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Effect of the Pauli principle on the deformed quasiparticle random-phase approximation
calculations and its consequence for β-decay calculations of deformed even-even nuclei
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In this work, I take into consideration the Pauli exclusion principle (PEP) in the quasiparticle random-
phase approximation (QRPA) calculations for the deformed systems by replacing the traditional quasiboson
approximation (QBA) with the renormalized one. With this new formalism, the parametrization of QRPA
calculations has been changed and the collapse of QRPA solutions could be avoid for realistic gpp values. I
further find that the necessity of the renormalization parameter of particle-particle residual interaction gpp in
QRPA calculations is due to the exclusion of PEP. So with the inclusion of PEP, I could easily extend the deformed
QRPA calculations to the less-explored region where lack of experimental data prevent effective parametrization
of gpp for QRPA methods. With this theoretical improvement, I give predictions of weak decay rates for even-even
isotopes in the rare-earth region and compare the results with existing calculations.
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I. INTRODUCTION

Rapid neutron-capture process (r-process) plays an im-
portant role in the formation of our solar system element
abundance and it is thought to be responsible for productions
of most heavy elements [1] beyond 56Fe. As a result of
interest in the determination of the site for this process, various
models have been proposed, i.e., the hot high entropy neutrino
wind model [2], the cold neutron star mergers model [3],
etc. This process requires large neutron-to-seed-nuclei ratios
at the initial phase, while the r-process path and the final
abundance are determined by the competitions between the
neutron-capture rates and the weak decay rates at the late stage.
In this sense, precise values of weak decay rates, especially
for isotopes along or around the r-process path, become crucial
for the simulation of this process. Unfortunately most of these
isotopes are neutron rich and very unstable, which makes most
of them out of the reach of current rare-isotope experiments.
Thus, one needs to rely on accurate theoretical predictions
of these properties in order to understand what is happening
during these processes. Efforts have been devoted to this topic
over decades, i.e., with the global calculations microscopic or
gross [4–6].

Besides these global calculations over the whole nuclide
chart, there are also numerous approaches devoted to cal-
culating nuclei in specific regions; e.g., the large-scale shell
model (LSSM) calculations have been adopted for calculations
for magic or semimagic nuclei [7,8], which are usually with
spherical shapes so that spherical symmetry could be imposed.
For these nuclei, methods such as spherical QRPA with various
kinds [9–11] are also applicable, and their agreement among
each other has been improved steadily. Not all the nuclei are in
spherical shapes, for open-shell nuclei lie deep in the center of
the square area surrounded by the magic lines on the nuclide
chart, permanent deformations have been observed, and for
these nuclei spherical symmetry is heavily broken. Simulation
shows that the r-process path goes through two such deformed
regions: The first is the Kr-Mo region (region I hereafter) and
another is the neutron-rich rare-earth region (region II). For

region I, exotic neutron-rich isotopes far from the stability line
have been measured recently (e.g., for Zr isotopes, those with
16 more neutrons than stable ones have been measured); see,
for example, Refs. [12,13]. This ease the r-process simulation
and could improve our understandings of the shape of A ∼ 140
peak of the abundance pattern. Theorists have also calculated
rates of these nuclei with, for example, the deformed QRPA
methods, either self-consistently with the Skyrme [14,15] or
Gogny [16] forces or the traditional non-self-consistent case
with realistic interactions [17,18]. On the other hand, the
situation for region II is less satisfying for these deformed
isotopes, because their heavy mass and difficulty of production
and storage pose obstacles to measuring their basic properties
such as mass or decay rates. Currently only a small number of
them have been measured; for example, the heavily deformed
Nd isotopes of six neutrons beyond quasistable 150Nd nucleus
have been experimentally accessed.

