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Open-shell nuclei and excited states from multireference normal-ordered Hamiltonians
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We discuss the approximate inclusion of three-nucleon (3N ) interactions into ab initio nuclear structure
calculations using a multireference formulation of normal ordering and Wick’s theorem. Following the successful
application of single-reference normal ordering for the study of ground states of closed-shell nuclei, e.g., in
coupled-cluster theory, multireference normal ordering opens a path to open-shell nuclei and excited states.
Based on different multideterminantal reference states we benchmark the truncation of the normal-ordered
Hamiltonian at the two-body level in no-core shell-model calculations for p-shell nuclei, including 6Li, 12C, and
10B. We find that this multireference normal-ordered two-body approximation is able to capture the effects of
the 3N interaction with sufficient accuracy, both for ground-state and excitation energies, at the computational
cost of a two-body Hamiltonian. It is robust with respect to the choice of reference states and has a multitude
of applications in ab initio nuclear structure calculations of open-shell nuclei and their excitations as well as in
nuclear reaction studies.
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Introduction. Over the past few years one of the major
advances for many ab initio many-body approaches, partic-
ularly for medium-mass nuclei, was the inclusion of three-
nucleon (3N ) interactions. They arise naturally in nuclear
interactions constructed in chiral effective field theory [1–3]
and are inevitable when working with softened Hamiltonians
obtained, e.g., from a similarity renormalization group (SRG)
transformation [4–7]. Generally, a systematic and consistent
inclusion of 3N interactions are a prime goal of modern nuclear
structure and reaction theory.

Compared to many-body calculations with only two-
nucleon (NN ) forces, the inclusion of 3N interactions leads
to a significant increase in the computational and formal
complexity of the many-body problem. In some cases, like
the no-core shell model (NCSM) [8], the formal inclusion
is straightforward, but the increase in the computational cost
is significant [9]. In other cases, like coupled-cluster (CC)
theory for nuclear ground states [10,11], the complexity of the
basic many-body equations and of the numerical solution both
increase dramatically. Similarly, in calculations of continuum
and scattering observables, e.g., in the NCSM combined with
the resonating-group method (NCSM/RGM) [12–14] or the
NCSM with continuum (NCSMC) [15,16], the inclusion of ex-
plicit 3N interactions is feasible only in simple cases [17,18].

Therefore, approximation schemes are highly desirable
that include the physics of 3N interactions at the cost of a
calculation with only NN interactions. To this end, effective or
phenomenological NN interactions that are adjusted to capture
some physics aspects of the 3N force have been constructed in
the past. A more systematic way to derive such approximations
starts from the normal-ordered form of the Hamiltonian with
respect to an A-body reference state.

Normal ordering of products of creation and annihilation
operators with respect to nontrivial reference states is an
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important technical element in the formulation of a number of
modern many-body approaches. Two of the most successful ab
initio approaches for medium-mass nuclei, CC theory [19–22]
and the in-medium similarity renormalization group (IM-
SRG) [23,24], are constructed in a normal-ordered formulation
from the outset. In addition to the formal advantages of
working with normal-ordered products, normal ordering also
presents a natural starting point for the approximate inclusion
of multinucleon interactions. Already the normal-ordered
zero-, one-, and two-body terms of the Hamiltonian contain
contributions of the initial 3N interaction. Thus, by truncating
the Hamiltonian beyond the normal-ordered two-body level,
we take into account parts of the 3N interaction, while
retaining the computational complexity of a calculation with
only two-body terms.

