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We analyze the stellar properties of the relativistic mean-field (RMF) parametrizations shown to be consistent
with the recently studied constraints related to nuclear matter, pure neutron matter, symmetry energy, and its
derivatives [Phys. Rev. C 90, 055203 (2014)]. Our results show that only two RMF parametrizations do not allow
the emergence of the direct Urca process, important aspect regarding the evolution of a neutron star. Moreover,
among all approved RMF models, fourteen of them produce neutron stars with maximum masses inside the range
1.93 � M/M� � 2.05, with M� being the solar mass. Only three models yield maximum masses above this
range and a discussion on the inclusion of hyperons is presented. Finally, we verified that the models satisfying
the neutron star maximum mass constraint do not observe the squared sound velocity bound; namely, v2

s < 1/3,
corroborating recent findings. However, the recently proposed σ -cut scheme can make the RMF models consistent
with both constraints, depending on the isoscalar-vector interaction of each parametrization.

DOI: 10.1103/PhysRevC.93.025806

I. INTRODUCTION

Historically, around 1930, the first nuclear physics model
known as the liquid drop model [1] and the semi-empirical
mass formula presented by Bethe and Weizsäcker [2] estab-
lished the grounds for the study of nuclei properties and nuclear
structure. These two models are so close to each other in basic
ideas, that their nomenclature is very often mixed up. Both
are parameter-dependent models and their underlying fitting
procedure was later used in the development of many other
models. Nowadays, around 500 nonrelativistic (Skyrme-type)
and relativistic models are available in the literature and are
largely used in describing different features, from nuclear to
hadron spectroscopy, from heavy-ion collisions to neutron star
properties. The vast majority of the models are parameter
dependent and are based on the fitting of nuclear bulk
matter. These phenomenological models generally rely on the
calculation of equations of state (EoS), which relate pressure,
energy density, and temperature at a given particle-number
density subject to nuclear forces.

In the last few years, detailed analyses of nonrelativistic and
relativistic models were performed [3,4]. From such studies,
it was suggested that the proliferation of models and the
production of new parameter sets with a limited range of
application should not be encouraged. To be more specific,
in Ref. [3], 240 different Skyrme model parametrizations
were confronted with experimentally and empirically derived
constraints and only 16 were shown to satisfy all of them.
Another 263 relativistic mean-field (RMF) parametrizations
were also analyzed in Ref. [4] and, once again, only a small
number of them, 35 to be exact, were shown to satisfy
adequately chosen constraints. It is important to say that
three different sets of constraints were used in Ref. [4], all of
them related to symmetric nuclear matter, pure neutron matter,
symmetry energy, and its derivatives. They differed one from
the other in the choice of validity ranges of certain quantities
and in the level of restriction. In a recent study [5], the authors
also constrained the EoS of Skyrme and RMF models to those

predicted from chiral effective field theory including effects of
two- and three-nucleon forces.

In Ref. [4], the relativistic models were divided into seven
families; namely, linear finite-range models (Walecka-type
models [6]; type 1), nonlinear σ models (Boguta–Bodmer
models [7]; type 2), nonlinear σ and ω models with a
self-quartic interaction in the ω field (type 3), nonlinear σ and
ω terms and cross terms involving these fields (type 4), density-
dependent models [8] with couplings adjusted to nuclear
properties (type 5), nonlinear point coupling models [9] (type
6), and models with δ mesons (type 7). Thirty of the approved
models are of type 4, two are of type 5, one is of type 6, and two
are of type 7, with both being density dependent. In the present
work, we go one step further and confront all the approved
models with observational astrophysical properties. Until not
very long ago (2010), all mean-field models adapted to stellar
conditions (charge neutrality and chemical equilibrium) that
resulted in maximum stellar masses larger than 1.44M�
were acceptable. After two massive stars were discovered;
namely, PSR J1614-2230 with mass (1.97 ± 0.04)M� [10],
and PSR J0348+0432 with mass (2.01 ± 0.04)M� [11], many
parameter-dependent models were retuned so that they could
describe maximum masses in these ranges. Other mechanisms
capable of stiffening the EoS and hence increasing the
maximum stellar mass were also proposed, as in Refs. [12–14],
but we will discuss them after we present our results.

