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2CNRS/ENSICAEN/LPC/Université de Caen Basse Normandy, UMR6534, F-14050 Caen cédex, France
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The importance of microphysical inputs from laboratory nuclear experiments and theoretical nuclear structure
calculations in the understanding of core-collapse dynamics and the subsequent supernova explosion is largely
recognized in the recent literature. In this work, we analyze the impact of the masses of very neutron-rich nuclei
on the matter composition during collapse and the corresponding electron-capture rate. To this end, we introduce
an empirical modification of the popular Duflo-Zuker mass model to account for possible shell quenching far
from stability. We study the effect of this quenching on the average electron-capture rate. We show that the
pre-eminence of the closed shells with N = 50 and N = 82 in the collapse dynamics is considerably decreased if
the shell gaps are reduced in the region of 78Ni and beyond. As a consequence, local modifications of the overall
electron-capture rate of up to 30% can be expected, depending on the strength of magicity quenching. This
finding has potentially important consequences on the entropy generation, the neutrino emissivity, and the mass
of the core at bounce. Our work underlines the importance of new experimental measurements in this region of
the nuclear chart, the most crucial information being the nuclear mass and the Gamow-Teller strength. Reliable
microscopic calculations of the associated elementary rate, in a wide range of temperatures and electron densities,
optimized on these new empirical information, will be additionally needed to get quantitative predictions of the
collapse dynamics.
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I. INTRODUCTION

It is well recognized that reliable nuclear physics inputs
are essential for realistic simulations of many astrophysical
phenomena. Depending on the particular time scales and the
resulting equilibrium conditions, this can be an equation of
state (EoS) and individual (nuclear) reactions, respectively.
Due to the relatively long time scale of reactions mediated
by the weak interaction, the latter play an important role
in many sites, for instance, the late stages of massive star
evolution [1–3], thermonuclear [4,5] and core-collapse super-
novae [6–8], nucleosynthesis and energy generation in x-ray
bursts and other rp-process sites [9], the accreting neutron star
crust [10,11], and neutron star mergers [12,13].

Within this paper, we will concentrate on core-collapse
supernovae (CCSNe). Except for very low-density matter
encountered in the outer layers, time scales are such that strong
and electromagnetic interactions are in equilibrium. Therefore,
at any time, the composition of matter can be calculated as a
function of the local temperature (T ), baryon number density
(nB), and proton fraction (Yp), assuming nuclear statistical
equilibrium (NSE) (see, e.g., Ref. [8]). On the contrary, weak
interactions can in general not be considered in equilibrium
and individual reaction rates are crucial to determine the local
proton fraction. In particular, electron capture determines Yp

in the first stages of the collapse, the associated size of the
homologous core, and has thus an impact on the consequent
explosion dynamics [6,8,14–18].

For these simulations, the time- and space-dependent
electron-capture rates are obtained for a given (nB,T ,Yp) by
folding the NSE nuclear distribution with the capture rates on

individual nuclei. The microphysics uncertainties on the rates
thus originate in both the uncertainties of the NSE distribution
and in those associated with the individual rates.

A very complete study has recently been performed [18]
on the sensitivity of core-collapse dynamics to variations of
electron-capture rates in medium-heavy nuclei. The authors
concentrate on the latter aspect, modifying the rates on
individual nuclei according to present uncertainties, using a
comprehensive set of progenitors and EoS. It was shown that
important variations in the mass of the inner core at bounce
and in the peak neutrino luminosity have to be expected.
The variations induced by the modified electron-capture rates
are five times larger than those induced by the uncertainty on
the progenitor model, showing the importance of an increased
reliability of nuclear physics inputs. In this same work it was
clearly shown that the results are most sensitive to the region
around the N = 50 shell closure for very neutron-rich nuclei
(74 � A � 84).

In the present work we address the complementary aspect
of uncertainties associated with the nuclear distribution.
Specifically, nuclear magicity, as incorporated in mass models
within currently available EoS, is known to be deeply modified
in very neutron-rich nuclei [19] and the pronounced shell
closures at N = 50 and N = 82 are expected to be quenched
far from stability. We study here the impact of such a possible
quenching on the matter composition during collapse, and the
associated modification of the electron capture rate. We show
that modifications of the electron capture rate of up to 30% are
possible in the case of strong shell quenching.

