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The lowest quadrupole γ -vibrational Kπ = 2+ states in axially deformed rare-earth (Nd, Sm, Gd, Dy, Er, Yb,
Hf, W) and actinide (U) nuclei are systematically investigated within the separable random-phase-approximation
(SRPA) based on the Skyrme functional. The energies Eγ and reduced transition probabilities B(E2) of 2+

γ

states are calculated with the Skyrme forces SV-bas and SkM∗. The energies of two-quasiparticle configurations
forming the SRPA basis are corrected by using the pairing blocking effect. This results in a systematic downshift
of Eγ by 0.3–0.5 MeV and thus in a better agreement with the experiment, especially in Sm, Gd, Dy, Hf, and W
regions. For other isotopic chains, a noticeable overestimation of Eγ and too weak collectivity of 2+

γ states still
persist. It is shown that domains of nuclei with low and high 2+

γ collectivity are related to the structure of the
lowest two-quasiparticle states and conservation of the Nilsson selection rules. The description of 2+

γ states with
SV-bas and SkM∗ is similar in light rare-earth nuclei but deviates in heavier nuclei. However SV-bas much better
reproduces the quadrupole deformation and energy of the isoscalar giant quadrupole resonance. The accuracy
of SRPA is justified by comparison with exact RPA. The calculations suggest that a further development of the
self-consistent calculation schemes is needed for a systematic satisfactory description of the 2+

γ states.
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I. INTRODUCTION

In recent decades, remarkable progress has been made
in the description of nuclear dynamics within self-consistent
mean-field (SCMF) models (Skyrme, Gogny, relativistic); see,
e.g., the reviews [1–4]. In particular, a variety of quasiparticle
random-phase-approximation (QRPA) methods were devel-
oped for the exploration of small-amplitude excitations in
deformed nuclei, [5–15]. So far these methods have been used
mainly for the description of giant resonances (GR) in light
[6–9,11,13–15] and medium-heavy [5,9,12,14,16–19] nuclei.
However, self-consistent QRPA was still rarely employed for
the exploration of the lowest vibrational states (β, γ , octupole)
in deformed rare-earth and actinide nuclei [10,12] (despite rich
available experimental information for these regions [20,21]).
This is partly due to the huge configuration spaces required
for such deformed heavy nuclei. However, the main problem
lies in a high sensitivity of the lowest vibrational states
(LVS) to various factors. Following early calculations within
the schematic quasiparticle-phonon model (QPM) [22–24],
the description of LVS requires a proper treatment of the
single-particle (s-p) spectra near the Fermi level, equilibrium
deformation, pairing with the blocking effect, residual inter-
action (with both particle-hole and particle-particle channels),
coupling to complex configurations (taking into account the
Pauli principle), and exclusion of the spurious admixtures.
Besides, the description of LVS should be consistent with
the treatment of other collective modes, e.g., multipole GR.
All these factors and requirements make the self-consistent
description of LVS very demanding.
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So far we are aware of two self-consistent QRPA studies of
LVS in rare-earth and actinide regions: one with Gogny forces
for 238U [12] and another with Skyrme forces for rare-earth
nuclei [10]. Actually only the latter study [10] is systematic.
It covers γ -vibrational Kπ = 2+

γ and β-vibrational Kπ = 0+
β

states in 27 rare-earth nuclei. The Skyrme forces SkM∗ [25]
and SLy4 [26] are used, and performance of SkM∗ is found
noticeably better than of SLy4. It is deduced that Skyrme
QRPA is a reasonable basis for the investigation of LVS.

In the present paper, we continue the systematic exploration
of 2+

γ states in axial deformed nuclei with QRPA using Skyrme
forces. The 2+

γ states are chosen as the simplest case where
we do not meet the problem of the extraction of the spurious
admixtures. Compared to [10], our study has some important
new aspects.

First, it is desirable to use for description of 2+
γ states the

Skyrme forces which simultaneously reproduce the energy of
the isoscalar giant quadrupole resonance (ISGQR). Following
[16], these forces should have a large isoscalar effective
mass m∗

0/m. The forces from [10] have low effective masses,
m∗

0/m = 0.70 for SLy4 [26] and 0.79 for SkM∗ [25], and so
overestimate the ISGQR energy; see [16] and the discussion
below. To make the description of ISGQR and 2+

γ states
consistent, we use in our calculations the recent SV-bas force
[27] with m∗

0/m = 0.9. As shown below, SV-bas also manages
to reproduce systematically well ground state deformations, a
feature which is utterly crucial for a correct placing of LVS.
Note that very similar results were earlier obtained [28] with
the Skyrme force SV-mas10 [27] (m∗

0/m = 1.0). We choose
here SV-bas as a more general parametrization which was
already used in various studies, see, e.g., [4,18,19,29]. For
comparison with [10], the force SkM∗ is also implemented.
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Second, we take into account the pairing blocking effect
(PBE) [22,30–33] which, following QPM studies [22–24], can
be important for QRPA description of LVS in axially deformed
nuclei. The PBE weakens the pairing and thus downshifts
energies of low-energy two-quasiparticle (2qp) states by a
few hundred keV [22–24], which in turn decreases the QRPA
energies of 2+

γ states. This effect can be especially important
for slightly collective states (with one or two dominant 2qp
components) which are often encountered among 2+

γ states. We
implement PBE within the Bardeen-Cooper-Schrieffer (BCS)
scheme using volume pairing [34]. The same volume pairing,
though in the framework of the Hartree-Fock-Bogoliubov
(HFB) approach without PBE, was used in [10].

In fact, we are taking from the PBE only one aspect, namely
the modification of 2qp energies. The 2qp states as such (s-p
wave functions and pairing occupation amplitudes) remain
untouched. This ad hoc solution to the problem with the
energies of 2+

γ states is admittedly not consistent. However,
it has a great advantage of not disturbing the orthonormality
of the 2qp basis, and thus it allows us to use the standard
QRPA procedure. Following previous schematic [22–24] and
our present studies, the PBE for 2+

γ states in medium and
heavy deformed nuclei can be strong and certainly deserves
consideration. In this connection, our PBE-QRPA calculations
can be viewed as a first step highlighting the problem and
calling for further checking within a self-consistent PBE-
QRPA prescription, yet to be developed.

The third new aspect is that we provide a detailed analysis of
the obtained results, both numerically and analytically (e.g., in
terms of simplified models for schematic RPA). We determine
domains of nuclei with low and high collectivity of 2+

γ -states
and demonstrate that the lowest Kπ = 2+ 2qp state plays a
key role in formation of these domains. The study embraces 9
isotopic chains (Nd, Sm, Gd, Dy, Er, Yb, Hf, W, U) with 41
axially deformed nuclei, as compared to 27 rare-earth nuclei
in [10].

The calculations are performed within the separable
random-phase-approximation (SRPA) method based on the
Skyrme functional [1,35,36]. The method is developed in a
one-dimensional (1D) version for spherical nuclei [37] and
a two-dimensional (2D) version [5,38] for axial deformed
nuclei. SRPA is derived self-consistently: (i) both the mean
field and residual interaction are obtained from the same
Skyrme functional, and (ii) the residual interaction includes all
terms of the Skyrme functional as well as the Coulomb (direct
and exchange) terms. The self-consistent factorization of the
residual interaction dramatically reduces the computational
effort for deformed nuclei while keeping high accuracy of the
method. However SRPA is not self-consistent in the part of the
pairing interaction because of (i) ad hoc implementation of the
PBE into SRPA and (ii) skipping the particle-particle channel
in the residual interaction.

In earlier studies, SRPA was successfully applied for
the description of various GR in spherical and deformed
nuclei: E1(T = 1) and E2(T = 0) [5,16,17,37], toroidal and
compression E1 [18], and spin-flip M1 [19]. However, the
success of the model for GR does not mean that it is also
robust in the description of such fragile excitations as LVS. In
this connection, we compare below some SRPA results with

those obtained with the exact (not the separable ansatz) 2D
QRPA code [39]. We find a nice agreement which confirms
that SRPA is accurate enough.