The aim of the present work is to check whether the 35 RMF
parametrizations that were shown to satisfy the nuclear matter
constraints in Ref. [4] also satisfy the criterion of producing
massive stars. The same EoS are also used to investigate the
direct Urca process and to calculate the sound velocity.

II. FORMALISM AND RESULTS

To obtain neutron star macroscopic properties, the the
following steps are necessary: (1) the EoS for hadronic matter
is joined with the EoS for free leptons; (2) the conditions of
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TABLE I. Neutron star main properties: maximum stellar masses in terms of M� (Mmax/M�), the radius of the corresponding star (R), the
radius of a star with a 1.44M� mass (R1.44M� ) and the central energy density of the maximum mass star (εc). Properties related to the direct
Urca process: mass of the star in terms of M� at the onset of the DU process (MDU/M�), related baryonic density (ρDU), and proton fraction
(YDU).

Model Ref. Mmax/M� R (km) R1.44M� (km) εc (fm−4) MDU/M� ρDU (fm−3) YDU

BKA20 [19] 1.960 11.522 13.191 6.177 1.065 0.311 0.133
BKA22 [19] 1.975 11.601 13.262 6.095 1.000 0.294 0.133
BKA24 [19] 1.968 11.608 13.367 6.160 0.911 0.271 0.132
BSR8 [20] 1.969 11.503 12.970 6.090 1.410 0.405 0.135
BSR9 [20] 1.944 11.419 12.958 6.240 1.313 0.385 0.135
BSR10 [20] 1.963 11.533 13.108 6.137 1.149 0.335 0.134
BSR11 [20] 1.946 11.504 13.208 6.264 0.980 0.294 0.133
BSR12 [20] 1.970 11.580 13.252 6.160 1.011 0.300 0.133
BSR15 [20] 1.750 10.969 12.483 6.844 1.250 0.420 0.136
BSR16 [20] 1.748 10.968 12.494 6.893 1.231 0.414 0.136
BSR17 [20] 1.750 10.989 12.494 6.902 1.119 0.372 0.135
BSR18 [20] 1.751 11.040 12.662 6.873 1.028 0.338 0.134
BSR19 [20] 1.754 11.102 12.773 6.828 0.923 0.303 0.133
BSR20 [20] 1.760 11.194 12.972 6.772 0.841 0.267 0.132
FSU-III [21] 1.728 10.934 12.502 7.011 1.058 0.362 0.135
FSU-IV [21] 1.725 10.797 12.220 7.061 1.477 0.572 0.138
FSUGold [22] 1.725 10.842 12.337 7.090 1.304 0.467 0.136
FSUGold4 [23] 1.725 10.788 12.224 7.110 1.479 0.572 0.138
FSUGZ03 [24] 1.944 11.418 12.963 6.240 1.314 0.385 0.135
FSUGZ06 [24] 1.748 10.961 12.494 6.893 1.244 0.419 0.136
G2* [25] 1.929 10.907 12.551 6.959 1.197 0.390 0.135
IU-FSU [26] 1.943 11.228 12.563 6.348 1.776 0.614 0.138
Z271s2 [27] 1.658 10.910 12.464 7.098 1.079 0.366 0.135
Z271s3 [27] 1.647 10.751 12.238 7.301 1.301 0.488 0.137
Z271s4 [27] 1.640 10.669 12.070 7.347 1.470 0.637 0.138
Z271s5 [27] 1.637 10.590 11.952 7.424 1.562 0.789 0.140
Z271s6 [27] 1.635 10.534 11.859 7.469 1.607 0.934 0.140
Z271v4 [27] 1.606 10.639 12.085 7.590 1.272 0.500 0.137
Z271v5 [27] 1.603 10.572 11.984 7.667 1.501 0.748 0.140
Z271v6 [27] 1.601 10.514 11.902 7.743 1.585 1.028 0.141
DD-F [28] 1.960 10.173 11.880 7.981
TW99 [8] 2.080 10.613 12.254 7.239
DDHδ [29] 2.540 12.460 13.282 4.917 2.000 0.569 0.138
DD-MEδ [30] 2.433 11.657 12.296 5.520 2.112 0.766 0.140

charge neutrality and chemical equilibrium are enforced; (3)
the Baym–Pethick–Sutherland (BPS) equation of state [15] for
low densities is added to the EoS for hadrons and leptons; (4)
the resulting EoS is used as input to the Tolman–Oppenheimer–
Volkoff equations [16], which are the differential equations
for the structure of a static, spherically symmetric star in
hydrostatic equilibrium. All these steps are well known and
the details are given in many papers and books, such as
Refs. [17,18]. Next, only electrons and muons are considered
in the leptonic EoS since we just consider the zero-temperature
deleptonized phase of the stellar evolution.

