)Gf (r) + Fi(r)Ff (r)]

L + |κi | + |κf | + 1

× ν

βνr + 1
, (31)

dYL

dτr→∞
→ −(L + 1)ZL

ν

βνr + 1
. (32)

With Eqs. (21)–(32), we calculate the relativistic form factor
G̃(L)

if (R) in the semilogarithmic mesh along with its derivative

which is written as

dG̃(L)
if (R)

dR
= 1

R

[
LG̃(L)

if (R) − (2L + 1)ZL

]
. (33)

In the form factor calculations, the bound electron wave
function of the initial state is found in the self-consistent DF
field of the relevant neutral atom while the continuum wave
function of the final state is calculated in the field of the ion with
the vacancy in the ith shell. The finite nuclear size is taken into
account. Inside the nucleus, the potential of a homogeneously
charged sphere with radius Rnucl = 1.2A1/3 fm is assumed.

In closing, it should be noted that an accurate estimation
of the integral in Eq. (14) was performed. The integral
was calculated using 41 Gauss quadrature nodes and 81
refined nodes [15]. The integration was terminated if the
difference between integral values obtained with the Gauss
and refined quadratures was less than a prescribed accuracy. If
the integral was calculated with an insufficient accuracy, the
integration interval should be reduced and the integral should
be recalculated. Then the rest of the interval was estimated.
This method is efficient and ensures the accuracy required in
the calculations.

IV. RESULTS AND DISCUSSION

Calculations of the probability of K-shell ionization fol-
lowing α decay were performed for five polonium isotopes.
Only two terms of the radiation field with L = 0 and L = 1
were included in the sum over L in Eq. (1). We have verified
that the term with L = 2 contributes less than 1%.

The relativistic form factor G̃(L)
if (R) was calculated by the

DF method at points of the semilogarithmic mesh and then was
found by an interpolation into points of equidistant mesh R(t)
for using in Eq. (2) and into the Gauss/refined quadrature nodes
for using in Eqs. (11) and (12). Form factors G̃(L)

if (R) are shown
in Fig. 1 at the electron energy Ef = 50 keV for transitions
1s → Ef s (L = 0) as well as 1s → Ef p1/2 (L = 1) and
1s → Ef p3/2 (L = 1) in the polonium atom. As is seen, the
monopole term considerably exceeds the dipole ones at small
values of R and is comparable in magnitude to dipole terms at
all larger values of R. The curves are somewhat smooth at this
value of Ef and all form factors G̃(L)

if (R) practically equal to
zero at R ≈ 0.2 a.u.

In Fig. 2, we compare our results with the form factor
obtained in Ref. [16] using also the DF method for the
3s → Ef p1/2 transition in the palladium atom (Z = 46) in
calculations of the ionization probability in atomic collisions
at low energy Ef = 0.1 keV. One can see that the two curves
are very close to each other. There are small differences in
extremum ranges of the function G̃(L)

if (R) where the results are
very sensitive to all details of calculations.

To clear up a role of the α-particle tunneling through the
Coulomb barrier, we performed calculations of the K-shell
ionization probability both taking account for the tunneling
and neglecting the tunneling. The differential probability
dPK (Ef )/dEf is displayed for both cases in Fig. 3. The
results are given separately for the monopole term L = 0
and the dipole term L = 1 as well as for the summary
probability dPK (Ef )/dEf . One can see that in the case when
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R (a.u.)

FIG. 1. The relativistic form factor G̃(L)
if (R) for transitions of the

1s electron into continuum states with energy Ef = 50 keV in the
84Po atom. (Solid) 1s → Ef s (L = 0); (dashed) 1s → Ef p1/2 (L =
1); (chain) 1s → Ef p3/2 (L = 1).

the tunneling is not taken into account, terms with L = 0 and
L = 1 are different in magnitude as well as in behavior. The
monopole term is larger at low energies; then it decreases
rapidly and becomes nonmonotonic. The dipole term decreases
smoothly with energy and becomes larger than the monopole
one at energies Ef ≈ 50 keV. In Fig. 3(a), the solid curve
dPK (Ef )/dEf drops slowly decreasing only by ∼2.5 orders
of magnitude at Ef ≈ 1000 keV. In the case when the tunneling
is included [Fig. 3(b)], both curves L = 0 and L = 1 are
smooth and decrease rapidly meeting at point Ef ≈ 160 keV.
The solid curve in this case drops by ∼5 orders of magnitude
at Ef ≈ 500 keV. Consequently in this case, the integration
over Ef may be performed to several hundred of keV.