Unlike Ref. [18], in this exploratory calculation we do
not aim at computing the complete time evolution of Yp,
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nor the associated modification of the inner core mass and
the neutrino luminosity. Such a complete simulation would
require a consistent model for the mass and electron-capture
rates as determined by Fermi and Gamow-Teller transition
strengths of the relevant nuclei. This is beyond the scope of
the present paper. However, from general arguments and the
very detailed results of Ref. [18], we expect that an increased
capture rate leads to enhanced neutrino cooling, an accelerated
collapse, and a higher inner core mass at bounce. The main
message of the present work is to stress the need of structure
information and mass measurements, particularly in the 78Ni
region. From the theory viewpoint, it is very important to have
microscopic and consistent calculations of both masses and
weak interaction rates.

The paper is organized as follows. In Sec. II the different
microphysical inputs entering the electron-capture rate calcu-
lations are presented, namely the individual rates and the EoS.
We show that for the latter, the mass model represents the key
ingredient. The influence of the mass model on the capture
rates during core collapse is discussed in Sec. III. To that end,
we consider two representative collapse trajectories with typ-
ical thermodynamic conditions. An effective parametrization
simulating the possible shell quenching far from stability of the
two relevant shell closures N = 50 and N = 82 is introduced,
and the associated modification of the global rate is discussed.
Section IV contains summary and conclusions. Throughout
the paper we will use units such that kB = 1.

II. INGREDIENTS FOR THE CALCULATION OF THE
ELECTRON-CAPTURE RATES

As mentioned above, for given thermodynamic conditions,
i.e., given values of (nB,T ,Yp), the total electron-capture
rate is obtained by folding individual rates with the nuclear
distribution. The latter is obtained by NSE calculations, which
depend in turn on a number of inputs and in particular on the
masses of different nuclei, thus on the mass model employed.
In this section we detail the different ingredients entering our
calculations. We will start with the individual rates in Sec. II A.
The NSE model will be discussed in Sec. II B. Section II C
will be devoted to the mass model and special attention will be
paid to the possible quenching of magicity in very neutron-rich
nuclei.

A. Individual rates

Concerning the individual rates, tabulated values are
available from large-scale shell model calculations in the sd
shell [20] and fp shell [21,22]. Since those calculations are
still numerically very demanding, for heavier nuclei, the shell-
model rates are complemented with shell-model Monte Carlo
and random phase approximation (RPA) calculations [23] or
an empirical approach [24]. In Ref. [25] shell-model rates
on additional nuclei have been calculated; however, they are
unfortunately not available as individual rates. These extended
calculations still comprise a limited range of elements, masses,
temperatures, and electron densities (ne = np) and are not
sufficient to cover completely the typical conditions in the

most central part of the core collapse nor the typical nuclei
encountered in those situations.

We have therefore decided to use here an analytical
parameterization. In the pioneering work of Ref. [26], Fuller,
Fowler, and Newman have proposed such a paramaterization in
the form λEC = ln 2Ie/〈f t〉e. Ie denotes here the space factor,
depending on electron chemical potential and the reaction Q
value, i.e., the energy difference between the ground states of
the two participating nuclei. Nuclear structure effects enter the
effective 〈f t〉 value. Following Fuller, Fowler, and Newman
it is approximated by three different values, depending on
the neutron and proton numbers of the parent nucleus. In
particular, nuclei with N � 40 or Z � 20 are considered
blocked with capture rates much reduced due to the large shell
gap at N = 40.

Langanke et al. [21,22] have, among others, pointed out
that correlations smear out the shell closures and that electron
captures are possible on blocked nuclei, too. They have
proposed an improved parametrization fitted on their detailed
microscopic calculations which we will employ within our
calculations. It can be written as [7]

λEC = ln 2 · B

K

(
T

mec2

)5

[F4(η) − 2χF3(η) + χ2F2(η)]. (1)

with K = 6146 s, χ = (Q − �E)/T , η = χ + μe/T . T rep-
resents the temperature, and me and μe stand for electron rest
mass and chemical potential, respectively. Fi(η) denotes the
relativistic Fermi integral, Fi(η) = ∫ ∞

0 dxxk/[1 + exp(x −
η)]. B represents a typical (Gamow-Teller plus forbidden)
matrix element. Most of the transitions do not occur between
the respective ground states of the parent and daughter nucleus,
but from an initial state with excitation energy Ei to a
final state with excitation energy Ef . Therefore, the factor
�E = Ef − Ei has been introduced in Eq. (1). With the values
B = 4.6 MeV and �E = 2.5 MeV, a good agreement of the
empirical expression, Eq. (1), with microscopic calculations
can be achieved for a very large number of nuclei [7].