As a remark, we remind the reader that clusterized matter
and possibly the pasta phase matter can also be present in the
inner crust of the star. However, in the present calculation,
it is important to point out that, after we join the BPS
EoS, used to describe the outer crust, to the hadronic one
obtained from the RMF models, the TOV equations are solved.
In doing so, an interpolation is used and the exact values

in between these two EoSs loose their strict meaning. In
our calculations, the lowest baryonic density obtained from
the relativistic models is approximately ρ = 0.05 fm−3 and
the BPS points start respectively at ρ = 0.008 907 fm−3

(baryonic density), ε = 0.042 53 fm−4 (energy density), and
p = 0.000 069 87 fm−4 (pressure) and go up to a very low
baryonic density; namely, ρ = 0.1581 × 10−10 fm−3, and the
corresponding energy density and pressure. Any different
matter structure existing in between these two densities is
washed out when the TOV equations are used. Hence, the
detailed structure of the inner crust is not relevant for the
present analysis. In our analysis, we start with nucleons only
in the hadronic sector and the results are presented next.

A. Nucleonic matter

In Table I we display some of the neutron star properties
obtained from the solution of the TOV equations after the
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FIG. 1. Neutron star mass-radius relation. Horizontal bands
indicate the masses of PSR J1614-2230 [10] (orange) and PSR
J038+0432 [11] (blue).

35 models approved in Ref. [4] are used as input. The first
30 results correspond to models of type 4, described in the
Introduction, and the respective Lagrangian densities can be
obtained from the references listed in the second column.
The last four results come from density-dependent models
and, in the last two, the scalar isovector δ meson is also
included. Regarding the only point-coupling model approved
according to Ref. [4], the FA3 one, we remark that, due
to its very particular behavior in the high-density regime;
namely, a fall in the curve pε near ε = 4.1 fm−4 (p is the
pressure and ε is the energy density), it was not possible to
generate a mass radius curve indicating a maximum mass and,
consequently, no other quantities are presented in Table I.
Therefore, we have discarded such a model from our analysis.
In Fig. 1, the corresponding mass radius curves are plotted
alongside the bands that represent astrophysical constraints
of the order of 2M� on the stellar masses. From these
results, one can immediately see that the models BKA20,
BKA22, BKA24, BSR8, BSR9, BSR10, BSR11, BSR12,
FSUGZ03, G2*, IU-FSU, and DD-F are inside the maximum
mass constraint of [10,11], and that only three models yield
maximum masses above the bands shown in Fig. 1; namely,
TW99, DDHδ and DD-MEδ. It is a very-well-known fact that
hyperons are expected to exist the core of neutron stars and that,
when they are included in the EoS, it becomes softer and the
corresponding maximum stellar mass decreases considerably.
Hence, just these three models will be selected for the study of
hyperonic matter. Before we proceed to perform this analysis,
we look at three other important aspects related to neutron
stars: their radii, the direct Urca process (DU), and the sound
velocity.

As far as neutron star radii are considered, there is a bit
of controversy in their acceptable values, as discussed in the
literature. In Ref. [31], for example, the authors constrained the
radii of the canonical 1.44M� neutron star to the range of 9.7 �
R1.44M� � 13.9 km, based on a chiral effective theory analysis.
In our study, we observe that all values are within such a range
(see the fifth column of Table I). In Ref. [32], on the other hand,

a limit of 12 km is found for R1.44M� , while in Ref. [33] the limit
is 13.1 km. Another calculation, discussed in Ref. [34], based
on a Bayesian analysis, results in radii of all neutron stars in
the range of 10.9 and 12.7 km, while even significantly smaller
radii are predicted in Refs. [35,36], where the ranges found are
9.11.3

−1.5 and 9.4 ± 1.2 km, respectively, obtained from analyses
of five quiescent low-mass x-ray binaries. Finally, it is also
possible to infer neutron star radii from the knowledge of
the symmetry energy slope at the saturation density (ρo) due
to the correlation between such quantities, as suggested in
Refs. [37,38]. Some of these ranges and other ones extracted
from other recent publications are summarized in Fig. 10 of
Ref. [39]. As one can see, definite values for the neutron star
radii are not yet established, and the results obtained from the
RMF parametrizations analyzed in the present work (most of
them in the range of 12 � R1.44M� � 13 km) are compatible
with several of the aforementioned predictions.