The paper is organized as follows. In Sec. II the method
and calculational details are outlined. The equations for the
pairing blocking are given, the SRPA scheme is sketched,
and SRPA results are compared with those from the exact
QRPA. It is shown that SV-bas, unlike SkM∗, nicely reproduces
equilibrium quadrupole deformations and the ISQGR energy.
Section III presents the main results for energies and reduced
transition probabilities B(E2) of 2+

γ states. In Sec. IV, these
results are discussed and analyzed in detail and compared
with the previous data [10]. A summary is given in Sec. V. In
Appendix A, the expression for the pairing matrix element is
derived. In Appendix B, the basic SRPA equations are outlined.
In Appendix C, a simple two-pole RPA model is presented,
to be applied for explanation of the domains with low and
high collectivity of 2+

γ states. In Appendix D, SRPA strength
constants of the residual interaction are compared with those
of the QPM.

II. MODEL AND CALCULATION SCHEME

The SRPA approach [5] used in this paper is based on the
Skyrme functional [1]

E(ρ,τ,J,j,σ,T) = Ekin + ESk + ECoul + Epair, (1)

where Ekin is the kinetic energy, ESk is the potential energy
according to the Skyrme functional, ECoul is the Coulomb
energy, and Epair is the pairing energy. The Coulomb exchange
term is treated in Slater approximation. The volume pairing
corresponds to a zero-range pairing interaction. The Skyrme
part ESk depends on the local densities and currents: density
ρ(r), kinetic-energy density τ (r), spin-orbit density J(r),
current j(r), spin density σ (r), and spin-kinetic-energy density
T(r) [1]. The mean-field Hamiltonian and SRPA residual
interaction are self-consistently determined through the first
and second functional derivatives of (1), respectively [5].
Further details of the model and calculation scheme are given
below.

A. Mean field and quadrupole deformation

The stationary 2D mean-field calculations are performed
with the SKYAX code [40] in cylindrical coordinates using a
mesh size of 0.5 fm and a box size of about three nuclear radii.
The single-particle space is chosen to embrace the levels from
the bottom of the potential well up to energy 15–20 MeV. For
SV-bas, the s-p schemes involve 304 proton and 375 neutron
levels in 150Nd and 379 proton and 485 neutron levels in 238U.

The ground state is obtained by solving the mean-field
equations and resides at the minimum of the total energy
(1). Its axial quadrupole deformation is characterized by the
dimensionless deformation parameter [41]

β2 =
√

5π

3

Q2

ZR2
, (2)

where Q2 = ∫
drρp(r)r2Y20 is the quadrupole moment and

R = 1.2 A1/3 fm, where A is the mass number.
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FIG. 1. Parameter β2 of the axial quadrupole deformation in rare-
earth and actinide nuclei. The values calculated with SV-bas [27] (full
symbols) are compared with the experimental data [20] (open symbols
with error bars).

Figure 1 compares deformation parameters calculated using
SV-bas with available experimental data [20], and Fig. 2
shows the same comparison for SkM∗. Figures 1 and 2 show
very nice agreement for SV-bas while SkM∗ systematically
overestimates β2, especially in Yb, Hf, W, and U isotopes. Note
that both SV-bas and SkM∗ fail to describe the particularly low
values of experimental β2 in 170Yb and 172,174Hf. Note also
the exceptionally large error bars in 170Hf.

B. Pairing and blocking effect

The volume pairing interaction reads

V q
pair(r,r

′) = Vq δ(r − r′), (3)

where q stands for protons or neutrons and Vq are pairing
strengths. In the present study pairing is treated at the BCS
level [34].

If the pairing-blocking effect (PBE) is accounted for, the
BCS problem is solved separately for the ground 	

q
0 and

FIG. 2. The same as Fig. 1 but for SkM∗.

excited n-quasiparticle 	
q
n states. For the ground state, the

expectation value 〈	q
0 |Hpair|	q

0 〉 for the pairing Hamiltonian
Hpair is minimized to determine the set of Bogoliubov
coefficients {uq

k ,v
q
k }. For n-quasiparticle excitation, the wave

function reads

	q
n = α̂+

j1
· · · α̂+

jn
	

q
0 = â+

j1
· · · â+

jn

×
∏

k �=j1,...,jn∈q

[
u

q
k (j1, . . . ,jn)+v

q
k (j1, . . . ,jn)â+

k â+
k̄

]|−〉,

(4)

where â+
j (α̂+

j ) creates the particle (quasiparticle) at the state
j and |−〉 is the particle vacuum. For this excitation, the
expectation 〈	q

n |Hpair|	q
n 〉 is minimized and the new set of oc-

cupation numbers {uq
k (j1, . . . ,jn),vq

k (j1, . . . ,jn)} specific for
the given excitation is determined. In the latter case, the BCS
equations for axially deformed nuclei (with doubly degenerate
s-p levels) have a peculiarity: if some states from the set
{j1, . . . ,jn} are unpaired, then these states are excluded from
the pairing scheme and contribute to the BCS equations as pure
single-particle states. The physics behind this is obvious: if
some level is occupied by an unpaired nucleon, then it is closed
(i.e., blocked) for the pairing process which transfers nuclear
pairs. This is so called the pairing blocking effect [22,30–33].

The PBE takes place in both BCS and HFB theories as soon
as we deal with n-quasiparticle excitations. Most often the PBE
is considered for 1qp excitations in odd and odd-odd nuclei;
see, e.g., [29,34,42] and more references in [33]. Following
QPM studies [22–24], the PBE may play a role in QRPA
description of LVS in even-even axially deformed nuclei.
Indeed 2qp states constitute the configuration space for QRPA.
The first low-energy 2qp states are the main contributors to the
lowest QRPA excitation. So it is worth checking how PBE for
the low-energy 2qp states affects the description of LVS.

The main effect of the PBE is to change the 2qp energies
[22–24]. Thus we use here, in an ad hoc manner, only
one PBE output: PBE-corrected 2qp energies. Only they are
implemented in SRPA, while the occupation amplitudes (u,v)
and s-p wave functions are kept the same as in the BCS
ground state. This has the advantage that orthonormality of
the 2qp configuration space is maintained and the standard
QRPA scheme remains applicable.

Usually in BCS+QRPA calculations the 2qp energies are
computed by using the pairing gaps �q , chemical potentials
λq , and Bogoliubov coefficients {uq

k ,v
q
k } ∈ q for the ground

BCS state, yielding

ε
q
ij = ε

q
i + ε

q
j , (5)

where ε
q
i =

√
(ẽq

i − λq)2 + �2
q is the energy of the 1qp state

and ẽ
q
i is the renormalized s-p energy (see the expression

below). In HFB+QRPA calculations, the 2qp states for the
QRPA configuration space are also expressed in terms of
ground state values. In particular, their energies are calculated
as a sum of two 1qp energies in the canonical basis using the
HFB solutions for the ground state; see, e.g., [9,10,12]. So both
the BCS and HFB schemes usually omit the PBE for the 2qp
states. Following QPM and our calculations, such a treatment
can be insufficient for a correct description of the LVS.
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For Kπ = 2+ states,

	q(ij ) = α̂+
i α̂+

j 	
q
0

= â+
i â+

j

∏
k �=i,j∈q

(
u

q
k (ij ) + v

q
k (ij )â+

k â+
k̄

)|−〉, (6)

the 2qp pairs are necessarily nondiagonal (i �= j ). For a
constant pairing force, the BCS-PBE prescription for this
case was formulated in [22]. Below we present the BCS-PBE
formalism for the δ-force volume pairing (3). For each 2qp
state 	q(ij ), one should solve the system of BCS+PBE
equations

[
u

q
k (ij )

]2 = 1

2

{
1 + ẽ

q
k − λq(ij )√[

ẽ
q
k − λq(ij )

]2 + [
�

q
k (ij )

]2

}
, (7)

[
v

q
k (ij )

]2 = 1

2

{
1 − ẽ

q
k − λq(ij )√[

ẽ
q
k − λq(ij )

]2 + [
�

q
k (ij )

]2

}
, (8)

�
q
k (ij ) = −

K ′>0,k′∈q∑
k′ �=i,j

f
q
k′ V

(pair,q)
kk̄k′ k̄′ v

q
k′(ij )uq

k′(ij ), (9)

Nq = 2 +
K ′>0,k′∈q∑

k′ �=i,j

f
q
k′

×
⎧⎨
⎩1 − ẽ

q
k − λq(ij )√[

ẽ
q
k − λq(ij )

]2 + [
�

q
k (ij )

]2

⎫⎬
⎭, (10)

where

ẽ
q
k = e

q
k − 1/2

∑
k′∈q

f
q
k′ V

(pair,q)
kk̄k′ k̄′

[
v

q
k

]2
(11)

is the renormalized s-p energy and e
q
k is the initial s-p energy.