This normal-ordered two-body (NO2B) approximation has
been successfully applied in recent many-body calculations,
particularly in the medium-mass regime [10,25–28]. We have
studied the quality of the NO2B approximation in NCSM and
CC calculations for ground states of closed-shell nuclei by
direct comparison to calculations with explicit 3N interactions
within the same many-body framework. Within the NCSM
we have tested the NO2B approximation for 4He and 16O
and found deviations from the ground-state energies obtained
with explicit 3N interaction on the order of 2% and 1%,
respectively [29]. We also extended CC theory to include
explicit 3N interaction at the singles and doubles level
[11,22] and with noniterative triples corrections [30]. This
enabled a direct benchmark of the NO2B approximation
in the medium-mass regime, which robustly confirmed that
this approximation agrees with ground-state results with the
explicit 3N interactions to better than 1%. Given the other
uncertainties in medium-mass approaches, this is acceptable
for many applications.

In this work, we generalize and test the NO2B approx-
imation to ground-state and excitation energies of open-
shell nuclei through a generalization of normal ordering to
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multideterminantal reference states. After discussing the for-
malism we will benchmark the multireference normal-ordered
two-body (MR-NO2B) approximation in NCSM calculations
for the ground and excited states of p-shell nuclei, comparing
directly to calculations with explicit 3N interactions.

Normal-ordered Hamiltonian. In the simplest formulation,
a product of creation and annihilation operators is normal
ordered if the creators are to the left of all annihilators. In the
following we use a convenient short-hand notation for creation
operators ap := a

†
p and annihilation operators ap defined with

respect to a complete orthonormal single-particle basis {|p〉}.
Furthermore, we write the particle-hole operators

aprt...
qsu...: = aparat · · · auasaq (1)

for single-particle indices covering the full single-particle
basis. These particle-hole operators are naturally in normal
order with respect to the vacuum state |0〉 and the expectation
value of these normal-ordered products with the vacuum state
vanishes. This is a necessary criterion for normal-ordered
products with respect to a specific reference state. This vacuum
normal order corresponds to the standard representation of
second quantized operators as they are used, e.g., in NCSM
calculations. Specifically for the operator of a 3N interaction,
the vacuum normal-ordered form is given by

V3N = 1

36

∑

prt
qsu

vprt
qsu aprt

qsu, (2)

with antisymmetrized three-body matrix elements v
prt
qsu :=

〈prt | V3N |qsu〉.
The more interesting case, however, is normal ordering with

respect to an A-body reference state. Assuming the simple
case of an A-body reference state |�〉 given by a single Slater
determinant built from A occupied single-particle states, this
leads to the standard picture of particle-hole excitations on
top of the reference state. Particle states are unoccupied in
the reference states, and hole states are occupied. The notion
of normal ordering needs to be extended to guarantee that
expectation values of any string of normal-ordered operators
in the reference state vanishes. To this end, particle creation
and hole annihilation operators are to the left of particle
annihilation and hole creation operators, defining the single-
reference normal ordering.

One can convert from vacuum to single-reference normal
order by explicit use of the anticommutation relations for
fermionic creation and annihilation operators or, more ele-
gantly, through Wick’s theorem [31]. We have formulated and
benchmarked the use of the single-reference normal ordering
and the NO2B approximation for closed-shell nuclei in detail
in Ref. [29] using NCSM calculation and in Refs. [11,30] using
the CC framework.

The single-reference formulation of normal ordering is
linked directly to the notion of particle and hole states. For
the generalization to more complicated reference states |�〉,
given by a superposition of many Slater determinants, a
distinction of particle and hole states is not possible anymore.
Therefore, normal ordering for multideterminantal reference

states operates on a more formal level and we rely entirely on
generalizations of Wick’s theorem.

We adopt the multireference version of the Wick’s theorem
proposed and proven by Kutzelnigg and Mukherjee [32,33].
The nontrivial contractions correspond to the irreducible n-
body density matrix elements encoding information about n-
body correlations in the reference state, which can be expressed
in terms of the m-body density matrix elements

γ p1p2...pm
q1q2...qm

= 〈�| ap1p2...pm
q1q2...qm

|�〉 , (3)

with m � n. Applying the multireference Wick’s theorem to
rewrite the particle-hole operators a

p
q , a

pr
qs , and a

prt
qsu of Eq.

