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Electromagnetic transition strengths for light nuclei in the Skyrme model
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We calculate reduced B(E2) electromagnetic transition strengths for light nuclei of mass numbers B =
8,12,16,20,24, and 32 within the Skyrme model. We find that the predicted transition strengths are of the correct
order of magnitude and the computed intrinsic quadrupole moments match the experimentally observed effective
nuclear shapes. For the Hoyle state we predict a large B(E2)↑ value of 0.0521 e2b2. For oxygen-16, we can
obtain a quantitative understanding of the ground state rotational band and the rotational excitations of the second
spin-0 state, 0+

2 .
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I. INTRODUCTION

Radiative electromagnetic transitions between nuclear
states are an excellent way to probe nuclear structure and to
test nuclear structure models [1–3]. In even-even nuclei, the
reduced transition probability B(E2 : 0+

1 → 2+
1 ) from the 0+

1
ground state to the first excited 2+

1 state is particularly impor-
tant [4,5]. B(E2) transitions play a crucial role [5,6] in deter-
mining mean lifetimes of nuclear states, the nuclear potential
deformation parameter β, the magnitude of intrinsic electric
quadrupole moments, and the energy of low-lying levels of
nuclei. Large quadrupole moments and transition strengths
indicate collective effects in which many nucleons participate.

The Skyrme model [7,8] and its topological soliton so-
lutions (known as Skyrmions) have been found to capture
important features of light nuclei of even baryon number.
As in the α-particle model of nuclei [9,10], Skyrmions with
topological charge B a multiple of four are composed of
charge four subunits [11]. Here the role of the α particle is
taken by the cubic B = 4 Skyrmion. The arrangements of
B = 4 cubes often resemble [11,12] those discussed in the
α-particle model. In addition, the allowed quantum states for
each Skyrmion of topological charge B often match [13–17]
the ground and excited states of nuclei with mass number
B a multiple of four. Among other successes of the Skyrme
model is the prediction of the excitation energy of states in the
rotational bands of carbon-12, including the excitations of the
Hoyle state [18]. However, isoscalar quadrupole E2 transitions
within the Skyrme model, which can provide us with valuable
information about the internal structure of nuclei, and a
nontrivial test of the model, have not yet been studied in detail.
Note that isovector magnetic dipole M1 transitions have been
discussed for Skyrmion states in the literature. The M1 tran-
sition from a delta to a nucleon has been considered [19], and
also the transition from a deuteron to its isovector state [20].
In appendix B of Ref. [21] a connection between the isovector
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magnetic moment operator and the Skyrmion’s mixed inertia
tensor was established for arbitrary SU(2) Skyrmions.

In the following, we briefly review the Skyrme model
and its soliton solutions. For further details, we refer the
interested reader to the literature [22–24]. The Skyrme model
is a modified nonlinear sigma model, in which the sigma
field σ and isotriplet of pion fields π are combined into an
SU(2)-valued scalar field

U (x,t) = σ (x,t)12 + iπ (x,t)·τ , (1)

where τ denotes the triplet of Pauli matrices and the normal-
ization constraint σ 2 + π · π = 1 is imposed.

For a static Skyrme field U (x), the energy in Skyrme units
is

E =
∫ {

−1

2
Tr(RiRi) − 1

16
Tr([Ri,Rj ][Ri,Rj ])

+m2Tr(12 − U )

}
d3x . (2)

Here, Ri are the spatial components of the SU(2)-valued
current Rμ = (∂μU )U †, and m is a dimensionless pion mass
parameter. Skyrme units are converted to physical energies
and lengths (in MeV and fm) by the factors Fπ/4eSky and
2/eSkyFπ , respectively. eSky is a dimensionless constant and
Fπ can be interpreted as the pion decay constant. m is related
to the pion tree level mass mπ via m = 2mπ/eSkyFπ . The
energy and length conversion factors are fixed by comparison
with experimental nuclear physics data.

Skyrmions are critical points of the potential energy (2) and
are characterized by a conserved, integer-valued topological
charge

B = − 1

24π2

∫
εijkTr(RiRjRk) d3x. (3)

B is the topological degree of the map U : R3 → SU(2) at
any given time, which is well defined for fields satisfying the
boundary conditions σ → 1 and π → 0 as |x| → ∞. Physi-
cally, when semiclassically quantized [19,25], a Skyrmion of
charge B is interpreted as a nucleus of mass number (or baryon
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TABLE I. Skyrmions of baryon numbers B = 8, 12, 16, 20, 24, 32, for m = 1. We list the symmetry group G of each Skyrmion, its energy
relative to the Skyrme-Faddeev bound E

12π2B
, and the diagonal elements of the inertia tensors Uij ,Vij ,Wij (in Skyrme units). We also list the

isospin-zero nuclei (in their ground states) that can be modelled by the Skyrmions. These are recognized from the symmetry group rather than
the energy E.

B G Nucleus E

12π2B
U11 U22 U33 V11 V22 V33 W11 W22 W33

8 D4h (twist) 8
4Be4 1.279 298 292 326 4093 4094 1381 0 0 0

D4h (no twist) 1.283 287 291 350 4615 4615 1296 0 0 0
12 D4h Hoyle 1.274 440 449 456 12137 12137 2139 0 0 0

D3h
12
6 C6 1.278 442 442 497 5009 5006 7627 41 41 38

16 D2d (bent square) 1.271 572 571 674 9123 9119 14602 0 0 0
D4h (flat square) 1.272 563 567 689 9143 9174 15682 0 0 0

Td
16
8 O8 1.276 586 586 674 9100 9101 9128 0 0 0

20 Td 1.273 757 757 819 12820 12820 12821 0 0 0
D3h

20
10Ne10 1.276 857 735 735 18542 18591 9762 15 −15 −11

24 D2h 1.267 877 862 956 26980 14189 36783 0 0 0
D3d 1.269 879 890 959 19600 19600 29863 0 0 0
D3h

24
12Mg12 1.269 869 869 1006 20554 20454 16226 −99 99 99

32 Oh
32
16S16 1.264 1115 1116 1367 31625 31628 31704 0 0 0

number) B. In nuclear physics, the notation for mass number
is A but we will keep our notation B in this paper.