As pointed out in Refs. [19,20], weak decay properties of
these nuclei could be crucial for the long-standing problem
of element abundance, the rare-earth peak. If we observe the
abundance pattern, besides the two giant peaks near A ∼ 140
and A ∼ 190 caused by two shell gaps around neutron number
N = 82,126, we could find also a bump (or peak) near
A ∼ 165. The formation of this peak has been investigated
in Refs. [19,20] with different mechanisms such as quenched
shell gaps or fission back from heavy nuclei. They show that
to distinguish from these different mechanisms, we need more
accurate nuclear data such as masses or weak decay properties
for hundreds of nuclei in the deformed rare-earth region. In
the absence of experimental data mentioned above, we resort
to theories. Not many calculations have been done for this
region compared to region I. There are global calculations
from Ref. [6], but no alternatives are available. Reference [21]
has provided some of the rates with fitted parameters from
well-measured spherical nuclei. In this work, I introduce
the renormalized quasiparticle random-phase approximation
(rQRPA) methods for the calculations of even-even nuclei by
considering the Pauli exclusion principle (PEP) approximately.
I find that the deviation of a renormalization parameter of the
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realistic particle-particle residual interaction (or the namely
the strength of the interaction) gpp from 1 is largely due to the
ignorance of the PEP. With approximate treatment of PEP in
QRPA approaches by the boson mapping technique, one could
use bare G-matrix elements for the realistic nuclear structure
calculations, that is, gpp = 1. I compare my results to the
measurements as well as calculations from Ref. [6]. Decent
agreements have been achieved in both regions discussed
above. This article is arranged as follows: In Sec. II I
give detailed formalisms of the method, then I discuss the
parameters in Sec. III, followed by results and discussions in
Sec. IV, and finally the conclusion.

II. FORMALISM

For the deformed system, single-particle wave functions are
generally described in the intrinsic frame, and they are usually
expanded on specific basis [22]:

|�τ 〉 =
∑

{N}��

b
�τ

{N}|{N}�〉|�〉. (1)

Here {N} is a set of quanta, i.e., with the deformed harmonic
oscillator (HO) basis, there are {nz,nρ}. Here, � is projection
of orbital angular momentum on symmetry axis z of the axially
deformed system, and � are the projection of spin on this axis.

The QRPA method is based on quasiparticle representation,
which is derived by solving either the BCS or Hatree-Fock
Bogoliubov (HFB) equations. In my calculations, I use the
BCS method to treat the nuclear pairing, and under this
scenario, the quasiparticle operators can be expressed as

ατ = uτ c
†
τ + vτ c̃τ . (2)

Here u’s and v’s are the so-called BCS coefficients.
I then define the proton-neutron QRPA (pn-QRPA) phonon

for the charge-exchanging case as

Q
m†
Kπ =

∑
pn

Xm
pnA

†
pn − Ym

pnÃpn,

(3)
�p + �n = K.

In order to get these forward- and backward-amplitude X’s
and Y ’s, I then use the variational methods as explained
in Refs. [23,24] to derive the so-called pn-QRPA equa-
tions [25,26]. Here the two-quasiparticle creation operator is
defined as Apn = α

†
pα

†
n.

The commutation relations [Apn,A
†
p′n′] = δpp′δnn′ are usu-

ally used in the derivation of these QRPA equations; this is
the so-called quasiboson approximation (QBA), which treats
the combination of two quasiparticle creation operators as a
boson operator. However, this commutation relation is not
exact since it neglects the Pauli exclusion principle (PEP)
for a multifermion system. In this work, I go beyond this
approximation by replacing this commutation relation with the
one used previously in Refs. [27–29] for spherical systems:

[Apn,A
†
p′n′] = δpp′δnn′ − δpp′ 〈0+

QRPA|α†
n′αn|0+

QRPA〉
− δnn′ 〈0+

QRPA|α†
p′αp|0+

QRPA〉
= Dpp′,nn′ . (4)

This is the so-called renormalized quasiboson approximation
(rQBA). A general assumption here is that under QRPA
vacuum, only diagonal terms exist, and this implies that only
nucleon pairs with Kπ = 0+ contribute to the coefficients D.
By applying this new commutation relation, I could obtain the
QRPA equations in the form( A B

−B∗ −A∗

)(
X
Y

)
= ωD

(
X
Y

)
. (5)

Here the QRPA matrices are defined as in Refs. [25,26]:
Apn,p′n′ = [Apn,(H,A

†
p′n′ )] and Bpn,p′n′ = [Ãpn,(H,Ãp′n′)].