(1) in terms of multireference normal-ordered particle-hole
operators ã

p
q , ãpr

qs , and ã
prt
qsu, we obtain after simplifications [32]

ap
q = ãp

q + γ p
q ,

apr
qs = ãpr

qs + A
(
γ p

q ãr
s

) + γ pr
qs ,

aprt
qsu = ãprt

qsu + A
(
γ p

q ãrt
su

) + A
(
γ pr

qs ãt
u

) + γ prt
qsu , (4)

where A is the index antisymmetrizer as defined in Ref.
[34] generating a totally antisymmetric sum of all possible
permutations within the upper and lower indices avoiding
duplicates.

Inserting Eq. (4) into the second-quantized form of the 3N
interaction (2), we obtain the 3N interaction in multireference
normal-ordered form

V3N = w +
∑

p
q

wp
q ãp

q + 1

4

∑

pr
qs

wpr
qs ãpr

qs + 1

36

∑

prt
qsu

wprt
qsu ãprt

qsu

(5)

with

w = 1

36

∑

prt
qsu

vprt
qsuγ

prt
qsu , wp

q = 1

4

∑

rt
su

vprt
qsuγ

rt
su,

wpr
qs =

∑

t
u

vprt
qsuγ

t
u, wprt

qsu = vprt
qsu. (6)

The matrix elements of the multireference normal-ordered
n-body contributions emerging from the 3N interaction are
given by simple summations of the original three-body
matrix elements contracted with density matrices. Inserting the
density matrices obtained for a single-determinant reference
state immediately reduces these expressions to the known
single-reference expressions [11,29].

By omitting the normal-ordered three-body contribution in
Eq. (5) we define the MR-NO2B approximation of the 3N
interaction as

V MR-NO2B
3N = w +

∑

p
q

wp
q ãp

q + 1

4

∑

pr
qs

wpr
qs ãpr

qs . (7)

For approaches like the NCSM that do not naturally use a
normal-ordered formulation, we can invert the relations (4) to
convert the above expression back to vacuum normal order
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and obtain

V MR-NO2B
3N = v̄ +

∑

p
q

v̄p
q ap

q + 1

4

∑

pr
qs

v̄pr
qs apr

qs , (8)

with

v̄ = 1

36

∑

prt
qsu

vprt
qsu

(
γ prt

qsu − 18γ p
q γ rt

su + 36γ p
q γ r

s γ t
u

)
,

v̄p
q = 1

4

∑

rt
su

vprt
qsu

(
γ rt

su − 4γ r
s γ t

u

)
, v̄pr

qs =
∑

t
u

vprt
qsuγ

t
u. (9)

We remark that we do not need the three-body density matrix
element explicitly since the term including the three-body
density matrix element in the zero-body part can be identified
as the expectation value of the 3N interaction in the reference
state, which can be computed directly. The one- and two-body
density matrices can be easily computed using standard NCSM
technology.

Calculation details. The starting point of our calculations
is a Hamiltonian based on the NN or NN + 3N interaction
from chiral effective field theory. We use the NN interaction
at next-to-next-to-next-to-leading (N3LO) from Entem and
Machleidt [35] and the 3N interaction at N2LO in local
form from Navrátil [36]. The low-energy constants have been
fitted to the ground-state energy and β-decay half-life of
3N systems [37]. Both Hamiltonians will be transformed by
means of the SRG in three-body space, in order to enhance
convergence behavior with respect to the many-body model
space [4,38]. Here, we consider two types of SRG-evolved
Hamiltonians: The NN + 3N -induced Hamiltonian omits the
chiral 3N interaction from the initial Hamiltonian, but keeps all
induced 3N terms throughout the transformation; the NN +
3N -full Hamiltonian starts with the initial chiral NN + 3N
Hamiltonian and retains all terms up to the three-body level
in the SRG transformation. The 3N -interaction terms in both
Hamiltonians have quite different characteristics, which makes
them useful for benchmarking the MR-NO2B approximation.