Furthermore, u
q
k (ij ),vq

k (ij ),�q
k (ij ),λq(ij ) are Bogoliubov co-

efficients, pairing gaps, and chemical potentials, calculated for
the 2qp (ij ) excitation. The sums in (9) and (10) include all s-p
states k′ (with isospin q and projection K ′ > 0 of the total an-
gular momentum) with the exception of k′ = i and j ; Np = Z
and Nn = N are proton and neutron numbers. The smoothing
energy-dependent cutoff weights f

q
k′ are introduced to cure

the well-known drawback of the zero-range pairing force
to overestimate the coupling to the (continuum) high-energy
states [31,33]. Expressions for weights f

q
k′ and pairing matrix

elements V
(pair,q)
kk̄k′ k̄′ in axial nuclei are given in Appendix A.

The PBE-corrected energy of the 2qp excitation reads

Eq
bl(ij ) = Eq(ij ) − Eq

0 , (12)

where

Eq
bl(ij ) = 〈	q(ij )|Hq

pair|	q(ij )〉 = ẽ
q
i + ẽ

q
j

+
K>0,k∈q∑

k �=i,j

f
q
k

[
2ẽ

q
k

(
v

q
k (ij )

)2−�
(q)
k (ij )uq

k (ij )vq
k (ij )

]
(13)

is the energy of the q subsystem in the (ij ) state and

Eq
0 = 〈

	
q
0

∣∣Hq
pair

∣∣	q
0

〉
= 2

K>0,k∈q∑
k

f
q
k ẽ

q
k

(
v

q
k

)2 −
K>0,k∈q∑

k

f
q
k �

q
k u

q
k v

q
k (14)

is the energy of the q subsystem in the ground state. The values
u

q
k ,v

q
k ,�

q
k ,λq in (14) are for the ground state. Equations (9),

(10), and (13) show that PBE excludes the states i and j from
the pairing sums. These blocked states do not contribute to the
pairing gap (9) and enter (10) and (13) as single-particle (not
quasiparticle) states.

The sums in (9), (10), and (13) are usually dominated by a
few k′ states around the Fermi level. If the states i and j belong
to this group, then their blocking can effectively decrease the
level density near the Fermi level and thus the pairing gap (9).
Consequently the energy (13) is changed. In such cases, the
pairing is significantly suppressed and the BCS-PBE value for
the 2qp energy (12) becomes a few hundred keV smaller than
the BCS energy (5) [22]. This in turn leads to a significant
downshift of the energy of the first QRPA solution.

In the present study, we block the five lowest Kπ = 2+ 2qp
states (proton and neutron altogether). The calculations show
that this number of blocked states is optimal. More blocking
would involve the states that are remote by energy from the
Fermi level and thus have a negligible PBE. Less blocking is
likely to miss a part of the PBE corrections.

We substitute the PBE-corrected energies Eq
bl(ij ) to SRPA

replacing the ε
q
ij . However, we do not use the PBE-modified

Bogoliubov coefficients {uq
k (ij ),vq

k (ij )}. Instead we continue
to employ in SRPA the ground state set {uq

k ,v
q
k } and wave

functions. This leaves the 2qp basis orthonormalized and
renders our PBE-SRPA scheme easily applicable.

It is also worthwhile to inspect a possible impact of our
scheme on the basic features of QRPA, namely stability of the
QRPA interaction matrix, elimination of spurious modes, and
sum rules. (i) Concerning the QRPA matrix, the PBE-induced
reduction of the positive diagonal elements (2qp energies)
of the matrix indeed can cause instabilities in some cases.
This is checked numerically. We find that for the Kπ = 2+
states studied here the QRPA remains in the stable regime.
The only exception is 164Dy in the calculations with the force
SkM∗; see the discussion below. (ii) Spurious modes must
be carefully checked when trying to apply the PBE to other
quadrupole states, say with Kπ = 0+ and Kπ = 1+, but not in
our case. For Kπ = 2+ states the spurious modes are absent.
(iii) Concerning the sum rules, there is some quantitative effect.
But it is extremely small, as the main contribution to sum
rules comes from higher lying states which are not affected
by the PBE. Altogether, the present ad hoc implementation
of the PBE looks robust. It still calls for a thorough formal
self-consistent development which, however, will be tedious
and take time. We consider the present study as a first step in
exploration of the impact of the PBE on low-lying spectra of
Kπ = 2+ states.

The PBE should be applied with care in case of a weak
pairing, because the blocking reduces pairing and may trigger
its full breakdown. In the worst case, a more involved
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formalism (allowing a weak pairing) should be used, e.g., the
method with particle-number projection before variation [43].
Calculations with this method show that BCS-PBE somewhat
underestimates the 2qp energies [43]. However, the projection
method requires a huge effort, and it cannot be consistently
applied for the Skyrme energy functional [44]. So we use here
BCS-PBE, though staying alert for suspect cases.

C. SRPA scheme

The SRPA formalism for axial nuclei is described in detail
elsewhere [5,38]. Here we sketch only the points relevant for
the present study. As mentioned above, the SRPA formalism
starts from the functional (1). The residual interaction includes
contributions from both time-even and time-odd densities and
also takes care of the Coulomb interaction. The coupling
between the quadrupole λμ = 22 and hexadecapole λμ = 42
modes, pertinent to deformed nuclei, is included. The basic
SRPA equations and more calculation details can be found in
Appendix B.

The present SRPA version skips the particle-particle (hole-
hole) channel for Kπ = 2+ states. In QPM the pp channel is
used to harmonize description of LVS energies and transition
probabilities [24] but these calculations are not self-consistent.
The self-consistent Skyrme BCS-QRPA calculations for spher-
ical nuclei show that the pp channel tends to decrease the LVS
energies [46]. If so, then this effect can be partly compensated
by the energy upshift gained by using the particle-projection
method [43]. The Skyrme HFB-QRPA studies of LVS in
deformed nuclei use the pp channel only partly [10] if at all
[9]. In general, the pp channel, being crucial for β-vibrational
Kπ = 0+ states, seems not to be so important for γ -vibrational
Kπ = 2+ states. At least we do not know of any self-consistent
study for the lowest Kπ = 2+ states in axial deformed nuclei,
which would demonstrate a real need for this channel.

In the present study, we calculate the structure and energies
of the first RPA one-phonon 2+

γ states (λμν = 221) in Nd, Sm,
Gd, Dy, Er, Yb, Hf, W, and U isotopes. The reduced probability
B(E2) = |〈ν = 1|∑Z

k=1 r2
k Y22(θk)|0〉|2 of the transition from

the ground |0〉 to the SRPA ν = 1 state is also computed.
The configuration space for λμ = 22 involves, depending

on the isotope, 6600–9600 proton and 9400–14 200 neu-
tron 2qp states with excitation energies up to 55–80 MeV.
This basis is sufficient for our aims. It results (together
with the quadrupole components λμ = 20 and 21) in a
reasonable exhaustion of the total energy-weighted sum rule
EWSR(E2,T = 0) = (�2e2)/(8πmp)50A〈r2〉A by ∼95–98%.
A similar size of configuration space was used in [10] and [12]
(19 000–28 000 and 23 000–26 000 2qp states, respectively).