For the convenience of calculations, I follow the nota-
tions introduced in Ref. [29]: Ā(B̄) = D−1/2A(B)D−1/2 and
X̄(Ȳ ) = D1/2X(Y ). With this convention, the QRPA equation
now has the form(

Ā B̄
−B̄∗ −Ā∗

)(
X̄
Ȳ

)
= ω

(
X̄
Ȳ

)
. (6)

The new forms of the QRPA equations are the same as the old
ones with X and Y now replaced by X̄ and Ȳ , so the same
technique of solving the QRPA equations could be applied
here. TheD’s could be obtained approximately with the boson-
mapping methods introduced in Ref. [27]:

B
†
pp′ →

∑
n

B†
pnBp′n,

B
†
nn′ →

∑
p

B†
pnBpn′ ,

where B is defined as B
†
ττ ′ = α†

τ ατ ′ . There is an exact derivation
of D with a solvable model [30], which implies that my
treatment could have deviations with large particle-particle
interaction strength from the exact solutions; this will be
discussed later. With this boson-mapping approach, I get the
expression for D as

Dpnp′n′ = δpp′δnn′

⎛
⎝1 −

∑
p′′

Dp′′np′′n′
∑
m

Ȳm
p′′nȲ

m
p′′n′

−
∑
n′′

Dpn′′p′n′′
∑
m

Ȳm
pn′′ Ȳ

m
p′n′′

)
. (7)

Equations (7) and (6) could be solved iteratively to give the
final solutions of the renormalized QRPA (rQRPA) equations.

The expression of β-decay matrix elements is now a bit
different; for the allowed β-decay matrix elements, I have in
the intrinsic system the expression

MGT (Ei) = 〈K,i|τ−σ 1
K |0+〉

=
∑
pn

〈p|σK |n〉D1/2
pn

(
upvnX̄

i
pn + vpunȲ

i
pn

)
. (8)

Here K = 0,±1 and Ei = ωK
i − ωlst follows the definition

in Ref. [17] with ωlst the lowest eigenvalues from QRPA
equations of all Kπ . The single-particle matrix elements
〈p|σ |n〉 are expressed in Refs. [17,26]. The first forbidden
(FF) matrix elements are in similar style but with much more
complicated expressions [17]. The details of the calculations
of half-lives in the deformed systems with these calculated
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matrix elements are also presented in Ref. [17],;I will not give
the details here.

III. PARAMETERS

For the mean field, I use the same wave functions as in
Ref. [17] obtained by solving the Schrödinger equation with
Woods-Saxon potentials parametrized as in Refs. [17,31].
For the sake of comparison in region II with other results,
in this work, for the choice of deformation parameters, if
they are available from the measured data [32], I use the
experimental values; otherwise I adopt the predicted values
from finite range droplet model (FRDM) [33] instead of those
from HFB17 [34] used in Ref. [17]. The same strategy is
used for the parametrization of nuclear masses—I use the
values from FRDM model [33] unless they are experimentally
available [32]; with these masses, I could then get the β-decay
Q values (the errors from measurements will be considered,
as I will show later) as well as pairing gaps from the five-point
formula [36]. By adjusting the pairing strength parameters
dpp and dnn, which are overall renormalization factors for the
realistic G-matrix elements, I fit these calculated pairing gaps.
These choices of parameters deviated from those in Ref. [17],
which will also lead to deviation of the final decay rates from
those in Ref. [17], as shown in Fig. 2.