The direct Urca (DU) process, n → p + e− + ν̄e [40] sheds
light on an important aspect of the evolution of neutron
stars. The cooling of the star by neutrino emission can occur
relatively fast when the proton fraction exceeds a critical value
xDU [40], evaluated in terms of the leptonic fraction as [28]

xDU = 1

1 + (
1 + x

1/3
e

)3 ,

where xe = ρe/(ρe + ρμ) is the electron leptonic fraction,
with ρe and ρμ being the densities of electrons and muons,
respectively. Cooling rates of neutron stars [41] seem to
indicate that this fast cooling process does not occur, except
in stars with a mass larger than 1.5M� [28]. Hence, from the
results in Table I, one can see that all selected models could give
rise to the DU process. In the same table, we show the results
for the star mass obtained when the proton fraction crosses the
line of the electron fraction. We also display the results of the
corresponding baryonic density and the proton fraction. While
most of the analyzed models cross the line that establishes
the onset of the DU process when the proton fraction is of
the order of 0.14, the densities can vary substantially. Most
models cross this line for very low densities, but there are
some exceptions, when the crossing takes place at around half
the saturation density or even at higher densities (Z271s5,
Z271s6, Z271v5, Z271v6, DD-MEδ). In Ref. [37], it is shown
that the DU process is related to the density dependence of
the symmetry energy and, hence, to the isovector channel of
the EoS and to its slope: the larger the slope of the symmetry
energy, which corresponds to a harder symmetry energy, the
smaller the onset density because larger proton fractions are
favored in the system. Hence, our analyses of 32 of the models
show that the fast cooling can indeed take place if the stars are
described by them. On the other hand, the parametrizations
DD-F and TW99 do not support this possibility because the
proton fraction never crosses the electron leptonic fraction.

B. Sound velocity constraint

We now turn our attention to the calculation of the sound
velocity, which can be easily obtained from the EoS since,
for matter in beta equilibrium, it is given by v2

s = dpT /dεT ,
where pT and εT are the total pressure and total energy density
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FIG. 2. Squared sound velocity for nuclear matter in beta equi-
librium. Dashed line represents the limit v2

s = 1
3 .

of the system, respectively. In Fig. 2 we show the behavior of
the squared sound velocity as a function of the total energy
density. Causality constrains vs to the light velocity in vacuum,
c, which we take as 1 in the present work. Although only four
models (DD-F, TW99, DDHδ, and DD-MEδ) reach quite high
values, they never exceed 0.9, as one can see in the inset of
Fig. 2(d), and even though, only at very high energy densities,
around εT = 10 fm−4, which are higher than the central energy
densities in stars described by these models, as seen in Table I.

We still remark here that results derived from QCD [42]
and also according to Ref. [43], another limitation to the sound
velocity, given by v2

s = 1/3, is confirmed by several classes of
strongly coupled theories with gravity duals. However, if one
examines, for instance, Fig. 5 of Ref. [13], where a study on
the effects of meson-hyperon coupling constants on the onset
of hyperons in dense nuclear matter is performed, one can
see that, at the onset of every individual hyperon, the sound
velocity shows a peak, decreases, and starts increasing again.
If instead of the appearance of new hyperons, the EoS suffered
a transition to another phase, which could be a mixed phase
of hyperons and quarks or a phase containing only quarks (see
Ref. [44] as an example), the decrease in the sound velocity
could be even more abrupt. The conclusions drawn in Ref. [43]
refer to matter in one phase only. Had the authors considered a
phase transition (not discarded by observational constraints),
the squared sound velocity could reach values higher than 1/3,
decrease considerably at the appearance of the new phase, and
then increase up to values around 1/3, related to the limit
imposed by QCD.