The calculations are performed for the Skyrme parametriza-
tions SV-bas and SkM∗. As mentioned in the Introduction,
SV-bas is chosen because it provides an accurate description of
the ground state deformations and ISGQR energies. The latter
is demonstrated in Fig. 3, where ISGQR strength functions
and energy centroids (see definitions in Appendix B) are
depicted for SV-bas and SkM∗. The calculated centroids are
12.2 and 13.0 MeV in 152Nd, 12.0 and 12.5 MeV in 164Dy,
11.8 and 12.3 MeV in 172Yb, and 10.7 and 11.1 MeV in 238U,
for SV-bas and SkM∗ respectively. These results are compared

(a) (b)

(c) (d)

FIG. 3. The isoscalar strength function for the ISGQR in 152Nd,
164Dy, 172Yb, and 238U, calculated with the Skyrme forces SkM∗ [25]
(dotted blue line) and SV-bas [27] (solid black line). The Lorentz
averaging parameter is � = 1 MeV. The empirical estimates for
the ISGQR centroids [45] are marked by lower red arrows with
indicated energies. The SV-bas and SkM∗ estimates for the centroids
are denoted by upper black solid and blue dotted arrows, respectively.

with the empirical polynomial estimations [45]. It is seen
that SV-bas well describes the energy centroids while SkM∗

systematically overestimates them. So SV-bas demonstrates
a good reproduction of both axial deformations and ISGQR
energies, which makes SV-bas a promising candidate for the
description of γ -vibrational states.

To demonstrate the accuracy of SRPA, we compare in Fig. 4
some results for Kπ = 2+

γ states obtained within SRPA and
exact 2D QRPA [39]. The exact method is noted as eRPA. In
both cases, the calculations are performed without PBE and pp
channel in the residual interaction. The isotopic chains with

(a) (b)

(c) (d)

FIG. 4. Energies [(a) and (b)] and B(E2) values [(c) and (d)]
of the 2+

γ -vibrational states, calculated with the force SkM∗ in the
framework of SRPA (red circles) and exact eRPA (blue triangles) in
Gd (left) and Yb (right) isotopes. In both calculations, the PBE and
pp channel in the residual interaction are omitted. The experimental
data [20] are depicted by black squares.
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high (Gd) and low (Yb) collectivity of 2+
γ states are considered.

We see a very nice agreement between SRPA and eRPA results,
which demonstrates the robustness of SRPA. Since SRPA
calculations require much less computational effort than eRPA,
just SRPA is used in the following.

III. MAIN RESULTS

A. Main results

Results of our calculations for the lowest 2qp states, SRPA
energies, and B(E2) values of 2+

γ states are presented in
Figs. 5–10. Cases without and with PBE are considered, using
for 2qp energies Eqs. (5) and (12), respectively. The results
are compared with available experimental data [20]. Note that
experimental errors for 2+

γ energies are typically ±0.01 MeV,
i.e., much smaller than the relevant values to be discussed.
Concerning B(E2), the errors usually do not exceed 10%
for collective states (B(E2) > 0.1–0.09 e2b2) but can reach
15–30% in less collective states ( 150Nd, 154Sm, 170–176Yb,
238U). In the figures for SkM∗, results are compared with those
of [10] (manually extracted from the figures of that paper).

Figure 5 shows the results for Nd, Sm, and Gd isotopes
obtained with SV-bas. Calculations without PBE [plots (a)–(c)]
essentially overestimate the 2+

γ energies. The discrepancy
decreases from Nd to Gd with the growth of the collective
shift �E = E2qp − ESRPA (the difference between the lowest
2qp and SRPA energies). It is seen that the PBE noticeably
downshifts the 2qp energies and thus the SRPA energies [plots
(d)–(f)]. The downshift reaches 0.1–0.6 MeV, depending on
the isotope. As a result, the agreement with experimental
energies improves, especially in heavy Gd isotopes. The trends
of ESRPA with mass number A are approximately reproduced.
The B(E2) values in Sm and Gd with and without blocking
are about the same. In Nd isotopes, the calculated 2+

γ states
demonstrate a weak collectivity, i.e., low B(E2) values. Here
the PBE worsens the agreement. The SkM∗ results in Fig. 6
for the same isotopes provide a similar quality of description.
SRPA calculations without PBE agree well with HFB-QRPA
ones [10], which indicates again the accuracy of our method.

Figure 7 shows the SV-bas results for Dy, Er, and Yb
isotopes. The collectivity of calculated 2+

γ states reaches a
maximum in Dy and Er isotopes. Here we have the largest
�E and B(E2). The collectivity starts to decrease in heavy
Er isotopes and almost vanishes in Yb. The PBE considerably
decreases the 2qp and SRPA energies. In Dy isotopes, this
leads to a nice agreement with the experimental energies. In
Er and Yb, the PBE noticeably improves the description of 2+

γ

energies. However, ESRPA still remain considerably higher than
Eexp and calculated B(E2) are accordingly underestimated.

The SkM∗ results for Dy-Er-Yb isotopes are given in Fig. 8.
We again observe a decrease of collectivity of 2+

γ states from
Dy to Yb isotopes. However, unlike the case of light rare-earth
nuclei in Figs. 5 and 6, we also see a significant difference
in the results of SV-bas and SkM∗. First, as compared to
SV-bas results and experimental data, the SkM∗ energies in Er
and Yb isotopes strongly fluctuate with A, closely following
variations of 2qp energies (this feature of SkM∗ results was
also mentioned in [10]). Such fluctuations point to a small

collectivity of 2+
γ states and significant contribution of the

lowest 2qp state to the structure of 2+
γ state. Furthermore, the

2qp energies are generally smaller for SkM∗ than for SV-bas,
which results in a better average description of Eexp in Er and
Yb with SkM∗. The PBE gives here larger changes than for
Nd-Sm-Gd isotopes. In particular, it leads to a huge decrease of
2+

γ energy in 164Dy (like in [10]). This state becomes extremely
collective (see a huge overestimation of experimental B(E2)).
It is unlikely that it can be described within a familiar QRPA
and needs a more involved prescription taking into account
large ground state correlations [47–49]. The SRPA results
agree with HFB-QRPA ones [10] for Er and Yb but not for Dy,
especially in the exceptional case of 164Dy.

Figures 9 and 10 show the results for heavy rare-earth Hf
and W isotopes and for actinide U isotopes. For both forces, the
collectivity of 2+

γ states increases from Hf to W and decreases
in U. Moreover, both forces give rather similar trends of ESRPA

with A, though deviating from the experimental ones. The
PBE considerably downshifts the 2qp and SRPA energies and
thus in general improves their description. On average, SkM∗

energies are closer to Eexp than SV-bas ones but give more
fuzzy A dependence, especially with PBE. In U isotopes, the
description of the spectra with SkM∗ is much better than with
SV-bas, which again is explained by lower 2qp energies in
SkM∗. The description of B(E2) is acceptable in heavy Hf
isotopes for both SV-bas and SkM∗. With exception of 184W,
the PBE does not affect the description of B(E2).

Altogether, the results from Figs. 5–10 allow us to draw the
following conclusions: (i) In rare-earth and actinide regions,
there are pronounced isotopic domains with low and high
collectivity of 2+

γ states. (ii) The best agreement with the

experimental data is obtained for Dy (except for 164Dy) and
W isotopes, i.e., for the most collective 2+

γ states characterized
by large �E and B(E2) values. (iii) The PBE essentially
downshifts 2qp and SRPA energies, thus leading to a better
agreement with experiment. The value of the downshift is
comparable with the collective shift �E of SRPA and is much
larger than the experimental errors [20]. This indicates that
the PBE plays a non-negligible role for energies of low lying
states. At the same time, the blocking has only a small effect
on the B(E2) values. Note that the results (iii) should be
checked within a truly self-consistent PBE-QRPA approach,
yet to be developed.

The above conclusions are supported by both SV-bas and
SkM∗. These two forces give similar results in light rare-earth
nuclei but deviate in heavier nuclei. In SV-bas, the ESRPA vary
less with system size A but are usually larger than Eexp. In
SkM∗, the variation of ESRPA is stronger, but this force gives
lower 2qp and SRPA energies and thus better describes Eexp,
e.g., in U isotopes. The differences are partly caused by a
weaker pairing in SkM∗ (the gaps in SkM∗ are on average
30–50% smaller than in SV-bas). The latter in turn can follow
from different level densities of SV-bas and SkM∗ s-p spectra.