For the residual interaction, as in Ref. [17], I use the G
matrix with realistic charge dependent-Bonn potential. The
two most important parameters in my approach are the renor-
malization strength of residual interactions in the particle-hole
channel (gph) and particle-particle channel (gpp). The former is
related to the position of GTR and does not affect the low-lying
structure for this parameter, so I use the value as explained in
Ref. [17]. (This is also partially because rQBA does not affect
particle-hole interactions.) The latter parameter gpp is crucial
for β-decay half-lives; I present my strategy for this parameter
in detail later. Before discussing this, I first concentrate on
another parameter gA in the nuclear system. As it is known
that the measured Gamow-Teller (GT) strength amounts only
about 60% to the model-independent Ikeda sum rule from
various experiments, this raises a problem about the quenching
of the axial vector constant gA. I will not go into details
about the origin of this quenching, but simply use the value
gA = 0.75gA0 extracted from various experiments such as
Ref. [35]. It is known that rQRPA would violate the Ikeda sum
rule [29], but my calculation shows that this suppression of GT
strength affects more of the resonance than the low-lying part.
Hence for β decay, which is related to the low-lying part of GT
strength, a quenching factor the same as that for QRPA could
be used.

In this work, as I have mentioned above, I focus on two
deformed regions which are on the r-process path. For the
Kr-Mo region (region I), β-decay half-lives of most nuclei have
been measured recently [12,13], while for the important rare-
earth region (region II), at present, most neutron-rich nuclei are
still out of the reach of the experimental facilities; nevertheless,
there are urgent needs for accurate predictions of their weak
decay properties as these are important inputs for r-process
abundance simulations with extra importance on the formation
of the so-called rare-earth peak [19,20]. In this work I adopt

FIG. 1. Illustration of half-life dependence on particle-particle
residual interaction strength gpp from rQRPA calculation with
realistic forces.

model space larger than that used [17] (N = 0–6 vs N = 0–5)
for region I, and for region II, an even larger model space
of N = 0–7 is used to eliminate possible errors from model
space truncation. My calculation show that enlargement of
the model space in region I causes just a small change of
about several percent for decay rates; this is small relative to
the errors of the many-body model—QRPA itself. The reason
is that most low-lying GT or first forbbiden (FF) transitions
occurs between levels near Fermi surface, and contributions
from levels far below or far above Fermi energy are relatively
small, especially for low-lying states. In Ref. [17], I have
found sensitive dependence of the half-lives on the particle-
particle strength gpp, which calls for accurate determination
of this parameter as mentioned above. In this work, I follow
the treatment in Ref. [17] by finding proper value of gpp from
the dependence of t1/2 on gpp, as is illustrated in Fig. 1. If
I compare the current t theo.

1/2 /t
exp.
1/2 − gpp curves with those in

Fig. 2 of [17] I will find that the curves have been stretched
out at the x direction, which is caused by the relaxation of
overcorrelation of residual interactions in the particle-particle
channel with the inclusion of PEP. The values of gpp in QRPA
calculations are possibly affected be several factors such as the
model space or PEP. In this work, the model space issue has
been carefully handled by using a pretty large model space.
With this treatment, my arguments are now that the major
reason for the necessity of gpp in QRPA calculations is than
the overcorrelation from PEP violation. So in this sense, when
PEP effects have been considered, I could use bare G-matrix
elements of realistic forces in QRPA calculations, and the main
errors produced by this treatment are from the approximation
of my boson mapping method instead of exact realization of
PEP. The advantage of this treatment is now straightforward,
that I could handle the regions where fitting of the parameter
gpp are nearly impossible due to the lack of experimental
data. To see the validity of the above arguments, we could
check the errors in Fig. 1 when the bare G matrix is used
in particle-particle channel, namely, gpp = 1. Following the
vertical lines in the figure, we see that the calculated half-
lives deviate the experimental ones by at most 30% and the
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FIG. 2. The B(GT) strength distributions for three nuclei, 100Sr, 102Sr, and 110Zr. The black droplines are results from QRPA calculations
(panels marked with a) and blue lines for rQRPA calculations (marked with c). (1b) and (2b) are experimental strengths extracted from Ref. [32],
where red lines are GT transitions and green lines are probably GT transitions. (3b) is taken from Ref. [17] from QRPA calculations with
parameters different from current calculation. The vertical lines are the Q values, for 110Zr, and the shaded area denotes the uncertainty of the
Q value.