On the contrary, the behavior of curves in the case without
considering the tunneling [Fig. 3(a)] shows that integration
over Ef has to be performed up to very high energies Ef

because the solid curve drops slowly and the tail of the curve

R (a.u.)

FIG. 2. The form factor G̃(L=1)
if (R) for transition 3s → Ef p1/2 in

the 46Pd atom at Ef = 0.1 keV calculated using the DF method.
(Solid) Present calculations; (dashed) calculations [16].

FIG. 3. The differential probability dPK (Ef )/dEf for α decay
of 210

84 Po at Qα = 5305 keV calculated (a) without considering the
tunneling and (b) taking into account the tunneling. (Dashed) L = 0;
(chain) L = 1; (solid) sum of the two terms.

may contribute significantly. This is evident from Fig. 4 where
we present the value of the integral with the variable upper
limit Eup:

PK (Eup) =
∫ Eup

0

dPK (Ef )

dEf

× dEf . (34)

It is clear that the integral PK (Eup) reaches its asymptotic
values at Eup ≈ 200–300 keV provided the tunneling is taken

FIG. 4. The integral PK (Eup) multiplied by 106 for 212
84 Po at the

α-particle energy Qα = 8785 keV. (Solid) The tunneling is included;
(dashed) the tunneling is neglected.
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FIG. 5. Components L = 0 and L = 1 of the differential prob-
ability dPK (Ef )/dEf for K-shell ionization following the 210

84 Po α

decay at Qα = 5305 keV obtained (a) in present calculations and
(b) in Ref. [8]. (Solid) Calculations including the tunneling; (dashed)
without considering the tunneling.

into consideration while in the case without considering the
tunneling, the integral practically does not reach an asymptotic
value up to the maximal energy Eup = Qα − εK . Because of
this, we computed the integral over Ef in the latter case up to
the value Ef ≈ Qα − εK where εK = 93.7 keV for the K shell
of the Po atom. In Fig. 4, PK (Eup) is displayed only for the
isotope 212

84 Po with Qα = 8785 keV. We compared the results
for isotopes with different energies Qα . A conclusion can be
drawn that in the case without considering the tunneling, the
integral PK (Eup) retards a growth at high energies Ef when
the α-particle energy increases. Consequently, the influence of
the tunneling decreases with increasing Qα .

In Fig. 5, we compare components L = 0 and L =
1 entering into the differential K-ionization probability
dPK (Ef )/dEf calculated in the present paper [Fig. 5(a)] and
in Ref. [8] [Fig. 5(b)] at α decay of 210

84 Po at Qα = 5305 keV in
the energy range Ef � 225 keV. Results with allowance made
for the tunneling are showed by solid curves. Calculations
without considering the tunneling are depicted by dashed
curves. Note that shapes of the curves in Fig. 5(a) differ from
relevant curves in Fig. 3 because of different scales along
the x axis. Presented in Fig. 5(b) are calculations by Anholt
and Amundsen [8] where the hydrogenlike electron wave
functions of the initial and final states are used and a number
of approximations are involved in tunneling calculations.

One can see that the component L = 0 is larger than L = 1
at low energies in any case. As was mentioned above, our
calculations show that in the case where the tunneling is

TABLE I. Contributions of terms with L = 0 and L = 1 to the
total probability PK (Qα) multiplied by 106 for isotopes of 84Po along
with experimental values of the probability.

Isotope Qα, keV Experiment No tunneling Tunneling

L = 0 L = 1 L = 0 L = 1

210Po 5305 2.58 ± 0.08 [6] 2.358 2.783 2.458 0.541
218Po 6002 3.73 ± 0.25 [17] 3.341 2.424 3.531 0.778
216Po 6777 4.42 ± 0.4 [6] 4.667 2.270 4.882 1.045
214Po 7687 6.1 ± 0.3 [17] 6.418 2.284 6.631 1.385
212Po 8785 7.4 ± 1.1 [6] 8.743 2.480 8.930 1.829

ignored, the two components intersect at Ef ≈ 50 keV while in
the case with taking account for the tunneling, L = 1 becomes
larger only at Ef ≈ 160 keV. As is seen from Fig. 5(b), there
are similar intersections of the two components in calculations
[8]. However, in the case when the tunneling is included, the
intersection occurs at Ef ≈ 65 keV. It is clear from comparison
of the two computations that the tunneling makes a small
contribution to the dipole term in calculations [8] while in our
calculations, the tunneling contribution to the dipole term is
considerable even at low electron energies Ef and increases
with increasing Ef . Monopole terms also behave in different
ways in the two calculations.