It is also useful to inspect the r.m.s. deviations of the
calculated results from the experimental data,

σb =
√∑Nb

i=1

(
bcal

i − b
exp
i

)2

Nb

, (15)
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 5. The lowest 2qp and SRPA (marked as RPA) energies [(a)–(f)] as well as B(E2) values [(g)–(i)] of 2+
γ -vibrational states in Nd (left),

Sm (center), and Gd (right) isotopes, calculated with the force SV-bas. The 2qp (filled blue triangles) and SRPA (filled red circles) energies
are obtained without [(a)–(c)] and with [(d)–(f)] PBE. The SRPA B(E2) values without (empty blue diamonds) and with (filled red diamonds)
PBE are plotted in (g)–(i). In all the plots, the experimental data [20] are given (filled black squares).

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 6. The same as in Fig. 5 but for SkM∗. For comparison, the SkM∗ results [10] are depicted (filled green stars).
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 7. The SV-bas results as in Fig. 5 but for Dy, Er, and Yb isotopes.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 8. The same as in Fig. 6 but for SkM∗. In the plot (g), the B(E2) = 0.7 e2b2 for 164Dy is beyond the exhibited interval.
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(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 9. The SV-bas results as in Fig. 7 but for Hf, W, and U isotopes.

(a) (b) (c)

(d) (e) (f)

(g) (h) (i)

FIG. 10. The same as in Fig. 6 but for the force SkM∗.

034301-9



V. O. NESTERENKO et al. PHYSICAL REVIEW C 93, 034301 (2016)

TABLE I. Deviations between the calculated and experimental
values of 2+

γ energies (σE) and B(E2) strengths (σB ). NE,B is the
number of the involved nuclei. The SRPA deviations are compared
with ones from [10].

Skyrme NE σE (MeV) NB σB (e2b2)

force no PBE PBE no PBE PBE

SV-bas 40 0.87 0.62 31 0.046 0.056
SRPA SkM∗ 40 0.52 0.40a 31 0.059 0.075a

SkM∗ 24 0.52 0.44a 18 0.061 0.078a

Ref. [10] SkM∗ 24 0.49 18 0.034

aIn SkM∗ SRPA (PBE) estimation for σE,B , the anomalous nucleus
164Dy is omitted [NE = 39(23) and NB = 30(17)].

where bcal
i and b

exp
i are calculated and experimental values and

Nb is the number of involved nuclei. The deviations for the
SRPA energies (σE) and B(E2) values (σB) are presented in
Table I. The cases with and without PBE are estimated. In the
lower part of the table, the SkM∗ SRPA deviations (without
blocking) are compared with those of Ref. [10] (manually
obtained from the figures of [10]).

Table I confirms that inclusion of PBE significantly
improves description of 2+

γ energies but somewhat worsens
reproduction of B(E2). This takes place for both SV-bas and
SkM∗. In agreement with previous findings, SkM∗ describes
the energies noticeably better than SV-bas. Compared to
[10], SRPA demonstrates better (similar) performance for 2+

γ

energies for the cases with (without) PBE. However, SRPA
results are generally worse for B(E2). Perhaps the latter is
caused by the impact of the pp channel, which is included in
[10] but skipped in SRPA.

Following Table I, the performance of both SRPA and
HFB+QRPA [10] is generally not good. The deviations σE,B

are large. This calls for further improvement of the description,
e.g., for inclusion of the coupling to complex configurations
(CCC). The calculated QRPA energies of 2+

γ states mostly
overestimate the experimental values. Thus we still have a
window for CCC which, being a sort of additional correlations,
can in some cases downshift the energies of the lowest excited
states.

Note also that the description of 2+
γ states depends on

a fragile balance of many factors (optimal s-p scheme,
deformation, pairing with PBE and pp channel, CCC with
the corrections from the Pauli principle, etc.) with comparable
impacts. Moreover, these ingredients have opposite effects
which partly compensate each other (e.g., the corrections
from the Pauli principle may suppress the impact of CCC
[23]). Then, adding one of the factors, while ignoring its
balance by others, may even worsen the description. In this
connection, it would be premature to state, for example, that
the performance of SV-bas for 2+

γ states is worse than that of
SkM∗. Also it would be wrong to state that if the effect of
the particular factor is comparable with the dependence on the
Skyrme parametrization, then this factor should be skipped.
The final conclusions can be made only after collecting all the
relevant factors that can affect the result.

B. Discussion

In this subsection, we analyze the above results and compare
them with earlier studies [10,21,23,24].

First of all, it is worthwhile to explore the origin of
domains with low and high collectivity of 2+

γ states. The
low-collectivity domains include most of Nd, Er, Yb, Hf, and
U isotopes. High collectivity exists in Sm, Gd, Dy, and W
isotopes. Table II shows that the appearance of such domains
is determined by the structure of the first 2qp states which, in
turn, results in different absolute values of the matrix element
f 22

ij = 〈ij |r2Y22|0〉 for the doorway operator r2Y22. These 2qp
states are built from the s-p states with the energies close to the
Fermi level. High collectivity (pertinent to 154Sm, 162,164Dy,
176Hf, and 182W) takes place if the state is characterized by
a large value of |f 22

ij |. Instead, if |f 22
ij | is small, then we get

noncollective 2+
γ states ( 172Yb and 174Hf). The magnitude of

|f 22
ij | is determined by Nilsson selection rules for E2(K = 2)

transitions in axial nuclei [22,50]. The rules read

�K = 2, �N = 0, ± 2, �nz = 0, �� = 2, (16)

where N is the principle quantum shell number, nz is the
fraction of N along the z axis, and � is the orbital momentum
projection onto the z axis. All the 2qp states in Table II fulfill
the rules (16) for K and N but not for nz and �. Table II
shows that the rule �nz = 0 is decisive. The 2qp states which
keep this rule ( 154Sm, 162,164Dy, 176Hf, 182W) exhibit |f 22

ij |
values one order of magnitude larger than states violating the
rule ( 172Yb and 174Hf). This effect is especially spectacular for
neighboring isotopes 174Hf – 176Hf. The rule �� = 2 is not so
crucial. However, matrix elements are additionally increased
if this rule is obeyed ( 176Hf, 182W).

Table II obviously suggests that just the strength |f 22
ij |

of the first 2qp state is decisive for the collectivity of the
QRPA 2+

γ state and formation of domains with low and high
collectivity. This finding can be corroborated within a simple
two-pole model given in Appendix C. Following this model,
the collectivity of the lowest QRPA states is mainly determined
by the ratio between the strengths of the first (ν = 1) and
second (ν = 2) 2qp states where the second state simulates a
cumulative effect of all 2qp states with ν > 1. Depending on
this ratio, different scenarios can take place: high-collective
limit, intermediate case, and low-collective limit. In the last
case, the first QRPA energy can lie even a bit above the energy
of the first 2qp state, which happens, e.g., in our calculations
for Yb isotopes.

Altogether, we get a simple recipe for predicting the
collectivity of the first QRPA state: it suffices to inspect the
Nilsson selection rules (16) for the lowest 2qp state, first of all
�nz = 0. Note that, unlike s-p spectra, the s-p wave functions
and thus the values |f 22

ij | only slightly depend on the Skyrme
parametrization [51], which makes the proposed recipe quite
reliable. As seen from Table II, SV-bas and SkM∗ sometimes
give different lowest 2qp states. Nonetheless, the correlation
between �nz = 0 rule and collectivity of QRPA 2+

γ states
applies in all considered cases.

The nucleus 164Dy computed with SkM∗ shows a remark-
able sequence of four strong (|f 22

ij | = 5.8–9.2 fm4) 2qp states
which are located with PBE at 0.86–1.96 MeV. The cumulative
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TABLE II. Features of the lowest (after blocking) 2qp (ij ) and corresponding λμν = 221 SRPA states in rare-earth nuclei, calculated with
SV-bas and SkM∗ forces. The table includes the notation qq[Nnz�]i[Nnz�]j of 2qp state in Nilsson quantum numbers; location of the s-p
levels i and j relative to the Fermi (F) level; the quadrupole 2qp matrix element f 22

ij = 〈ij |r2Y22|0〉; the 2qp energy ε
q
ij (5) and collective shift

�E = ε
q
ij − E221, calculated without the blocking; the 2qp energy Eq

bl(ij ) (12) and collective shift �Ebl = Eq
bl(ij ) − E221, calculated with the

blocking; and the blocking correction �Eq
bl = ε

q
ij − Eq

bl(ij ). See text for more details.