Our results show that most of the models reach values larger
than 1/3 at energy densities below the stellar central energy
density. The exceptions are the class of models Z271, where the
squared sound velocity reaches 1/3 at energy densities slightly
higher than the corresponding star central energy density. We
do not have enough statistics to produce a histogram as the
one shown in Ref. [43], but our findings corroborates the
statement in Ref. [43]; namely, that are unlikely models with
acceptable behavior at low densities capable of producing
maximum masses around 2M� and, simultaneously, satisfying

the bound v2
s < 1/3, since here we are not taking into account

the possibility of the system undergoing phase transitions.
Notice that, in the case of the models Z271, compatible with
sound velocity bound, the maximum masses are all lower than
2M�, as we can see in Table I.

Based on these results, let us examine those parametriza-
tions in which the maximum neutron star mass is below
the minimum value of 1.93M� established in Ref. [10];
namely, BSR15-BSR20, FSU-III, FSU-IV, FSUGold, FSUG-
old4, FSUGZ06, Z271s2-Z271s6, and Z271v4-Z271v6. A
valid attempt to make such parametrizations consistent with
the the constraint of 1.93 � M/M� � 2.05 for the maximum
neutron star mass, is to modify the models in the high-density
limit (ρ > ρo) in such way that their saturation properties are
not altered, i.e., quantities such as binding energy, saturation
density, effective mass, incompressibility, symmetry energy,
etc., are kept the same for each parametrization. This procedure
ensures that results presented by such models under nuclear
matter constraints at ρ = ρ0, investigated in Ref. [4], remain
valid.

In Ref. [14], the authors proposed the so-called σ -cut
scheme in which they add in the U (σ ) potential of the RMF
models, the function �U (σ ) = αln{1 + exp[β(f − fs.core)]},
where f = gσσ/MN and fs.core = f0 + cσ (1 − f0). The value
of f at the saturation density is f0; α, β, and cσ are constants;
gσ regulates the strength of the attractive interaction, denoted
by the scalar field σ ; and MN is the nucleon rest mass. In this
scheme, it is possible to avoid the decreasing in the density
dependence of the effective nucleon mass, M∗ = MN − gσσ ,
through the function �U (σ ). Such a decrease is present in
the original RMF models where �U (σ ) = 0. It is responsible
by softening the EoS (since the attraction is increasing),
preventing the system from reaching higher values for the
maximum neutron star mass. According to Ref. [14], the
necessary condition that needs to be satisfied in order to prevent
M∗ from decreasing in the σ -cut scheme, is expressed in terms
of the constants α and β by αβ2 � 6 × 10−3M4

Nρ/ρo. Since
this condition is verified, the constant cσ controls at which
density, denoted by ρ∗, the decreasing in M∗ stops. In order to
ensure that the bulk parameters of the models are preserved, it
is natural to choose cσ in such way that ρ∗ > ρ0.

Let us consider here the values of α = 4.822 × 10−4M4
N

and β = 120 used in Ref. [14] and apply the σ -cut scheme in
the models presenting M < 1.93M�. By properly choosing the
cσ values, it is possible to generate the neutron star mass-radius
relation depicted in Fig. 3.

As one can see, the maximum neutron star mass constraint
is now satisfied. Moreover, if we further investigate these
modified parametrizations under the sound velocity bound
proposed in Ref. [43], we see that, within the σ -cut scheme,
they are now consistent with such a constraint, as showed in
Fig. 4(a).

However, we see in Fig. 4(b) that, for the Z271s
parametrizations, the sound velocity bound is not verified
even within the σ -cut scheme. This is true for any cσ

inside a range of cmin
σ � cσ � cmax

σ , where cmin
σ (cmax

σ ) is the
value that produces a maximum neutron star mass equal
to 1.93M� (2.05M�) for the Z271s models. In order to
try to understand the origin of such a result, we point out
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Here we used (see text) cσ = 0.35 and 0.31, respectively, for the BSR
and FSU parametrizations. For Z271v4, Z271v5 and Z271v6 ones,
we chose cσ = 0.145, 0.14, and 0.12, respectively.

that the models analyzed in Fig. 4 are described by the
Lagrangian density given by L = LWalecka − A

3 σ 3 − B
4 σ 4 +

C
4 (g2

ωωμωμ)2 + Lσωρ , where L = LWalecka is the very-well-
known Lagrangian density of the linear Walecka model
(see Ref. [4]), and Lσωρ = gσg2