For each of these Hamiltonians, we apply the MR-NO2B
approximation with respect to nucleus-specific reference
states. These reference states are given by the ground state
obtained from full NCSM calculations in small model spaces,
characterized by N ref

max, including explicit three-body interac-
tions. In order to analyze the dependence on the reference
state, we vary the truncation parameter N ref

max and, thus, obtain
a sequence of reference states and a corresponding sequence of
MR-NO2B approximations. Note that for closed-shell nuclei
the MR-NO2B approximation with N ref

max = 0 is equivalent to
the single-reference version of the NO2B approximation.

Finally, we use the MR-NO2B matrix elements in
importance-truncated no-core shell model (IT-NCSM) cal-
culations for ground and excited states of p-shell nuclei up
to large model-space truncations Nmax. To remove spurious
center-of-mass excitations from the low-energy spectra we add
a harmonic oscillator center-of-mass Hamiltonian. In order
to benchmark the MR-NO2B approximation we compute
the same observables in the IT-NCSM including explicit
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FIG. 1. IT-NCSM absolute ground-state energies of 4He and
16O as functions of Nmax for the NN + 3N -induced (left) and
NN + 3N -full (right) Hamiltonian with the SRG flow parameter α =
0.08 fm4 and �� = 20 MeV. The levels connected by a dashed line
correspond to the complete 3N interaction, the circles to MR-NO2B
approximations for a range of N ref

max parameters: N ref
max = 0, 2, 4, 6 (from

left to right). The insets for the NN + 3N -full calculations show
results with a perturbative inclusion of the residual normal-ordered
3N term as red boxes (see text). Experimental ground-state energies
are taken from [41].

3N interactions. These calculations are significantly more
expensive, since the explicit three-body terms reduce the
sparsity of the many-body Hamilton matrix, i.e., increase the
number of nonzero matrix elements by at least an order of
magnitude [9]. Details on the IT-NCSM can be found in Refs.
[39,40].

Closed-shell nuclei. We start with a direct comparison of IT-
NCSM ground-state energies for the closed-shell nuclei 4He
and 16O. These nuclei have been already investigated in the
framework of the single-reference NO2B approximation [29].
The multireference formulation can go beyond this single-
determinant reference and explore the impact of improved
reference states for larger N ref

max, which systematically approach
the converged ground state of the nucleus.

In Fig. 1 we present the absolute ground-state energies of
4He and 16O as functions of Nmax calculated for the NN +
3N -induced and NN + 3N -full Hamiltonian with the SRG
flow parameter α = 0.08 fm4. All MR-NO2B results are in
good agreement with the calculations including explicit 3N
terms, the largest relative deviations are at the level of 1%.

Closer inspection of the results with increasing N ref
max shows

that there is no universal systematics. For 4He the agreement
with the full calculation improves when going from N ref

max = 0
to 2, but for 16O the agreement gets slightly worse in the
case of the NN + 3N -induced Hamiltonian. Generally the
dependence on the reference state, i.e., on N ref

max is small,
indicating that the MR-NO2B approximation is robust with
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respect to variations of the reference state. To improve on
the MR-NO2B approximation, we can attempt to include the
residual normal-ordered three-body terms perturbatively by
adding their expectation value obtained with the MR-NO2B
eigenstates. The results for selected cases are shown in the
insets in Fig. 1. This correction does improve the agreement
with the full calculation, but generally cannot remove the
difference completely, as evident from the 16O results. The
remaining difference has to be attributed to differences in
the MR-NO2B eigenstates compared to the eigenstates of the
complete Hamiltonian. Furthermore, we note that for these and
all following cases, the expectation values of total angular mo-
mentum and harmonic-oscillator center-of-mass Hamiltonian
obtained with the MR-NO2B approximation and with explicit
3N interactions do agree within the numerical accuracy of the
IT-NCSM, indicating rotational and translational invariance of
the MR-NO2B Hamiltonian.