Nucleus Force qq[Nnz�]i[Nnz�]j F location f 22
ij ε

q
ij �E Eq

bl(ij ) �Ebl �Eq
bl

(fm4) (MeV) (MeV) (MeV) (MeV) (MeV)

154
62 Sm92 SV-bas pp[413] ↓ [411] ↓ F, F+3 − 4.43 2.57 0.46 2.34 0.38 0.23

SkM∗ pp[411] ↓ [411] ↑ F+3, F+1 4.98 2.45 0.34 2.37 0.31 0.07
162
66 Dy96 SV-bas pp[411] ↓ [411] ↑ F+1, F 6.58 1.92 0.65 1.39 0.65 0.53

SkM∗ pp[413] ↓ [411] ↓ F, F+1 − 5.78 1.71 0.87 1.37 0.88 0.33
164
66 Dy98 SV-bas pp[411] ↓ [411] ↑ F+1, F 6.59 1.86 0.57 1.34 0.59 0.51

SkM∗ nn[523] ↓ [521] ↓ F, F+1 5.98 1.42 0.56 0.86 0.86 0.56
172
70 Yb102 SV-bas nn[512] ↑ [521] ↓ F+1, F − 1 0.37 2.40 0.003 2.12 − 0.02 0.28

SkM∗ nn[512] ↑ [521] ↓ F+1, F − 1 0.086 1.63 0.06 1.30 0.06 0.33
174
72 Hf102 SV-bas nn[512] ↑ [521] ↓ F+1, F − 1 0.37 2.39 − 0.02 2.07 0.05 0.32

SkM∗ nn[512] ↑ [521] ↓ F+1, F − 1 0.19 1.58 0.06 1.26 0.06 0.33
176
72 Hf104 SV-bas nn[512] ↑ [510] ↑ F, F−2 − 8.17 2.48 0.47 2.14 0.34 0.33

SkM∗ nn[512] ↑ [510] ↑ F, F−2 − 8.48 2.53 0.51 2.23 0.39 0.31
182
74 W108 SV-bas nn[510] ↑ [512] ↓ F+1, F+2 8.82 2.10 0.68 1.72 0.59 0.39

SkM∗ nn[510] ↑ [512] ↓ F+1, F+2 7.98 1.54 0.60 1.34 0.67 0.21

impact of these states delivers a dramatic effect: a breakdown
of RPA. Without PBE, these four 2qp states lie at a higher
energy, 1.42–2.15 MeV, and do not lead to the instability.
For comparison, SV-bas gives in 164Dy only three strong
(|f 22

ij | = 5.4–6.6 fm4) 2qp states, and they are located at a
higher energy, 1.35–1.65 MeV. This gives a collective 2+

γ state
still within QRPA. Altogether, this discussion shows that some
QRPA results for low lying states can be quite sensitive to the
Skyrme force.

Table II shows that the values of collective shifts �E (up to
0.9 MeV) and blocking induced shifts �Ebl (up to 0.6 MeV)
are comparable. Thus the PBE has a non-negligible effect in
the present calculations.

The results exhibited in Figs. 5–10 indicate that the
present Skyrme QRPA description of 2+

γ states is not yet
fully satisfactory. Though we get rather good agreement
with experimental data for collective 2+

γ states in Gd, Dy,
and W isotopes, collectivity is generally underestimated in
other isotopic chains (which is seen from too high SRPA
energies and significantly low B(E2) values). Perhaps the
latter cases require a coupling to complex configurations,
which might affect both the 2+

γ energies and B(E2) values.
In this respect, our calculations indicate regions where CCC
is needed. In the previous Skyrme QRPA study [10], the
need for CCC was also pointed out. In nuclei like 164Dy, an
approach taking into account large ground state correlations is
necessary [47,48].

As seen in Figs. 5–10, the performances of our and previous
[10] systematic Skyrme QRPA calculations (without the PBE)
are rather similar. Although these calculations exploit different
prescriptions, HFB + exact QRPA in [10] and BCS+PBE
+ separable QRPA in the present study, they provide a
remarkably similar description of QRPA energies of 2+

γ states.
The results [10] are somewhat better for B(E2) values, though
the difference is not crucial.

Since SRPA operates with the residual interaction in a
separable form, it can be directly compared with schematic
separable QRPA approaches, e.g., with QPM, which is widely
and successfully used in nuclear spectroscopy [22]. The QPM
proposes some simple relations for the strength constants of
the residual interaction which might be useful for a rough
evaluation of the SRPA strength constants. This analysis is
done in Appendix C. It is shown that the mixed isoscalar-
isovector interaction might be essential in Skyrme QRPA.
If this interaction is not properly balanced, it can weaken a
general isoscalar effect of the residual interaction and thus
make 2+

γ states less collective (which might be relevant for
Nd, Yb, Hf, and U isotopes).

IV. SUMMARY

We have performed a systematic study of the lowest
γ -vibrational Kπ = 2+ states in axially deformed even-even
rare-earth and actinide nuclei within a self-consistent (except
for the pairing part) separable random-phase approximation
(SRPA) [5]. Nine isotopic chains involving 41 nuclei were ex-
plored. The excitation energies and B(E2) values of 2+

γ states
were computed and analyzed. The Skyrme forces SV-bas [27]
and SkM∗ [25] were used. The force SV-bas was chosen since
it provides a good description of ground state deformations
and isoscalar giant quadrupole resonance (ISGQR). SkM∗ was
used as a force with the best performance in the previous
systematic study of 2+

γ states [10], performed within the exact
(not factorized) Skyrme HFB+QRPA. The accuracy of SRPA
was confirmed by comparison with calculations within exact
BCS+QRPA [39] and HFB+QRPA [10].

Our study undertakes some important steps that were not
realized earlier [10]. Some essential points concerning the
pairing contribution, systematics of 2+

γ states, and explanation
of the results were scrutinized.
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First, we have investigated a possible impact of the pairing
blocking effect (PBE) on the properties of 2+

γ states. Thereby
we use in an ad hoc manner only the PBE-corrected 2qp
energies, while the 2qp wave functions remain the same as in
the BCS ground state. This scheme has significant advantages:
it incorporates the most essential energy correction from PBE
but maintains, at the same time, the orthonormality of the
2qp configuration space, which, in turn, allows us to apply
the standard QRPA solution scheme. The scheme was applied
to a few lowest two-quasiparticle (2qp) configurations whose
corrected energies were then used in SRPA calculations. In
this framework, the PBE significantly downshifts the SRPA
energies of 2+

γ states and thus improves agreement with
the experimental spectra. At the same time, PBE rather
slightly affects collectivity of the states, expressed in terms of
collective shifts and transition probabilities B(E2). Note that
our present handling of the PBE is very preliminary and should
be further checked in a fully developed self-consistent QRPA
with PBE. To the best of our knowledge, such methods are
still absent. Then our study can be viewed as a first step which
highlights the problem and calls for a further self-consistent
exploration. Note also that the PBE-QRPA scheme is certainly
not the only way to improve the description of 2+

γ states.
Various many-body techniques that go beyond the plain QRPA,
first of all the coupling to complex configuration, can be
decisive here.

As the next novel aspect of our study, we have singled
out domains of nuclei with low and high collectivity of 2+

γ

states. It was shown that collectivity is mostly determined
by the structure of the lowest 2qp state dominating the
first SRPA state. The effect was explained in terms of the
Nilsson selection rule �nz = 0, which delivers a simple
recipe to predict the 2+

γ collectivity without performing QRPA
calculations. Some SRPA characteristics were compared with
those from the schematic quasiparticle-phonon model (QPM)
[22] which was successfully used for a long time in nuclear
spectroscopy.