ωσωμωμ(α1 + 1
2α1

′gσσ ) +
gσg2

ρσ �ρμ �ρμ(α2 + 1
2α2

′gσσ ) + 1
2α3

′g2
ωg2

ρωμωμ �ρμ �ρμ. For the
Z271s models not satisfying the sound velocity bound, there
is no other isoscalar-vector interaction term besides the one
regulated by the coupling constant C. In these models, α1 =
α1

′ = α3
′ = 0 (also α2 = 0). All the other models consistent

with the limit of v2
s in Fig. 4(a), present at least the term whose

strength is controlled by the constant α3
′, besides the one

presenting C. Actually, this is the case for the Z271v models.
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rium for (a) BSR, FSU, Z271v, and (b) Z271s parametrizations in the
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3 . The values of

cσ for models in panel (a) are the same as used in Fig. 3. In panel (b),
the values of cmin

σ and cmax
σ are those that produce maximum neutron

star masses of 1.93M� and 2.05M�, respectively.

They have α1 = α1
′ = α2 = α2

′ = 0, but only C and α3
′ not

equal to zero. One can see that the isoscalar-vector interaction
seems to play an important role in the phenomenology of
RMF models, concerning the simultaneous consistency of
the sound velocity bound of v2

s = 1
3 , verified in Ref. [43],

and the maximum neutron star mass constraint given by
1.93 � M/M� � 2.05.

C. Hyperonic matter

We now consider the case when hyperons are also included
in the EoS. At this point, we remind the reader that the
inclusion of hyperons in hadronic RMF models is very
important in the context of compact stars, since simple
energetic considerations [17,45] suggest that they should be
present in the high-density regime that such objects naturally
exhibit. For any hadronic system, as the baryon density
increases, the Fermi level rises sufficiently to start allowing
for the emergence of the baryonic components presenting
strangeness, i.e., hyperons such as �, �+, �0, �−, 0, and −.
Due to the inclusion of these hyperons, the equation of state
becomes softer with a consequent reduction of the maximum
neutron star mass [17,45]. However, the current status of this
observational quantity points to the opposite direction, i.e.,
recent findings of the massive stars PSR J1614-2230 and
PSR J0348+0432 show that old predictions for the maximum
neutron star mass around 1.44M�, are now replaced by the
range of 1.93 � M/M� � 2.05, as we considered in our work.
This fact leads to the problem that the EoS of the models needs
to be stiffer in order to predict higher masses and this is not the
case if hyperons are included. This contradiction is known in
the literature as the hyperon puzzle, and nowadays many efforts
have been directed to this subject in order to circumvent it, as
seen in Refs. [46,47].

Regarding the meson-hyperon couplings, they are respon-
sible for large differences in similar calculations for stellar
masses with hyperons [12,13,17]. It is not the purpose of
the present work to discuss this point in detail since a
comprehensive analysis is not simple [47], but we make two
choices so that the results can be better understood. We define
the ratio between the meson-hyperon and the meson-nucleon
couplings as χσ = gYσ

gNσ
, χω = gYω

gNω
, χρ = gYρ

gNρ
, χδ = χσ , where

Y represents any of the six lowest mass hyperons and gNi

represents the coupling of the nucleon with any of the four
fields and it is density dependent in the cases we study next.
The dependence with the density varies according to model
used and they can be found in the original references given in
Table I.

The first scenario we examine is the one called universal
coupling [48], given by χσ = χω = χρ = χδ = 1 and we next
call it SET 1. For the second scenario, considered more realistic
because it is based on hypernuclei experimental values [17],
we use χσ = χδ = 0.7, χω = χρ = 0.783 and we call it SET
2. The results are displayed in Table II.

One can see that the maximum masses obtained with
SET 2 are higher if the δ meson is present in the model
and lower otherwise. The inclusion of hyperons decrease the
maximum mass as compared with the results with nucleons
only by 9% to 19%, depending on the choice for the meson-
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TABLE II. Main properties of neutron star with hyperonic matter.