Skyrmion solutions with rescaled pion mass m = 1 and
with baryon number B a multiple of four have been
previously found [11,12,17,18]. For baryon numbers B =
8, 12, 16, 20, 24, 32, we recalculate the classical Skyrmion
solutions using two different numerical relaxation techniques:
nonlinear conjugate gradient [12,26,27] and damped full field
evolution [28]. Skyrmions are the solutions of minimal energy,
or sometimes local minima or saddle points with energies close
to minimal. Our calculations have led us to two new solutions
with B = 24. These are obtained by gluing together two copies
of B = 12 solutions.

To find solutions, Skyrme fields of positive topological
charge B and with a given symmetry group G are created by
multilayer rational map ansätze [12], or product ansätze [11].
These initial Skyrme field configurations are relaxed on grids
with (201)3 grid points and a spatial grid spacing �x = 0.1 to
find precise solutions. We list in Table I the symmetry group,
the energy and the diagonal elements of the isospin (Uij ),
spin (Vij ), and mixed (Wij ) inertia tensors for Skyrmions with
baryon numbers B = 8, 12, 16, 20, 24, 32. The Skyrmions are
orientated such that all off-diagonal elements of the inertia
tensors vanish. The formulas for the inertia tensors Uij ,Vij ,Wij

are rather complicated and have been given first in general form
for arbitrary SU(2) Skyrmions in Refs. [20,29]. However, for
numerical calculations it is much more convenient to express
the inertia tensors in terms of the sigma field and pion field
isotriplet, see formulas given in Refs. [17,30]. The baryon
density isosurfaces we obtain are shown in Fig. 1. On these sur-
faces, the π -field values are visualized using Manton and Sut-
cliffe’s field colouring scheme described in detail in Ref. [31].

In this paper, we calibrate the Skyrme model with properties
of the carbon-12 nucleus. The root-mean-square matter radius
of a nucleus can be calculated within the Skyrme model as

〈r2〉 1
2 =

(∫
r2 E(x) d3x∫ E(x) d3x

) 1
2

, (4)

where E(x) is the static energy density and r = |x|. We list

the matter radii 〈r2〉
1
2
Sky (in Skyrme length units) of all the

Skyrmions considered here in Table II. The energy and length
conversion factors are tuned to match the experimental nuclear
mass 11178 MeV and matter radius 2.43 fermi [32] for the
carbon-12 ground state. This fixes the conversion factors to
be [

Fπ

4eSky

]
= 6.154 MeV ,

[
2

eSkyFπ

]
= 1.061 fm , (5)

and gives the parameter values

eSky = 3.889, Fπ = 95.6 MeV, � = 30.2, and

mπ = 185.9 MeV , (6)

where � = 2e2
Sky. (More precisely, the energy unit

is Fπ/4eSky = 6.154 MeV and the length unit is
2�/eSkyFπ = 1.061 fm, so the energy-length unit
is �/2e2

Sky = 6.529 MeV fm. As � = 197.3 MeV fm
experimentally, 2e2

Sky = 30.2 or equivalently � = 30.2
in Skyrme units.) Note that we use in this article a value of
Fπ that is substantially lower than its experimental value and
a value of mπ that is substantially larger than the physical
pion mass. The experimental values for the pion mass
and pion decay constant are given by mπ = 138 MeV and
Fπ = 186 MeV, respectively. One can argue that mπ and Fπ

should be taken from experiment and that the Skyrme constant
eSky should be used as the fitting parameter. Fitting Skyrmions
with mπ , Fπ and FK (with the kaon mass term added) at its
physical values and eSky � 4.1 allows to reasonably describe
the mass splittings [33,34] within the SU(3) multiplets of
baryons. For these parameter values the absolute values of
nuclear masses are not reproduced and one has to appeal
to large Casimir energies from field fluctuations [35,36]
to make up the difference. Even for the B = 1 Skyrmion,
these quantum corrections to the soliton mass are difficult to
calculate accurately and estimates have been given by various
authors [35–40]. Except for the work on Casimir energies of
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FIG. 1. Surfaces of constant baryon density (not to scale) of Skyrmions with pion mass parameter m = 1. The Skyrmions have baryon
number and symmetry group: B = 8 (a) D4h with 90◦ twist, (b) D4h with no twist; B = 12 (c) D4h, (d) D3h; B = 16 (e) D2d (bent square),
(f) D4h (flat square), (g) Td ; B = 20 (h) Td , (i) D3h; B = 24 (j) D2h, (k) D3d , (l) D3h; B = 32 (m) Oh.

strongly bound B = 2 configurations reported in Ref. [40],
there do not exist estimates of Casimir effects for B > 1.
It is very difficult to pin down the exact magnitude of the
Casimir contributions to Skyrmion masses because first of
all this requires a full knowledge of the vibrational space
of Skyrmions. New insights into the structure of vibrational
spaces and their quantization have been reported recently in
Ref. [41]. In this article, we adopt a different point of view
which goes back to Adkins, Nappi, and Witten [19]. It has
been found effective when modeling nuclei by Skyrmions to
adjust the Skyrme parameters to fit nuclear masses and to

interpret mπ and Fπ as renormalized quantities [42–44]. For
example, calibrating the Skyrme model with properties of the
carbon-12 nucleus has previously proven successful [18] in
describing the spectrum of rotational excitations of carbon-12,
including the excitations of the Hoyle state, and in modeling
nucleon-nucleon scattering within the Skyrme model [45,46].
In the following, we will refer to Eq. (5) as the Lau-Manton
(LM) calibration. We will find that the LM calibration is well
suited for calculating electromagnetic transition strengths
within the Skyrme model. In addition, for this calibration the
predicted nuclear masses and matter radii are in reasonable
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TABLE II. Nuclear masses E and root mean square matter radii 〈r2〉 1
2 for nuclei of baryon numbers B = 8, 12, 16, 20, 24, 32 and isospin

zero. Here, the subscripts “Sky” and “LM” refer to Skyrme units and the Lau-Manton calibration (5), respectively. The experimental matter

radii 〈r2〉
1
2
Exp are taken from Ref. [47] and are given in fermi.