It was found that the forces SV-bas and SkM∗ perform
similarly in the description of 2+

γ states for light rare-earth
nuclei but deviate in heavier nuclei. The latter is mainly
explained by the fact that SkM∗ delivers a weaker pairing
gap and thus lower 2qp energies than SV-bas. SV-bas delivers
less fluctuating trends of energies and B(E2) values, and well
describes Dy isotopes but fails in U isotopes. SkM∗ is better in
U isotopes but its results fluctuate more with the mass number.
Moreover, SV-bas has an important advantage over SkM∗:
it well describes quadrupole equilibrium deformations and
energy centroids of ISGQR. Thus SV-bas allows us to get
a consistent description of 2+

γ states and ISGQR.
In general our study shows that, despite all the progress,

available fully or partly self-consistent QRPA schemes are
still not accurate enough for a satisfactory description of
2+

γ states throughout medium and heavy axially deformed
nuclei. This holds for both our results and previous ones [10].
Some essential factors should be still added or improved.
The proper calculation scheme should fulfill at least the
following requirements: (a) accurate description of the s-p
spectra and equilibrium deformation, (b) treatment of pairing

(BCS or HFB) with PBE, (c) self-consistent residual QRPA
interaction with both ph and pp channels and consistently
incorporated PBE, (d) simultaneous description of other
quadrupole excitations (ISGQR), (e) systematic description
involving nuclei from various mass regions and domains
with low and high collectivity, and (f) the coupling to
complex configuration (with the proper inclusion of the Pauli
principle). Some of these points will be subjects of our next
studies.
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APPENDIX A: PAIRING CUTOFF WEIGHT AND PAIRING
MATRIX ELEMENTS

To simulate the effect of a finite range pairing force, the
pairing-active space for each isospin q is limited by using a
smooth energy-dependent cutoff (see, e.g., [33,52])

f
q
k = 1

1 + exp
[ ẽ

q
k −λq−�Eq

ηq

] (A1)

in the sums in Eqs. (9), (10), (13), and (14). The cutoff
parameters �Eq and ηq = �Eq/10 are chosen to be self-
adjusting to the actual level density in the vicinity of the Fermi
energy; see [34] for details.

For the δ-force pairing interaction (3), the antisymmetrized
pairing matrix elements read

V
(pair,q)
iīj j̄

= 〈iī|V q
pair(r,r

′)|j j̄〉q

=
∫

d3r

∫
dr′ �+

i (r)�+
ī

(r′) Vq δ(r − r′)

·[�j (r)�j̄ (r′) − �j (r′)�j̄ (r)]

= Vq

∫
d3r[(�+

i (r) · �j (r))(�+
ī

(r) · �j̄ (r))

− (�+
i (r) · �j̄ (r))(�+

ī
(r) · �j (r))], (A2)

where

�i(r) =
(

R
(+)
i (ρ,z) ei(Ki− 1

2 )ϑ

R
(−)
i (ρ,z) ei(Ki+ 1

2 )ϑ

)
, (A3)

�ī(r) =
(

−R
(−)
i (ρ,z) e−i(Ki+ 1

2 )ϑ

R
(+)
i (ρ,z) e−i(Ki− 1

2 )ϑ

)
(A4)
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are spinor s-p wave functions in cylindrical coordinates (ρ,z,ϑ) and (�+
i (r) · �j (r)) are scalar products. Denoting the first

(Hartree) and second (exchange) terms in the last line of (A2) as V
(pair−H,q)
iīj j̄

and V
(pair−ex,q)
iīj j̄

, we obtain

V
(pair-H,q)
iīj j̄

= 2π Vq

∫ ∞

0
dρ

∫ ∞

−∞
dz ρ

[
2R

(+)
i R

(+)
j R

(−)
i R

(−)
j + (

R
(−)
i R

(−)
j

)2 + (
R

(+)
i R

(+)
j

)2]
, (A5)

V
(pair-ex,q)
iīj j̄

= 2π Vq

∫ ∞

0
dρ

∫ ∞

−∞
dz ρ

[ − 2R
(+)
i R

(−)
j R

(−)
i R

(+)
j + (

R
(+)
i R

(−)
j

)2 + (
R

(−)
i R

(+)
j

)2]
, (A6)

and finally
V

(pair,q)
iīj j̄

= V
(pair-H,q)
iīj j̄

+ V
(pair-ex,q)
iīj j̄

= 2π Vq

∫ ∞

0
dρ

∫ ∞

−∞
dz ρ

[[(
R

(+)
i

)2 + (
R

(−)
i

)2] [(
R

(+)
j

)2 + (
R

(−)
j

)2]]
. (A7)

APPENDIX B: BASIC SRPA EQUATIONS

The self-consistent derivation [5,38] yields the SRPA
Hamiltonian

Ĥ =
∑

q

ĥ
q
HF+BCS + V̂res, (B1)

where

ĥ
q
HFB =

∫
dr

∑
α,α′

[
δE

δJ
q
α (r)

Ĵ q
α (r)

]
(B2)

is the mean field and pairing contribution and

V̂res = −1

2

∑
qq ′

M∑
m,m=1

[κqm,q ′m′X̂qmX̂q ′m′ + ηqm,q ′m′ ŶqmŶq ′m′]

(B3)

is the separable residual interaction with one-body operators

X̂qm =
∑
q ′

X̂q ′
qm = i

∑
q ′

∑
α,α′

∫
dr

[
δ2E

δJ
q ′
α′ (r′)δJ q

α (r)

]

× 〈[
P̂qm,Ĵ q

α (r)
]〉
Ĵ

q ′
α′ (r′), (B4)

Ŷqm =
∑
q ′

Ŷ q ′
qm = i

∑
q ′

∑
α,α′

∫
dr

[
δ2E

δJ
q ′
α′ (r′)δJ q

α (r)

]

× 〈[
Q̂qm,Ĵ q

α (r)
]〉
Ĵ

q ′
α′ (r′) (B5)

and inverse strength matrices

κ−1
qmq ′m′ = −i〈[P̂qm,X̂q ′m′ ]〉, (B6)

η−1
qmq ′m′ = −i〈[Q̂qm,Ŷq ′m′]〉. (B7)

Here α = ρ,τ,J,χ,j,s,T enumerates densities J
q
α and their

operators Ĵ
q
α while m marks time-even Q̂qm and time-odd

P̂qm = i[Ĥ ,Q̂qm] Hermitian input (doorway) operators. The
number M of separable terms in (B3) is determined by the
number of the input operators Q̂qm chosen from physical
arguments [5,37]. Usually we have M = 3–5. For such cases,
the SRPA matrix has a low rank, 4M , and we have small
computational expense even for heavy deformed nuclei.

The values 〈[P̂qm,Ĵ
q
α ]〉 from (B4) and 〈[Q̂qm,Ĵ

q
α ]〉 from

(B5) do not vanish only for time-even and time-odd densities

Ĵ
q
α , respectively. Then X̂k is time-even (determined by time-

even densities) while Ŷk is time-odd (determined by time-
odd densities). The SRPA residual interaction (B3) includes
contributions from variations of both time-odd and time-even
densities.

Following (B2), (B4), and (B5), ĥHF+BCS and V̂res are
determined by first and second functional derivatives of the
given energy functional. The model is self-consistent with the
exception of the pairing part.

The operators Q̂qm constitute the key input for SRPA
[5,37]. They are chosen from physical arguments, namely
to produce doorway states for particular excitations. In the
present calculations, four operators are used. The first one,
Q̂q1(r) = r2Y22(θ ) + h.c., generates the quadrupole (λμ =
22) mode of interest in the long-wave approximation (Y22(θ )
is the spherical harmonic). Usually, just one such operator
(generator) is enough for a rough description of the spec-
trum. However the corresponding Tassie mode [31,53] is
mainly of surface character. So, to improve accuracy of the
description, two other generators, Q̂q2(r) = r4Y22(θ ) + h.c.
and Q̂q3(r) = j2(0.6r)Y22(θ ) + h.c. (with j2(0.6r) being the
spherical Bessel function), are added. These generators result
in X̂

q ′
qm(r) operators peaked more in the nuclear interior

[5]. Finally, the generator Q̂q4(r) = r4Y42(θ ) + h.c. is added
to take into account the coupling between quadrupole and
hexadecapole excitations in axially deformed nuclei. Note
that these input operators do not form directly the separable
residual interaction (B3) but generate its operators X̂

q ′
qm(r),

Ŷ
q ′
qm(r) and strength constants κqm,q ′m′ , ηqm,q ′m′ , based on the

initial Skyrme functional. The number M of input operators
determines the number of the separable terms in (B3). Larger
M brings the separable interaction closer to the true (not
factorized) one, but makes SRPA calculations more time
consuming. The four operators which we are using here
constitute a good compromise between reliability and expense.