Couplings Model Mmax/M� R (km) R1.44M� (km) εc (fm−4)

SET 1 TW99 1.895 9.631 11.015 8.671
SET 2 TW99 1.700 10.166 11.432 7.774
SET 1 DDHδ 2.302 11.307 12.523 5.781
SET 2 DDHδ 2.364 12.491 13.532 4.485
SET 1 DD-MEδ 2.173 10.420 11.283 7.005
SET 2 DD-MEδ 2.254 11.473 12.352 5.681

hyperon constants. It is important to stress that many other
choices would be possible, but in some cases the baryon
effective masses decrease very rapidly and the EoS stops
converging before the maximum stellar masses are attained.
The convergence of the codes should always be carefully
checked. In the cases under examination, the radii of the
canonical 1.44M� star remain within the expected range.

III. FINAL REMARKS

In the present paper we have revisited the RMF models
that were shown to satisfy several nuclear matter constraints
in Ref. [4] and confronted them with astrophysical constraints.
From the 35 analyzed models with nucleonic matter included,
only the BKA20, BKA22, BKA24, BSR8, BSR9, BSR10,
BSR11, BSR12, FSUGZ03, G2*, IU-FSU, and DD-F models
describe neutron stars with maximum mass in the range of
1.93 � M/M� � 2.05 [10,11]. Only three models can sustain
maximum masses larger than 2.05M� when nucleonic matter
is considered (TW99, DDHδ, DD-MEδ) and only two still
reach this value once hyperons are included (DDHδ, DD-
MEδ). These two models have density-dependent couplings
and δ mesons in their Lagrangian density.

A possible alternative to make the EoS stiffer without
altering its properties below nuclear matter saturation density
was proposed recently in Ref. [14]. Such an alternative
could be used in order to save the RMF models presenting
a maximum mass below 1.93M�, within the constraint of
1.93 � M/M� � 2.05. The idea is to force the σ self-
interaction potential to rise sharply around densities just a bit
larger than nuclear saturation density, resulting in the increase
of the maximum possible stellar mass. As an example, the
authors of Ref. [14] use the FSUGold model [22], one of
the models approved in our extensive analysis with stellar
macroscopic properties shown in Table I. The maximum
mass was increased from 1.72M� to 2.01M�. Another more
standard possibility is to consider also strange meson fields in
the Lagrangian density [12,13] and choose the hyperon-meson
couplings such that the appearance of strange hyperons are

pushed toward high densities. It is also important to remind
the reader that a particular procedure of modifying RMF
models in order to make them appropriate to describe neutron
stars, without changing their bulk parameters at the saturation
density, was proposed in Ref. [49] a long time ago. This
procedure is basically supported by the inclusion of quartic
self-interactions of the vector-isoscalar and vector-isovector
fields related to ω and ρ mesons, respectively. The strength
of such interactions, not fixed at the saturation density, but
free to run, can stiffen or soften the EoS, producing neutron
stars whose maximum masses differ by more than one solar
mass [49].

As far as the sound velocity in dense matter is concerned,
our study corroborates the conclusions reached in Ref. [43];
namely, models that satisfy correct low-density properties and
generate maximum star masses around 2M� still produce
squared sound velocities larger than 1/3 at densities present
in the stellar core. However, we verified that, when the σ -cut
scheme proposed in Ref. [14] is applied in those RMF models
presenting maximum neutron star mass below the range of
1.93 � M/M� � 2.05, it makes consistent such a constraint
with the sound velocity bound of Ref. [43]. We also found that
the isoscalar-vector interaction is an important ingredient in
order to validate this consistency.

We have also analyzed the possibility of fast cooling
induced by the direct Urca process and have checked that
32 out of the 34 models could give rise to it.

As a last remark, we point out to the reader two recent
RMF parametrizations proposed in Ref. [50]; namely, BSP and
IUFSU*. They were shown to predict maximum stellar masses
inside the range of 1.93 � M/M� � 2.05 and also to allow the
DU process. For the sake of completeness, we submitted such
models to the constraints of Ref. [4] and verified that they
were approved together with the parametrizations analyzed
in this work. We obtained their central energy densities
and the proton fraction related to the threshold of the DU
process. The values are εc = 6.688 fm−4 and YDU = 0.139
for BSP, and εc = 6.141 fm−4 and YDU = 0.138 for IUFSU*.
We also verified that, for both parametrizations, the bound
v2

s < 1/3 is violated at central energy densities smaller than
εc, corroborating once more the findings of Ref. [43].
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