B G Nucleus ELM [MeV] EExp [MeV] 〈r2〉
1
2
Sky 〈r2〉

1
2
LM [fm] 〈r2〉

1
2
Exp [fm]

8 D4h (twist) 8
4Be4 7457.5 7451.9 2.05 2.18 2.34a

D4h (no twist) 7480.9 2.15 2.28
12 D4h Hoyle 11142.6 2.76 2.93 2.89b

D3h
12
6 C6 11178 11178 2.29 2.43 2.43c

16 D2d (bent square) 14821.9 2.66 2.82
D4h (flat square) 14833.5 2.70 2.87

Td
16
8 O8 14903.5 14903.9 2.35 2.50 2.70

20 Td 18556.5 2.60 2.76
D3h

20
10Ne10 18600.2 18629.8 2.86 3.03 3.01

24 D2h 22170.1 3.32 3.53
D3d 22197.8 3.13 3.33
D3h

24
12Mg12 22212.1 22355.8 2.87 3.04 3.06

32 Oh
32
16S16 29480.5 29807.8 3.17 3.36 3.26

aNote that due to its instability there are no data available for beryllium-8, so here we give the charge radius for its isobar lithium-8.
bThe Hoyle state’s nuclear radius has been measured in Ref. [48].
cThe experimental matter radius for the carbon-12 ground state is taken from Ref. [32].

agreement with experimental data for a range of baryon
numbers, see Table II.

In the following, we will calculate and discuss the electric
quadrupole transitions within the Skyrme model. Our dis-
cussion will be mainly focused on the quadrupole transition
strength, B(E2) ↑, between the 0+ ground state and the first
2+ state in even-even nuclei of zero isospin such as carbon-12.
The large quadrupole strength in the 0+ to 2+ transition in
beryllium-12 will serve as an example how transition strengths
can be calculated in the presence of nonzero isospin.

II. ELECTROMAGNETIC TRANSITION STRENGTHS
IN THE SKYRME MODEL

In the Skyrme model, the electric charge density
ρ(x) [49,50] is given by

ρ(x) = 1
2 B (x) + I3(x) , (7)

where B (x) denotes the baryon density, the integrand of
Eq. (3), and I3(x) is the third component of the isospin density.
For quantum states with zero isospin, the charge density ρ is
half the baryon density [51], and the total electric charge is 1

2B
(in units of the proton charge e). Nuclei with zero isospin have
equal numbers of protons and neutrons. For nonzero isospin,
the isospin density I3(x) = ωU33(x) contributes to the total
electric charge. Here, ω is the isorotational angular frequency
and the isospin inertia density is [17,30]

Uij (x) = 2{(π · πδij − πiπj )(1 + ∂kσ∂kσ + ∂kπ · ∂kπ )

− εideεjfg(πd∂kπ
e)(πf ∂kπ

g)}. (8)

The classical electric quadrupole tensor for a Skyrmion is
defined as

Qij =
∫

d3x (3xixj − |x|2δij )ρ(x) . (9)

For a Skyrmion in its standard orientation, the tensor is
diagonal and the diagonal entries Q11,Q22,Q33 are the
quadrupole moments. The quadrupole tensor is traceless (up to
numerical inaccuracies) so Q11 + Q22 + Q33 = 0. Almost all
the Skyrmions we consider here can be orientated so that they
have a cyclic symmetry greater than C2 along the three-axis.
Then Q11 = Q22 and Q33 is the quadrupole moment of largest
magnitude.

A. Zero isospin

We list in Table III our numerical results for quadrupole
moments of Skyrmions and the corresponding nuclei with
mass numbers B = 8, 12, 16, 20, 24, 32 and zero isospin.
Here, the charge density ρ is half the baryon density. The
Skyrme model’s predictions are given in Skyrme units and can
be converted to physical units by multiplying by the square
of the length scale. We orientate the classical Skyrmion such
that Q33 is the quadrupole moment of maximal magnitude,
as discussed above. Then, the nucleus’ intrinsic electric
quadrupole moment Q0 can be identified with Q33 × [ 2

eSkyFπ
]
2
.

With the calibration (5), we obtain the intrinsic quadrupole
moments Q0 (in units of electron barn, eb) which are given in
the penultimate column of Table III. For comparison, we also
list experimental data, where available. Recall that a factor of

1
100 is required to convert [fm]2 to barn.