general trend is that the theory slightly overpredicted the decay
rates. The reason for this is that residual interaction in the
particle-particle channel is still a bit overcorrelated with boson
mapping approximation from conclusions in Ref. [30], where
they have compared the exact treatment and boson mapping
technique with a solvable model. With this in mind, I could
draw a conclusion that violation of PEP is the main source
of a heavy renormalization of residual interaction in previous
QRPA calculation. I will check the validity of this conclusion
further with more nuclei in both regions and give predictions
of the weak decay properties for more even-even isotopes in
the next section.

IV. RESULTS AND DISCUSSION

As I have shown above, the renormalization parameter
gpp introduced in previous QRPA calculations is somehow
due to the violation of PEP with large model space. This
would lead to the conclusion that for rQRPA with a large
model space, using a bare G matrix in the particle-particle
channel could be an optimal choice. To see the robustness
of this conclusion, I make comparisons between theoretical
calculations and experimental results for more isotopes. First
I concentrate on region I, where there has been recently
evaluated data [12] as well as older data [13]. The recent
data improve the accuracy for many isotopes in this region;

for most nuclei the measured half-lives are the same and the
deviations of the recent data from the older data are small.
Reference [13] also presents more decay rates for nuclei
with more neutrons. The results of QRPA calculations taken
from Ref. [17] are compared to QRPA calculation with the
same formalism but with different parameters of masses and
deformations, as well as the improved results from rQRPA;
this arrangement is to separate the changes due to PEP from
those caused by modifications of parameters. For rQRPA
calculations, I also introduce the errors of Q values with
newest evaluations from the NNDC database [32], and the
Q values have change a bit since Ref. [17], where they were
taken from Ref. [36]. This causes deviations for some nuclei.
For masses those are experimentally unavailable, I use values
from Ref. [33], as mentioned above. The recent parameters of
masses and deformations cause changes to my final results,
especially the mass parameters, as they are related to the
pairing parameters 
 and β-decay Q values. The effect of
another parameter—the deformation on QRPA calculations—
is discussed in Ref. [14]. Deviations of about a factor of two
for theories are encountered for some nuclei, but for those
less neutron-rich, the rates basically stay the same. This can
easily be interpreted from less modification of mass parameters
for these nuclei. Well-fitted gpp = 0.75 values in Ref. [17]
basically reproduce the experimental results for even-even
nuclei, as we see from Fig. 1 of [17]. The comparison between
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FIG. 3. Comparison of results among calculated and measured half-lives of even-even isotopes in the Kr-Mo region (left panel) and
rare-earth region (right panel). For left panel, QRPA I denotes results from Ref. [17] with QRPA calculations and QRPA II denotes QRPA
calculations with the mass and deformation parameters used in this work. rQRPA denotes results with PEP in this work. Exp1 indicates measured
rates from Ref. [12] or national nuclear data center (NNDC) if not presented and Ref. [32]; Exp 2 indicates rates from recent measurements
in Ref. [13]. For the right panel, the rQRPA denotes results from this work and Exp. denotes results from NNDC [32]. The error bars of my
theoretical calculations come from error bars of Q values from NNDC [32].

QRPA and rQRPA results in this work with the same set of
parameters consolidates my conclusion in previous section
that bare G-matrix elements used in rQRPA are suitable,
provided the fact that results using this arrangement agree
with QRPA results with previously fitted gpp almost exactly.
This, on the other hand, shows that renormalization parameters
gpp previously used for realistic forces come mainly from the
negligence of PEP in the calculation.