SRPA allows us to calculate the energies ων and wave
function (with forward ψν

ij and backward φν
ij 2qp amplitudes)

of one-phonon ν states. Besides, various strength functions can
be directly computed (without calculation of ν states). In this
study, we use for description of ISGQR the strength function

S γ (E22, E) =
∑

ν

| 〈ν| r2Y22 |0〉 |2 ξ�(E − Eν), (B8)
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where ξ�(E − Eν) = �/[2π (E − Eν)2 + (�/2)2] is the
Lorentz weight with the averaging parameter � = 1 MeV.

The energy centroids for ISGQR depicted in Fig. 3 are
estimated for the energy intervals where the strength functions
exceeds 20% of its maximal value.

APPENDIX C: SIMPLE TWO-POLE RPA MODEL

Let us consider SRPA with one input (doorway) operator
and without time-odd contributions. Then the SRPA secular
equation is reduced to the familiar equation for the schematic
separable RPA [22,31]:

κ−1 =
∑
ij

f 2
ij

ε2
ij − E2

ν

, (C1)

where κ is the strength constant, fij is the matrix element of
the residual interaction (including the pairing factors) between
the states i and j , εij is the 2qp energy, and Eν is the energy of
the νth RPA state. This equation may be simplified to the case
of two 2qp states, yielding two poles in the schematic RPA
equation:

1 = κf 2

[
k2

ε2
1 − E2

+ 1

ε2
2 − E2

]
. (C2)

Here the first pole is characterized by the 2qp energy ε1 and
matrix element kf . The second pole (with the 2qp energy
ε2 > ε1 and matrix element f ) is assumed to simulate the
effect of all the poles above the lowest one. The coefficient k
determines the ratio between the matrix elements of the first
and second poles. We suppose κ > 0, which is common for
low-energy isoscalar excitations [22].

Equation (C2) is reduced to a standard quadratic equation

E4 + bE2 + c = 0 (C3)

with

b = −(
ε2

1 + ε2
2

) + κf 2(1 + k2), (C4)

c = ε2
1ε

2
2 − κf 2(ε2

1 + k2ε2
2

)
. (C5)

This equation allows us to get useful analytical estimations for
three important cases: (i) k � 1 (strong first pole, typical for
Gd, Dy, and W isotopes), (ii) k  1 (weak first pole, typical
for Nd, Yb, Hf, and U isotopes), and (iii) k = 1 (intermediate
case with equal strengths of the first and second poles).

We go through these three cases step by step:

(i) For the strong first pole (k � 1), we get (1 ± k2) →
±k2 and so

E2 ≈ 1
2

[
ε2

1 + ε2
2 − κ(f k)2 ± (

ε2
1 − ε2

2 − κ(f k)2)]
(C6)

with two solutions,

E2
+ ≈ ε2

1 − κ(f k)2, E2
− ≈ ε2

2 . (C7)

The solution E+ gives the energy of the first RPA
state below the first pole, which is a common case in
phenomenological QPM [21–23]. In our calculations,
this case is met in Gd, Dy, and W isotopes.

(ii) For the weak first pole (k  1), we get (1 ± k2) → 1,
and so

E2 ≈ 1
2

[
ε2

1 + ε2
2 − κf 2 ± (

ε2
1 − ε2

2 + κf 2
)]

, (C8)

E2
+ ≈ ε2

1 , E2
− ≈ ε2

2 − κf 2. (C9)

The solution E+ is the energy of the first RPA state
close to the first pole. This energy can be both a bit
smaller or larger than e1. We have this case for Nd,
Yb, and Hf isotopes.

(iii) If the pole strengths are equal (k = 1), then (1 −
k2) → 0, (1 + k2) → 2, and

E2 ≈ 1
2

[
ε2

1 + ε2
2 − 2κf 2 ±

√(
ε2

1 − ε2
2

)2 + 4κ2f 4.

(C10)

Supposing that (ε2
1 − ε2

2 )2 � 4κ2f 4, we get

E2 ≈ 1
2

[
ε2

1 + ε2
2 − 2κf 2 ± (

ε2
1 − ε2

2 + κf 2)], (C11)

E2
+ ≈ ε2

1 − 1
2κf 2, E2

− ≈ ε2
2 − 3

2κf 2. (C12)

This simple model indicates that collectivity (collective
shift �E = E+ − ε1) of the first RPA state is determined
to a large extent by the relative strength of the first pole.
This conclusion is confirmed by our numerical results; see the
discussion of Table II. Thus we have found a simple way for the
prediction of the collectivity (weak or large) of the first RPA
state. In practice, it is enough to compare the matrix elements
of the first and next poles. Or, more easily, one should check
if the first pole fulfills the �nz = 0 Nilsson selection rule.

APPENDIX D: COMPARISON WITH QPM

Since SRPA deals with a separable residual interaction,
this method can be directly compared with the schematic
separable QRPA exploited in QPM [22]. The QPM is not
self-consistent: it uses the Woods-Saxon s-p basis, and its
isoscalar κ00 and isovector κ11 strength constants of the
residual interaction are adjusted to reproduce the experimental
energies of lowest vibrational states and giant resonances.
However, just because of the successful combination of
the microscopic and phenomenological aspects, the QPM
is known to be quite accurate in description of low-energy
states. Thus it is instructive to compare the characteristics of
self-consistent models, like Skyrme QRPA, with the relevant
QPM parameters.

In this connection, let us briefly discuss the QPM strength
constants of the residual interaction and compare them with
the SRPA ones. The strength constants in the proton-neutron
domain (nn, pp, np) can be related to their counterparts in the
isoscalar-isovector domain (00,11, 01) as

κ00 = 1

2
(κpp + κpn + κnp + κnn), (D1)

κ11 = 1

2
(κpp − κpn − κnp + κnn), (D2)

κ01 = 1

2
(κpp − κpn + κnp − κnn) = κ10. (D3)
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The constants κ01 = κ10 represent the mixing between
isoscalar (00) and isovector (11) excitations. This mixing can
be motivated by both physical (Coulomb interaction, etc.) and
technical (different sizes of neutron and proton s-p basis, etc.)
reasons. Since nuclei roughly keep the isospin symmetry, then

|κ00|,|κ11| � |κ01 = κ10|. (D4)

If we assume κ01 = κ10 = 0 and κnp = κpn, then we get

κpp = κnn (D5)

and the familiar QPM relations [22]

κ00 = κpp + κpn, κ11 = κpp − κpn. (D6)

From (D6) one gets

κpp = κnn = 1
2 (κ00 + κ11), (D7)

κpn = κnp = 1
2 (κ00 − κ11) (D8)

where κ11 = ακ00 with κ00 > 0. Usually α = −1.5 is used
[23], which results in a dominance of the np interaction,
κpn/κpp = −2.5 with κpn = κnp > 0 and κpp = κnn < 0.

For the comparison, the self-consistent SRPA calculations
give a somewhat different picture. As a relevant example,
the strength constants κq1,q ′1 = κqq ′ for the dominant first
input operator r2Y22 in 162Dy are considered. Note that in
SRPA the relation κpn = κnp is kept. SV-bas gives strength
constants κpp,κnn,κpn > 0 with the relations κpp/κnn = 2.7,
κpn/κpp = 7.7, and κpn/κnn = 2.9. Similar results are ob-
tained in other nuclei. SkM∗ gives κnn,κpn > 0, κpp < 0 and
relations κpp/κnn = −2.0, κpn/κpp = −4.4, and κpn/κnn =
2.2. In agreement with QPM, both forces provide a dominant
np interaction with the proper sign. However, in contrast
to (D5), the weak SRPA constants κpp and κnn noticeably
deviate from each other, which might be a signature of
a large mixing of the isoscalar and isovector interaction.
Perhaps just this mixing, if not be properly balanced with
other parts of the interaction, partly leads to the trou-
bles of Skyrme QRPA with the description of 2+

γ states.
A difference in sign of SV-bas and SkM∗ constants κpp

should be also mentioned as demonstration of the notice-
able dependence of the residual interaction on the Skyrme
force.
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