For a nuclear state, let J be the total angular momentum
and k its projection on the body-fixed three-axis. The reduced
electric quadrupole transition strength B(E2) from an initial
state |Ji ,k〉 to a final state |Jf ,k〉 can be obtained [1,2] from
the intrinsic moment Q0 via

B(E2 : Ji ,k → Jf ,k) = 5

16π
Q2

0 〈Ji k; 2 0|Jf k〉2 , (10)

where the Clebsch-Gordan coefficient 〈Ji k; 2 0|Jf k〉 governs
the coupling of the angular momenta.
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TABLE III. Intrinsic quadrupole moments for Skyrmions of mass numbers B = 8, 12, 16, 20, 24, 32 and of zero isospin. “Sky” and “LM”
refer to Skyrme units and the Lau-Manton calibration (5), respectively. We use “—” to denote Skyrmions of zero quadrupole moment. Unless
otherwise stated, the experimental results for intrinsic quadrupole moments (in electron barn) are taken from Ref. [5] and have been derived
from experimental B(E2) transition strengths via Eq. (12). Note that we state two different intrinsic quadrupole moments for the beryllium-8
nucleus. The experimental quadrupole moment given for oxygen-16 [5] is bracketed since this value has been derived from experimental B(E2)
transition strengths from the 0+

1 ground state to the first-excited 2+ state. Within the Skyrme model description, this E2 transition corresponds
to an interband transition and hence cannot be modelled using the techniques described in this paper. See discussion and Fig. 2 in subsequent
section on rotational states and transitions in oxygen-16 for more details.

B G Nucleus Q
Sky
11 Q

Sky
22 Q

Sky
33 QLM

0 [eb] Q
Exp
0 [eb]

8 D4h (twist) 8
4Be4 − 8.54 − 8.55 17.10 +0.192 +0.266a, +0.320b

D4h (no twist) − 10.5 − 10.5 21.1 +0.238
12 D4h Hoyle − 32.1 − 32.1 64.3 +0.724

D3h
12
6 C6 8.99 9.10 − 18.0 − 0.203 − 0.200

16 D2d (bent square) 18.2 18.4 − 36.6 − 0.412 (0.202)
D4h (flat square) 21.2 21.3 − 42.5 − 0.478

Td
16
8 O8 − − − − −

20 Td − − − −
D3h

20
10Ne10 − 18.8 − 18.6 37.4 +0.421 +0.584

24 D2h −107 116 − 9.16 − 0.103
D3d 34.4 34.4 − 68.9 − 0.776
D3h

24
12Mg12 − 13.6 − 12.5 26.1 +0.294 +0.659

32 Oh
32
16S16 − − − − +0.549

aVariational Monte Carlo (VMC) calculation [52].
bGreens function Monte Carlo (GFMC) method [53].

For electromagnetic transitions between states Ji = J and
Jf = J + 2, with k = 0, the Clebsch-Gordan coefficient in
Eq. (10) simplifies to

〈J 0; 2 0|(J + 2) 0〉2 = 3(J + 1)(J + 2)

2(2J + 1)(2J + 3)
. (11)

Hence, the reduced electric quadrupole transition probability,
B(E2) ↑, from the spin 0+ ground state to the first excited spin
2+ state is given by

B(E2 : 0+ → 2+) = 5

16π
Q2

0 . (12)

Note that electromagnetic excitation B(E2) ↑ and decay
B(E2) ↓ of a nuclear state are related [1,2] by

B(E2 : Jf → Ji) = 2Ji + 1

2Jf + 1
B(E2 : Ji → Jf ) . (13)

By substituting the intrinsic quadrupole moments QLM
0

listed in Table III in Eq. (12), we obtain the Skyrme model’s
predictions for the B(E2) ↑ values (in units of e2b2) for nuclei
of mass numbers B = 8, 12, 16, 20, 24, 32; they are presented
in the fifth column of Table IV, with experimental data in
the sixth column. In the fourth column of Table IV, we list
the corresponding B(E2) ↑ values in Skyrme units. These
B(E2)Sky values are obtained by substituting Q

Sky
33 given in

Table III into Eq. (12). They are related to physical units by
the factor [ 2

eSkyFπ
]
4
, the fourth power of the Skyrme length

unit. We also include in Table IV the calculated transition
strength B(E2 : 0+ → 2+) for the short-lived 12

4 Be8 nucleus,
to be discussed below, and for the Hoyle state of 12

6 C6.
To further simplify comparison with experimental data we

convert to Weisskopf units W. This compares the transition

strength with the single-particle strength

B(E2) ↑sp= 2.97 × 10−5B
4
3 e2b2 . (14)

The strength in Weisskopf units is W = B(E2) ↑
/B(E2) ↑sp, and is a measure of collective quadrupole
effects in nuclei. A value higher than 5 indicates substantial
collectivity.

In the following subsections, we discuss each nucleus
separately. The structure and excitation spectrum of oxygen-16
are particular difficult to understand within a shell-model
description [55]. Recent progress has been made via ab initio
calculations using α cluster initial states with tetrahedral
and square configurations [56]. Within the Skyrme model,
tetrahedral and square-like configurations of charge-4 subunits
arise as B = 16 Skyrmion solutions [11]. For this reason, we
devote a separate, longer section of this paper to rotational
states and transitions in oxygen-16.

1. Beryllium-8

For beryllium-8, we calculate B(E2 : 0+ → 2+) transition
strengths using the two known D4h-symmetric Skyrmions. For
the twisted B = 8 Skyrmion we find B(E2) = 0.00366 e2b2

and for the untwisted Skyrmion B(E2) = 0.00563 e2b2. Due
to the instability of beryllium-8 to α decay, we are unable to
compare our results with actual experimental data. Instead,
we include in Table IV B(E2) values based on Hartree-Fock
calculations [5] and on Monte Carlo methods [52,53]. Note that
the available theoretical values vary significantly depending
on which model is used. This makes it impossible to test
the accuracy of our Skyrme model B(E2) predictions. Our
predicted intrinsic quadrupole moments are consistent with
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TABLE IV. Quadrupole transition strengths B(E2) ↑ for nuclei of baryon numbers B = 8, 12, 16, 20, 24, 32. “Sky” and “LM” refer to
Skyrme units and the Lau-Manton calibration (5), respectively. “—” denotes zero transition strength. Unless otherwise stated, the experimental
B(E2) ↑ values are taken from Ref. [5]. Note that we state three different estimated transition strengths for the beryllium-8 nucleus.