Comparing the calculated results with the measurements, I
find that for most nuclei the agreement is satisfying except for
a few Sr isotopes. The errors of the calculation are generally
within a factor of two and for most isotopes the deviations are
even smaller. The uncertainties from current mass measure-
ments produce large errors for the final rates; improvement of
mass evaluations or empirical mass assessments are needed
to enhance the prediction power of current β-decay theory.
Inclusion of more isotopes generally does not change my
conclusion drawn for less isotopes in Fig. 1; at this region,
the decay half-lives are from seconds to milliseconds and the
general errors follow those in Fig. 3 of Ref. [17]. This error
is important as most nuclei along the r-process path are with
half-lives of this magnitude. It is reasonable to estimate that
the general error of QRPA calculations for these r-path nuclei
should be of the similar magnitude. This estimation would help
determine the uncertainty analysis in r-process simulations
such as those done in Ref. [37].

To understand how the inclusion of PEP changes QRPA
calculations and the reason for the similarity of QRPA and
rQRPA results for decay rates with specifically fitted gpp, I
need to compare the detailed β-decay strength distributions.
As FF decays are weak in this region [17], I compare only
the GT strength. From the plotted graph in Fig. 2, one could
find that QRPA with renormalized gpp basically reproduces
the β strength of rQRPA at a low-energy region for states with
excitation energies below 4 MeV. One-to-one correspondence
of the low-lying states has been observed, e.g., the three states
below 1 MeV with the same transition structure for 100Sr
or the two states with large B(GT ) values near 2 MeV for
102Sr, as well as the transition around 1 MeV for 110Zr. This

correspondence explains the well-behaved β-decay properties
from QRPA calculations when PEP is absent. In the meantime,
when one goes to the higher energy region with excitation
energies above 4 MeV, the deviation starts to emerge. GT
strength has been relocated more at this energy region for
Sr isotopes but less for 100Zr when PEP is included. These
deviations are not important for the decay rates of the isotopes
I presented, since their phase space factor is too small to affect
the total decay width. But if the Q values become much
larger, then they may play a role when their phase space
factors become comparable to those of low-lying strength.
In this sense, inclusion of PEP may improve the accuracy of
decay properties of much more exotic isotopes. For 110Zr,
new and old QRPA calculations are compared, and their
difference comes from the different deformation from two
models as this is the only difference of parametrization in the
two calculations. The relocation of strength from changes of
deformation have been discussed also in Ref. [17], Fig. 4, and
in Ref. [25] for Skyrme calculations; together with this work,
one could come to the conclusion that accurate prediction
of deformation is vitally important for QRPA calculations.
For the two Sr isotopes, I have detailed decay data available,
which helps us understand the difference between theory and
experiment. The experimental strength is extracted from their
decay scheme, so only low-lying strength can be obtained
as the contributions of high-lying states to decay width
have been suppressed by their small phase space. For each
experimental strength below excitation energies of 2 MeV, I
could always find correspondence from QRPA calculations,
e.g., peak around 1 MeV for 100Sr and two huge transitions
around 2 MeV. Theories generally predict the structure of
the GT strength transitions. Deviations between theory and
experiments are inevitable as far as I could observe, since
QRPA is a rough approximation to the exact solutions of
nuclear many-body problems. From these graphs, one would
naturally raise the problem of whether the deviations could
be reduced by adjusting the values of gpp. I will show the
answer is negative; from my calculations, I draw the conclusion
that increasing gpp would shift more strength to low-lying
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FIG. 4. Prediction of half-lives of even-even nuclei in rare-earth
regions from rQRPA calculations. Comparison of my results with
decay rates from Ref. [6] and the experiment results [32] are also
presented.

states and also 1+ states to much lower energy, and vice
versa. In this sense, if one increases the interaction strength
in the pp channel, he could have the 1+ energies agree with
experiments, but the deviations of strength then become much
worse. On the other hand, if I reduce the strength gpp, I could
have better agreement of strength but worse agreement for
excitation energies. So from such analysis, one could see
that the deviations between theories and experiments could be
related to other issues such as single-particle energies and wave
functions or deformation but less from gpp. The possibility of
whether the deviation could be reduced by exact treatment of
PEP, such as in Ref. [30], still needs investigation.