We present in Table I contributions from terms with L = 0
and L = 1 to the total K-shell ionization probability PK (Qα)
obtained in our DF calculations for five isotopes of 84Po.
Table I demonstrates that taking into account the tunneling
slightly increases by 2%–5% the monopole term while the

FIG. 6. Ionization probabilities PK (Qα) multiplied by 106 for the
84Po isotopes. Present DF calculations: 1, including the tunneling;
2, without considering the tunneling. Previous calculations [8]:
3, including the tunneling; 4, without considering the tunneling.
Experimental data as follows: solid circle, Lund et al. [6]; open
diamond, Eremin et al. [17].
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TABLE II. Probabilities of K-shell ionization PK (Qα) multiplied
by 106 at α decay of 222Rn and superheavy nuclei.

Parent nucleus Qα, keV PK × 106 Experiment

222
86 Rn136 5490 2.942 2.36 ± 0.22 [17]
249
100Fm149 7529 3.880
253
102No151 8003 4.375
272
111Rg161 9630 6.221
272
111Rg161 11000 9.125

dipole term decreases considerably, e.g., by the factor of ∼5
for 210Po at Qα = 5305 keV. The decrease is less for larger
Qα .

Our results for five isotopes of 84Po with the α-particle
energies listed in Table I are compared with available ex-
perimental data as well as with calculations [8] in Fig. 6.
Solid curves 1 and 2 refer to our DF calculations. Curve
1 was obtained including the tunneling and curve 2 was
calculated neglecting the tunneling. Dashed curves 3 and
4 relate to calculations [8] including and neglecting the
tunneling, respectively. Experimental data from Lund et al. [6]
and Eremin et al. [17] are shown. As is seen, our calculations
without considering the tunneling (curve 2) are somewhat
close to results [8] (curves 3 and 4). Curve 1 associated with
our calculations taking into account the tunneling is closer
to the experiments than results [8]. This may be explained
by more accurate calculations, in particular, the more correct
calculation of the tunneling and electron wave functions.
Comparison between curve 1 and curve 2 demonstrates once
again that the tunneling effect decreases as the α-particle
energy increases.

The probabilities for K-shell ionization during the α decay
of 222Rn as well as the superheavy nuclei 249Fm, 253No, and
272Rg were obtained using the same method of calculation
taking into account the α-particle tunneling through the

Coulomb barrier. The results are listed in Table II. As is seen,
the probability for 222

86 Rn correlates with experimental value
obtained in Ref. [17].

V. CONCLUSIONS

The K-shell ionization probabilities following α decay in
heavy and superheavy nuclei are considered. The theoretical
model employed in present calculations is based on the
quantum mechanical treatment developed by Anholt and
Amundsen [8]. The contribution associated with the α-particle
tunneling through the Coulomb barrier in an atom is taken into
account accurately. Electron wave functions are calculated in
the framework of the relativistic DF method with the exact
consideration of the exchange interaction.

Calculations of the K-shell ionization probabilities have
been performed for α decay of five isotopes of the 84Po nucleus
at various α-particle energies from the range 5305 keV �
Qα � 8785 keV including the α-particle tunneling as well
as without considering the tunneling. The contribution from
the tunneling to the total ionization probability is shown
to be important. Taking into account the tunneling may
decrease the dipole term by several times resulting in a
considerable decreasing of the ionization probability PK (Qα).
The tunneling contribution decreases as the α-particle energy
Qα increases.

The results are compared with previous calculations [8]
and with available experimental data. It is shown that present
results with allowance made for the tunneling of the α particle
through the Coulomb barrier correlate better with experimental
values than calculations [8]. Our results obtained without
considering the tunneling are close to calculations [8].

New calculations on K-shell ionization after α decay of
222
86 Rn and the superheavy nuclei 249

100Fm, 253
102No, and 272

111Rg
have been performed. The ionization probability PK (Qα) after
α decay of 222

86 Rn with the energy Qα = 5490 keV is in
reasonably good agreement with the experimental value [17].
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