Open-shell nuclei. The multireference formulation now
allows us to address open-shell nuclei as well. We will
investigate the ground-state and excitation energies of 6Li,
12C, and 10B as a representative set of p-shell nuclei. The
reference state for the MR-NO2B approximation is always
the ground state from full NCSM calculations with small
N ref

max, also for the calculation of the excited states. Thus,
we will address two aspects: the quality of the MR-NO2B
approximation for the description of the ground-state in
open-shell systems and the quality of the normal ordering
based on the ground state as reference for the description of
excited states.

Figure 2 shows the absolute energies of 6Li for the four
lowest natural-parity states as well as the excitation energies
as functions of Nmax. The calculations are carried out using
the IT-NCSM for the NN + 3N -induced and NN + 3N -full
Hamiltonian with the SRG flow parameter α = 0.08 fm4. As
for the closed-shell cases we use different N ref

max to vary the
complexity of the reference state and compare to direct IT-
NCSM calculations with explicit 3N interactions.

For the absolute energies we observe an excellent agree-
ment of the various levels of the MR-NO2B approximation
with the calculations including the 3N interactions explicitly.
Particularly, there is no difference in the quality of the
description of the ground state and the excited states. This
point is important given the fact that the normal ordering
is performed for a reference state that is constructed as
an approximation for ground state and does not include
information about the excited states.

As functions of N ref
max the absolute energies of all states show

the same systematics and, as a result, the excitations show a
smooth and very weak dependence on the reference state. As
for the ground states of closed-shell nuclei, we generally do not
observe a systematic improvement of the MR-NO2B results
with increasing N ref

max.
To test the MR-NO2B approximation in nuclei with

a more complicated structure, we consider the low-lying
natural-parity states in 12C and 10B shown in Figs. 3 and 4,
respectively. Previous investigations have shown that several
states in these nuclei are sensitive to the chiral 3N interaction
[4,8] and, thus, are critical tests for the MR-NO2B approxima-
tion. Also, these calculations are more challenging from the
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FIG. 2. IT-NCSM absolute (top) and relative (bottom) spectra
of 6Li as functions of Nmax for the NN + 3N -induced (left) and
NN + 3N -full (right) Hamiltonian with the SRG flow parameter
α = 0.08 fm4 and �� = 20 MeV. The solid levels connected by a
dashed line correspond to the complete 3N interaction, the circles to
MR-NO2B approximations for a range of N ref

max parameters: N ref
max =

0, 2, 4, 6 (from left to right). Experimental excitation energies are
taken from [42].
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FIG. 3. Same as Fig. 2, but for 12C with N ref
max = 0, 2, 4 (from left

to right).
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FIG. 4. Same as Fig. 2, but for 10B with �� = 16 MeV and
N ref

max = 0, 2, 4 (from left to right).

point of view of the importance of truncation and threshold
extrapolations. We have benchmarked the IT-NCSM against
full NCSM calculations for 12C in a previous publication
[43] showing that the uncertainties due to the threshold
extrapolation in the IT-NCSM are small on the scales discussed
here and that they can be estimated reliably. For the excitation
energies, we expect maximum extrapolation uncertainties on
the order of 0.1 MeV for the largest Nmax considered here. This
is insignificant for 12C but not completely negligible for 10B.

For 12C the agreement of the MR-NO2B approximation
with the full calculations is at a similar level as for the
simpler nucleus 6Li. The absolute energies show the same
trends for ground and excited states as functions of N ref

max and,
consequently, the excitation energies show a mild dependence
on the reference state. As before, larger N ref

max do not necessarily
improve the MR-NO2B approximation. Generally, the MR-
NO2B approximation works very well and the deviations for
the results with explicit 3N interactions are at the same level
as the uncertainties due to Nmax-convergence and threshold
extrapolation.