I now turn my attention to the less-explored region I,I which
is also the target of in-constructing facility for rare isotope
beam (FRIB); see, e.g., Ref. [38]. This region is not well
explored, either theoretically or experimentally, and only a
few calculations have been done in this region especially for
the neutron-rich isotopes, such as results from Ref. [6] and
from Skyrme calculations [21] with tensor forces. Relatively
small errors have been achieved from their calculations. In
Fig. 3, my attempts are also presented. I also compared
the rQRPA results with QRPA results, but now for QRPA,
different values of gpp = 0.63 are used. These two sets of
results agree with each other as in region I. These different
values of gpp tell us that without rQRPA, the fitting of gpp is
needed; this is usually difficult for deformed regions lack of
experimental data. All the known half-lives of those isotopes
in this heavily deformed region are longer than 1 s, and these
isotopes have much smaller Q values compared with region
I, discussed above. Since QRPA values are usually with an
error about several hundred keV up to MeV for the prediction
of excitation energies, the calculated half-lives could be less
accurate compared to those of the previous region where I
could have an error of at most a factor of 2 for all isotopes. For
these relatively long-lived isotopes, the deviations may be a bit

larger than those in region I but still acceptable. It is difficult to
claim that my rates are much more precise than other methods
with such limited data. In Fig. 3, I have comparisons for several
isotopes between my calculations and experiments, and the
difference is not so drastic; a factor of two deviation can be
obtained for most nuclei except two long-lived isotopes 154Nd
and 158Sm. As compared to FRDM rates from Fig. 4, I see
better agreements for most Sm and Gd isotopes but they have
better predictions for Nd isotopes and similar errors for Ce
isotopes. My rates are faster and theirs are slower. Also large
errors are encountered in my calculation with the uncertainties
from mass measurements, which makes comparison of the
results less clear and affects an effective estimation over the
errors and reliability of the theory. The errors could be further
reduced with the reduction of uncertainties in nuclear mass
data, which could be done after FRIB [38].

My results are served as alternatives for the nuclear input
of r-process simulations. I did calculations for more nuclei and
make comparisons with existing results. The results in Ref. [6]
have been widely used in astrophysics community and a direct
comparison with them could give us some hints over the final
simulation. A large deviation of the two calculations has been
observed, and my rates are much faster than theirs. The reason
was explained in Ref. [17]: The absence of interactions in
particle-particle channel gives overestimation on the half-lives
with FRDM model. A factor of two differences between
theories have been observed for almost all nuclei here. The
consequence of these rates on r-process simulations still needs
investigation while rates of all kinds of nuclei can be obtained.
This requires extending my formalism to odd-A and odd-odd
nuclei with improved accuracies, as previous agreement for
these odd nuclei from QRPA calculations in Ref. [17] is really
poor. After these have been done, I could make an estimation
on how the rates affect the abundance pattern and shed light
on the formation of the rare-earth peak.

V. CONCLUSION

In this work I have introduced the rQBA into the QRPA cal-
culations with realistic forces. I found that with the new com-
mutation relation, the over-correlation of residual interactions
at pp channel is eliminated, and hence the need of renormal-
ization of these interaction strength can be neglected. With the
new calculation, I come to satisfying agreement between cal-
culation and measurement for both regions I and II for neutron-
rich even-even isotopes. I also give predictions of half-lives of
much neutron-richer nuclei in the rare-earth region, which are
important according to simulations from Refs. [19,20]. These
calculations would help solve the problem of the formation of
the rare-earth peak of the solar element abundance.
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