B G Nucleus B(E2)Sky B(E2)LM [e2b2] B(E2)Exp [e2b2] Dev. [%]

8 D4h (twist) 8
4Be4 29.1 0.00366 (7.7 W) 0.003a 22%

0.0100b 63.3%
0.00740c 50.5%

8 D4h (no twist) 44.6 0.00563 (11.8 W)
12 D4h Hoyle 411 0.0521 (63.9 W)

D3h
12
6 C6 32.5 0.00409 (5.0 W) 0.00397 (4.9 W) 3.02%

D3h
12
4 Be8 14.2 0.00181 (2.2 W) 0.0040 (4.9 W)d 54.7%

16 D2d (bent square) 16
8 O8 133 0.0168 (14.1 W)

D4h (flat square) 179 0.0227 (18.9 W)
20 D3h

20
10Ne10 139 0.0176 (10.9 W) 0.0340 (21 W) 48.1%

24 D3h
24
12Mg12 68.1 0.00864 (4.2 W) 0.0432 (21 W) 80.0%

32 Oh
32
16S16 − − 0.0300 (9.8 W)

aHartree-Fock+BCS calculations with the Skyrme SIII force [5].
bVariational Monte Carlo (VMC) calculation [52].
cGreen’s function Monte Carlo (GFMC) method [53].
dFor the short-lived beryllium-12 isotope we obtain the estimated experimental B(E2) ↑ value by multiplying by 5 the B(E2) ↓ value measured
in Ref. [54].

the prolate shape found in Hartree-Fock and Monte Carlo
calculations.

2. Carbon-12 and Hoyle state

For B = 12, rotational excitations of the D3h triangular
Skyrmion solution match the carbon-12 ground state band,
and excitations of the D4h chain solution reproduce the Hoyle
band [18]. The D3h-symmetric Skyrmion has the oblate shape
assumed for the carbon-12 nucleus [57]. Our calculated in-
trinsic quadrupole moment Q0 = −0.203 eb agrees well with
the experimental value Q0 = −0.200 eb [5] extracted from
the measured strength of the 0+

1 → 2+
1 transition. The asso-

ciated transition strength B(E2 : 0+
1 → 2+

1 ) = 0.00409 e2b2

deviates by 3% from the experimental value.
Measuring the E2 transition strength from the 2+

2 Hoyle
state to the 0+

2 Hoyle state is experimentally challenging [58]
and would require a highly efficient particle-γ experimental
setup [3]. Interpreting the Hoyle state as a linear chain
formed out of three B = 4 Skyrmions, we predict the transi-
tion strength in the opposite direction, B(E2 : 0+

2 → 2+
2 ) =

0.0521 e2b2. This corresponds to 63.9 W, arising from a
strongly prolate intrinsic shape with an intrinsic quadrupole
moment Q0 = 0.724 eb.

3. Neon-20

In the α-particle model, neon-20 is described in terms
of five α particles arranged in a triangular bipyramid [59].
Four of the five low-lying rotational bands in neon-20
can be understood [60] using this bipyramidal α-particle
arrangement. In the Skyrme model, there exists an analogous
bipyramidal cluster arrangement [11] of five B = 4 cubes
[see Fig. 1(i)]. This D3h-symmetric configuration is not the
global minimal energy Skyrmion with B = 20, but a nearby
saddle point solution. In agreement with experimental data,
this bipyramidal Skyrmion structure gives a prolate deformed

neon-20 ground state. The associated intrinsic quadrupole
moment Q0 = 0.421 eb is less than the experimental value
Q0 = 0.584 eb [5] deduced from the measured B(E2) ↑ value.
For the electric quadrupole transition from the 0+ ground
state to the first excited 2+ state, the corresponding B(E2) =
0.0176 e2b2 is approximately 50% less than the experimental
value. We have not yet identified any states of neon-20 with
the quantized states of the Td -symmetric B = 20 Skyrmion.

4. Magnesium-24

For B = 24, we consider three very different Skyrmion
solutions: a nonplanar D3d -symmetric ring formed of six
B = 4 Skyrmion cubes with each neighboring pair being
rotated through 90◦ around the line joining the cubes (see
baryon density isosurface in Fig. 1(k) and Ref. [12]), a
triaxial configuration constructed by gluing together two
linear B = 12 Skyrmions [see Fig. 1(j)], and two triangular
B = 12 Skyrmions bound together into a B = 24 solution [see
Fig. 1(l)]. The ring was previously believed to be the Skyrmion
of minimal energy, but at least one of the other, newly found
solutions appears to have lower energy.

Among these Skyrmions, we find that magnesium-24 is
probably best described by the D3h-symmetric solution made
of two triangular B = 12 Skyrmions. The quadrupole moment
is found to be Q0 = 0.294 eb which is still significantly less
than the experimental value Q0 = 0.659 eb. The correspond-
ing quadrupole transition strength B(E2) = 0.00864 e2b2

is much lower than the experimental value B(E2) =
0.0432 e2b2. The quadrupole moment of the Skyrmion ring
solution has the wrong sign (compare Table III) and does
not reproduce the prolate ground state of magnesium-24. The
new B = 24 solution in Fig. 1(j) is triaxial and is badly
approximated as an axially symmetric solution. Hence our
analysis cannot be applied to this Skyrmion solution. However,
this might give a better quadrupole moment and B(E2) value.
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5. Sulphur-32

Calculating nuclear properties of sulphur-32 has proven to
be difficult in the past [61] and earlier work using Hartree-Fock
calculations on the rotational spectra in sulphur-32 yielded
contradictory, model-dependent results. The experimental
excitation energies of the 0+, 2+, and 4+ states of sulphur-32
agree very well with the vibrational excitations of a spherically
shaped nucleus [62]. However, experimentally sulphur-32
possesses a relatively large positive quadrupole moment [5,63]
which suggests a significant prolate nuclear deformation. This
can be understood within the nuclear coexistence model [64]
for sulphur-32, in which spherical and prolate rotational bands
coexist.