At the same time, the computational cost for the IT-
NCSM calculations with the MR-NO2B approximation is an
order of magnitude lower than for the full 3N calculations,
because of a significant reduction of the number of nonzero
matrix elements in the many-body Hamilton matrix, which
entails small importance truncated spaces. For the Nmax = 10
calculations shown in Fig. 3 the total CPU time for the
IT-NCSM calculation reduces by a factor of 10 and the
maximum memory footprint by a factor of 20.

The most challenging test case is clearly 10B. Being an
odd-odd nucleus, the excitation energies are smaller and
deviations become more significant. Moreover, it is known
that for the present chiral Hamiltonian, the 3N interaction

is responsible for changing the ordering of the two lowest
states [44]. Using the chiral NN interaction only, the 1+ state
emerges as a ground state in contradiction to experiment and
only the inclusion of the chiral 3N interaction leads to the
correct 3+ ground state. Thus the 3N force has a drastic impact
on the spectrum and it is unclear whether the MR-NO2B
approximation is able to capture this effect.

The results for 10B depicted in Fig. 4 show that the MR-
NO2B approximation can cope with these situations with a
somewhat reduced accuracy. The absolute energies obtained
in the MR-NO2B approximation deviate by up to 1 MeV from
the full 3N results with uncertainties due to the IT-NCSM
threshold extrapolations up to 0.3 MeV. For the excitation
energies the deviations are significantly smaller, particularly
for the NN + 3N -induced Hamiltonian where the absolute
deviations are at the same level as for the simpler nuclei. For the
NN + 3N -full Hamiltonian, the deviations of the excitation
energies reach 0.5 MeV and show a stronger dependence on
N ref

max. However, the MR-NO2B approximations always give
the correct level ordering and, thus, capture the most important
effects of the 3N interaction. Moreover, the larger dependence
on the reference state and N ref

max can serve as an indicator of the
reduced quality of the MR-NO2B approximation.

Conclusions. We have introduced and studied the MR-
NO2B approximation for the efficient inclusion of the 3N
interactions in nuclear structure calculations for ground and
excited states of open-shell nuclei. Through direct comparison
with IT-NCSM calculations including the full 3N interactions
explicitly we have demonstrated the robustness and accuracy
of this approximation. The absolute energies of ground and
excited states for closed- and open-shell nuclei typically agree
with the full 3N results at the 1% level, with the exception
of very light nuclei (e.g., 4He) and particularly fragile states
(e.g., 10B). The description of excited states exhibits the same
quality and systematics as the ground states although the
normal ordering only involves a reference-state representative
for the ground state. This, together with the small dependence
on the specific choice of the reference states, i.e., the N ref

max,
demonstrates the robustness of the MR-NO2B approximation
for the 3N interaction.

These findings have important implications for a range
of many-body applications. In the context of the NCSM
and IT-NCSM the MR-NO2B approximation gives access to
nuclei that are computationally out of reach with explicit 3N
interactions. Due to the significant reduction of the number of
nonzero matrix elements in the many-body Hamilton matrix,
nuclei in the lower half of the sd-shell become accessible in the
IT-NCSM at manageable computational cost. The MR-NO2B
approximation for 3N interactions also facilitates continuum
and reaction calculations in the NCSM/RGM and NCSMC,
which are too demanding with explicit 3N terms. For medium-
mass approaches, particularly the IM-SRG [25,45,46], which
are formulated with normal-ordered operators from the outset,
the quality of the MR-NO2B approximation directly affects the
accuracy of the whole many-body framework. Our findings for
excited states also open the door for studies of excitation spec-
tra with evolved Hamiltonians from the IM-SRG, e.g., through
subsequent equations-of-motion or configuration-interaction
calculations. Furthermore, the normal-ordering framework can
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be directly extended to 4N interactions, making the inclusion
of chiral 4N forces that emerge at order N 3LO possible for a
variety of many-body approaches.
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[12] S. Quaglioni and P. Navrátil, Phys. Rev. Lett. 101, 092501

(2008).
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(2014).
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