In the Skyrme model, sulphur-32 is modelled by the
cubically symmetric B = 32 Skyrmion (see baryon density
isosurface in Fig. 1(m) and Ref. [11]) and hence its intrinsic
quadrupole moment vanishes. However, this Skyrmion is
still of interest because it is a candidate to model the
vibrational excitations of sulphur-32. As the Skyrmion spins,
the Skyrmion deforms [30,42–44] and a nonzero quadrupole
moment will be induced. A calculation of E2 transitions
for nonrigidly spinning Skyrmion solutions requires different
techniques and is beyond the scope of this paper.

III. ROTATIONAL STATES AND TRANSITIONS
IN OXYGEN-16

Oxygen-16 has previously been investigated within the α
cluster model [65] and by performing lattice effective field
theory calculations [56]. The results suggest that there exist
two rotational bands, one based on a tetrahedral arrangement
of α clusters, and another on a square-like arrangement. This
section discusses whether such an interpretation is possible in
the Skyrme model.

Here, we follow a similar analysis to the previous de-
scription for the rotational bands of carbon-12 and its Hoyle
state [18]. For oxygen-16, the ground state is 0+ and the first
3− state is lower in energy than the first 2+ state. This is the
signature of the rotational spectrum of a tetrahedral object. In
the Skyrme model, several B = 16 solutions are known. They
are constructed from four B = 4 cubic Skyrmions arranged in a
bent square (D2d ), flat square (D4h) and tetrahedral (Td ) config-
uration, respectively [see Figs. 1(e)–1(g)]. Hence, we interpret
the ground state band in terms of the tetrahedral Skyrmion. The
quantized Td -symmetric Skyrmion models the ground state of
oxygen-16 and its 3− and 4+ rotational excitations.

The bent and flat square Skyrmions have similar energy
and can be seen as energy degenerate within the limits of our
numerical accuracy. Note that we cannot confirm the result
of the article [11] that the flat square is of noticeable higher
energy than the bent square.

For the B = 16 D4h-symmetric, flat square Skyrmion, the
Finkelstein-Rubinstein (F-R) constraints on a wave function
ψ with zero isospin are

e i π
2 L̂3 |ψ〉 = |ψ〉 and e iπL̂1 |ψ〉 = |ψ〉 , (15)

where L̂i is the spin operator projected on the body-fixed ith
axis. k is the eigenvalue of L̂3. There is a k = 0 rotational band,
but the first constraint excludes states with k = 2. For J = 2,

the only state allowed by the D4h symmetry is |2 ,0〉. The
parity operator of this Skyrmion quantized with zero isospin is
the identity operator. Hence, all the states have positive parity.
This misses important states in the oxygen-16 spectrum, so we
turn to the bent square.

For the B = 16 D2d -symmetric, bent square Skyrmion, the
F-R constraints are

e iπL̂3 |ψ〉 = |ψ〉 and e iπL̂1 |ψ〉 = |ψ〉 , (16)

and the parity operator is

P̂ = ei π
2 L̂3 . (17)

In this case, there is a rotational band with k = 0 and a
band with k = 2, and there are two J = 2 states, |2 ,0〉 and

1√
2
(|2 ,2〉 + |2 , −2〉), with k = 0 and k = 2, respectively.

The states in the k = 0 band have positive parity while the
states in the k = 2 band have negative parity. These bands
can be identified with 0+,2+,4+ and 2−,3−,4− states in the
experimentally measured spectrum. Hence, the quantized B =
16 bent square is preferable for modeling the second excited
spin-0 state 0+

2 of oxygen-16 and its rotational excitations.
To test further this identification we can use similar

techniques as applied in Ref. [18] to the rotational excitations
of carbon-12 and its Hoyle state. All B = 16 Skyrmion
solutions have inertia tensors of symmetric-top type with
V11 = V22 and V33 the same or distinct. For the tetrahedral
solution we find V11 = V22 = 9100 and V33 = 9128, where the
difference must be a numerical artifact. For the bent square,
V11 = V22 = 9123 and V33 = 14602.

The energy eigenvalues of the quantum Hamiltonian for
purely rotational motion of a symmetric top are given by

E(J,k) = C

{
1

2V11
J (J + 1) +

(
1

2V33
− 1

2V11

)
k2

}
, (18)

where J denotes the total spin quantum number, k is the
eigenvalue of L̂3, and C is a dimensional conversion factor
from Skyrme to physical units [18]. Here, C is a purely
phenomenological parameter as has previously been used
in the discussion of carbon-12 and its rotational states in
Ref. [18]. In Fig. 2, we plot against J (J + 1) the energies
of experimentally observed oxygen-16 states up to spin 4 in
the ground-state band and in the rotational bands formed by the
rotational excitations of the 0+

2 state and the 2− state. Taking C
as our fitting parameter, we fit Eq. (18) to the 0+, 3−, 4+ states
of the ground-state band, whose energies are 0.0, 6.13, and
10.36 MeV. The linear fit gives C = 9418 MeV, and therefore
a best fit slope of 0.517 MeV, using the V11 value 9100 for the
tetrahedral Skyrmion.

We find that the experimental slope of the k = 0 band
based on the 0+

2 state then agrees very well with the
Skyrme model prediction. Eq. (18) gives a theoretical slope
of 0.516 MeV, where we used the bent square’s moment of
inertia V11 = 9123 and C = 9418 MeV as derived above. The
experimental slope is estimated from the best linear fit to the
0+

2 ,2+,4+ states with energies 6.05,9.84, and 16.84 MeV to
be 0.545 MeV. The Skyrme model prediction for the ratio of
the slopes is just the ratio of the V11 values for the D2d - and
Td -symmetric Skyrmions, which is 9123/9100 = 1.00. Note
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FIG. 2. Experimental states of oxygen-16. The symbol triangle
denotes the states of the ground state band, and circle and square
denote the k = 0,2 states of the “bent square” bands. The 0+

1 ,3−,4+

states in the ground state band have energies 0.0, 6.13, and 10.36 MeV.
For the “bent square” band, the 0+

2 ,2+,4+ states with k = 0 have
energies 6.05, 9.84, and 16.84 MeV and the 2−,3−,4− states with
k = 2 have energies 8.87, 11.60, and 14.30 MeV. The symbol cross
represents the 2+

1 state which has been interpreted as a rotational
excitation of the 0+

2 state by Epelbaum et al. [56]. See the text for
more details.

that the dimensional conversion factor C cancels. For compar-
ison, the experimental ratio of the slopes is 1.05.

We also include in Fig. 2 the experimental 2−,3−,4− states
of energies 8.87,11.60, and 14.30 MeV which we interpret as
the k = 2 band formed by the rotational excitations of the bent
square. The k = 2 band lies below the k = 0 band, agreeing
with the oblateness of the bent square Skyrmion. For an oblate
configuration, V11 < V33, and according to Eq. (18), for a fixed
spin J , the energy of a state with nonzero k has lower energy
than a k = 0 state. The predicted energy difference between
states with the same spin J is 0.77 MeV between the k = 0 and
k = 2 bands. This agrees marginally with the experimentally
measured differences of 0.97 MeV for the spin-2 states and
2.54 MeV for the spin-4 states.

We calculate the E2 transition strength from the 0+
2 state

of energy 6.05 MeV to the 2+ state of energy 9.84 MeV by
taking the bent square Skyrmion as the underlying structure.
We obtain B(E2 : 0+

2 → 2+) = 0.0168 e2b2. The associated
intrinsic, oblate quadrupole moment is Q0 = −0.412 eb. For
this transition, we are unable to find experimental E2 values in
the literature. For completeness, we also include in Tables III
and IV the quadrupole moment and B(E2) values when
modeling the 0+

2 state and its spin-2 excitation 2+ by the flat
square Skyrmion.

Epelbaum et al. [56] have considered the transition between
the 0+

2 state and the lowest spin-2 state 2+
1 of energy 6.91 MeV.

These states are represented in Fig. 2 by the cross symbols.
They interpret the 2+

1 state as a rotational excitation of a square
configuration of α clusters. However, it is badly described
as a rotational excitation of the bent or flat square B = 16

Skyrmion. The B(E2 : 2+
1 → 0+

2 ) transition strength predicted
in Ref. [56] is based on nuclear lattice effective field theory
simulations. The up transition strength is B(E2 : 0+

2 → 2+
1 ) =

0.0110 e2b2. The corresponding empirical value is found to be
B(E2 : 0+

2 → 2+
1 ) = 0.0325 e2b2 [56,66].

IV. NONZERO ISOSPIN

In the previous sections, we restricted the discussion to E2
transitions in the absence of isospin. In this section, we show
how quadrupole transition strengths can be calculated within
the Skyrme model in the presence of nonzero nuclear isospin.

A. Beryllium-12

Beryllium-12 is a nucleus in an I = 2 isospin multiplet,
as it has four protons and eight neutrons. Nuclei of mass
number 12, with isospin 0, 1, and 2 are especially well
described within the Skyrme model as quantum states of the
D3h-symmetric B = 12 Skyrmion [16] [see baryon density
isosurface displayed in Fig. 1(d)]. In particular, the low-lying
energy levels of beryllium-12, with various spins, appear as
states with I = 2 and I3 = −2.

The quantum states |ψJπ ,I,|L3|,|K3|〉 of the B = 12 Skyrmion
allowed by the Finkelstein-Rubinstein constraints [13,14] are
listed in Table VI of Ref. [16]. J and I are the total spin
and isospin labels, and |L3| and |K3| are the projections on to
“body-fixed” three-axes. Both for J = 0 and J = 2 there is a
unique allowed I = 2 state, with K3 = 0. The “space-fixed”
isospin I3 can take any integer value from −2 to 2, and for
beryllium-12 it is I3 = −2. Suppressing the spin state, we
denote the isospin state of beryllium-12 as |2,0; −2〉.

Beryllium-12 exhibits a large quadrupole strength in the
transition between the 0+ ground state and the first 2+ state
at 2.1 MeV [54]. In Ref. [54], a B(E2 : 2+ → 0+) value
of 0.0008 e2b2 has been determined through the lifetime
measurement of the 2+ state. Using Eq. (13) this results in
a B(E2 : 0+ → 2+) value of 0.0040 e2b2.

Here, we consider E2 transitions between these spin states
in the Skyrme model, using the Skyrmion’s isospin state
|2,0; −2〉. The new aspect is to take account of the contribution
of the isospin to the electric charge density, and hence to the
quadrupole moments.

It would be best to do a proper quantum calculation of the
expectation value of the quadrupole moments, but we have not
been able to do this. Instead we treat the isospin state using a
classical approximation. This is analogous to the approach to
nucleons adopted in Refs. [31,46]. There a nucleon is treated
as a classically spinning B = 1 Skyrmion, which gives it
both spin and isospin. To achieve the desired “space-fixed”
isospin projection, the B = 12 Skyrmion’s red/green/blue
colors spin in isospace while the black/white colours do not.
(This produces a rotation among the π1 and π2 fields, while
the π3 field, associated with the black/white axis, remains
constant.) The role of the isospin state |2,0; −2〉 is to inform
us of the most likely colouring of the Skyrmion, before the
colors spin. If the projection in this state was K3 = ±2 then
the standard orientation and coloring of the Skyrmion would
be the correct one, but as the projection is K3 = 0 we must
reorientate the colorings first.
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We reorientate the classical B = 12 Skyrmion colouring
by the angles that maximize the wave function |2,0; −2〉. The
associated Wigner D function for this state takes the form
D2

0,−2(α,β,γ ) = e−2iγ sin2 β, where α,β,γ are the isorota-
tional Euler angles. The factor e−2iγ is the quantum repre-
sentation of the colours spinning with I3 = −2. e−2iγ sin2 β
has its maximum magnitude at β = π/2 and γ = 0 (or any
other value of γ ). Hence, we perform an isospin rotation of
our initial classical solution with β = π/2 and γ = 0. This
rotates the black/white points of the Skyrmion to be on the
faces or edges of the B = 4 cube constituents, rather than at
the vertices.

In detail, under an isospin rotation with β = π/2 and
γ = 0 (and α undetermined) the pion field π = (π1,π2,π3)
transforms to

π ′
1 = − sin α π2 + cos α π3 , π ′

2 = cos α π2 + sin α π3 ,

π ′
3 = −π1 , (19)

and hence the new moment of inertia that we need is U ′
33 =

U11. The colors spin about the new three-axis in isospace, but
dynamically this is equivalent to spinning about the old one-
axis. For the D3h-symmetric B = 12 Skyrmion we find U ′

33 =
U11 = 442, see Table I. To classically model a beryllium-12
nucleus whose projected isospin has magnitude −2 we require
U ′

33ω = −2�. (Physical isospin, like spin, is a half-integer or
integer multiple of �.)

Hence, the isorotational angular velocity ω is given by

ω = − 2�

U ′
33

= −0.14 , (20)

where � = 30.2. For the beryllium-12 nucleus, the classical
isospin density is

I3(x) = ω

�
U′

33 (x) . (21)

This isospin contribution to the electric charge density (7)
has to be taken into account when calculating quadrupole
moments (9). Note that Eq. (21) is correctly normalized as its
integral gives I3 = −2 and decreases the total electric charge
1
2B + I3 of the B = 12 Skyrmion from 6 to 4.

We compute numerically the electric quadrupole moments
Q

Sky
11 = 5.65, Q

Sky
22 = 6.32, and Q

Sky
33 = −11.9 for the re-

orientated B = 12 Skyrmion. Thus, expressed in physical
units using the calibration (5) the intrinsic quadrupole is
Q0 = −0.135 eb. The corresponding B(E2 : 0 → 2) value is
0.00181 e2b2 which differs by approximately 50% from the
experimental value.

V. CONCLUSIONS

We have calculated for the first time within the Skyrme
model electromagnetic transition strengths between the 0+
ground state and the first-excited 2+ state for a range of light
nuclei: 8

4Be4, 12
6 C6 and its Hoyle state, 12

4 Be8, 20
10Ne10, and

24
12Mg12. We find that the calculated E2 transition strengths
have the correct order of magnitude and the computed intrinsic
quadrupole moments match the experimentally observed
effective nuclear shapes. For the Hoyle state we predict a
large B(E2)↑ value of 0.0521 e2b2. Measurements of the

electromagnetic transition strengths between the states of
the Hoyle band are technically difficult and have yet to be
performed [3,58].

For oxygen-16, we can obtain a quantitative understanding
of the ground state band and the rotational band formed by the
second excited spin-0 state 0+

2 and its rotational excitations.
Similarly to the ground state band of carbon-12 and the
rotational band of the Hoyle state [18], we interpret the
oxygen-16 rotational bands as rotational excitations of two
Skyrmions with very different shapes, one tetrahedral and
the other a bent square. The quantized tetrahedral Skyrmion
models the 0+

1 ground state and its 3− and 4+ excitations.
The quantized bent square Skyrme configuration is identified
with the 0+

2 state and its rotational excitations. We find that
the 0+

2 ,2+,4+ states of energies 6.05,9.84 and 16.84 MeV
are very well modelled as k = 0 states of the bent square
band. The almost equal values of the spin moment of inertia
V11 for the tetrahedron and bent square are a success of the
Skyrme model. The Skyrme model predicts that the ratio of
the slopes of the k = 0 bent square band and the ground state
band is the ratio of these V11 values, and is very close to 1. The
ratio of the experimental slopes agrees with this. The k = 2
band of the bent square matches experimental 2−,3−,4− states.
Furthermore, we used Eq. (18) to predict the energy difference
between k = 0 and k = 2 states of the same spin (but opposite
parity). The predicted energy difference has the right sign and
marginally agrees with experiment.

There remain some challenges for the Skyrme model. For
baryon number 20, the triangular bipyramidal arrangement of
five B = 4 cubes which we used to describe E2 transitions
in neon-20 is not a minimal energy Skyrmion but a saddle
point. For B = 32, the minimal energy Skyrmion is cubically
symmetric and hence cannot explain the large prolate
quadrupole moment of ssulphur-32. However, Skyrmions
deform under rotations and hence a non-zero quadrupole
moment may be induced.

The approach used in this paper is limited to Skyrmions
with axially symmetric inertia tensors, and with quadrupole
moments satisfying Q11 = Q22. The calculation of B(E2)
strengths for transitions between rotational levels in triaxial
nuclei [67,68] using the Skyrme model requires a different
approach. Further lines of investigation to consider are
higher-order electric multipole transitions and magnetic dipole
transitions within the Skyrme model. In particular, the 0+
to 3− transition strength in the oxygen-16 ground state band
should be calculated. Finally, we neglected deformations in our
calculations; that is, we assumed that the low-lying rotational
states are well approximated by the rigid rotor states of the
Skyrmions. Recently, E2 transitions in deformed nuclei have
been studied within an effective theory for axially symmetric
systems [69], and a similar study of deformed Skyrmions is
desirable.
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