For electron-capture rates on protons we use the results of
Ref. [27].

The validity of the analytic expression, Eq. (1), has been
recurrently addressed in the literature (see, e.g., Refs. [7,18])
and proved to offer a fair approximation under thermo-
dynamical conditions relevant for core collapse. Figure 1
confronts the predictions of Eq. (1), plotted as a function
of the reaction Q value, with those obtained by linear
interpolation of more microscopic and sophisticated weak
interaction rate tables of Ref. [20] [Figs. 1(a) and 1(d)],
Refs. [21,22] [Figs. 1(b) and 1(e)], and Ref. [24] [Figs. 1(c)
and 1(f)]. Two representative thermodynamic conditions taken
from the core-collapse trajectory of a 25M� star in Ref. [25] are
considered (see figure caption). As already evidenced by other
authors, Fig. 1 shows a correct overall behavior of λEC(Q)
and, quite remarkably, it offers a fair approximation also
outside the mass range for which it was designed. However,
concerning individual rates, deviations can be observed. This
scattering of microscopic rates around the parameterized ones
were interpreted in Ref. [7] as indication that several states of
parent and daughter nucleus with different transition strengths
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FIG. 1. Electron-capture rates: comparison between Eq. (1) (L03)
(open blue circles) and interpolated values of tables from Ref. [20]
(17 � A � 39) [panels (a) and (d)], Refs. [21,22] (45 � A � 65)
[panels (b) and (e)], and Ref. [24] (65 � A � 80) [panels (c) and (f)]
(solid red circles) for T = 0.68 MeV, nB = 1.32 × 10−6 fm−3, Ye =
0.447 [panels (a)–(c)], and T = 1.30 MeV, nB = 1.12 × 10−4 fm−3,
Ye = 0.361 [panels (d)–(f)].

contribute to the same process. This effect should be less
important if the electron chemical potential is sufficiently large
such that electron capture becomes independent of the details
of the nuclear strength distribution. Hence, at large electron
densities, the scattering should be less pronounced, which can
indeed be seen in Fig. 1.

These existing deviations underline the well-known fact
that, in order to accurately describe astrophysical processes,
it is very important to have fully microscopic calculations
covering the whole mass, charge, temperature, and electron
fraction domain. In this context, it was recently demonstrated
in Ref. [18] that a global arbitrary rescaling of a factor 2, 3,
or 10 of the unknown rates leads to important modifications
of the collapse dynamics. For the purpose of the present
paper, namely analyzing the influence of the extrapolation of
nuclear masses into the experimentally unknown region of very
neutron-rich nuclei, we tentatively stick to the extrapolation
given by Eq. (1) but discuss the issue in further details in
Sec. III E.

B. Extended NSE model

The model is based on a statistical distribution of compress-
ible nuclear clusters composed by A nucleons (N neutrons
and Z protons) immersed in a homogeneous background of
self-interacting nucleons and electrons. The details of the
model are explained elsewhere [28,29]; here we only recall the
main physical ingredients which are important for the present
study.

The different thermodynamic quantities in the baryonic
sector are decomposed into the sum of a term pertaining
to the nucleon gas and a term arising from the nuclear
clusters. Let us start the discussion with the gas. In absence of
clusters, it would simply be given by the free energy density
of homogeneous nuclear matter at density ng = ngn + ngp,
asymmetry δg = (ngn − ngp)/ng , and temperature T . In the
nonrelativistic mean field approximation it reads (q = n,p):

fHM (ng,δg) =
∑

q

gq

∫ ∞

0

dpp2

2π2�3
nT

q

p2

2m∗
q

+Epot − T sHM. (2)

The entropy density is thereby given by

sHM (ng,δg) = −
∑

q

gq

∫ ∞

0

dp

2π2�3
p2

[
nT

q ln nT
q

+ (
1 − nT

q

)
ln

(
1 − nT

q

)]
. (3)

In these equations, gq = 2 is the spin degeneracy in spin-
saturated matter, nT

q is the finite-temperature occupation
number at effective chemical potential μ̃q = μq − ∂Epot/∂ngq ,
nT

q = {1 + exp[(p2/2m∗
q − μ̃q)/T ]}−1.

The choice for the potential energy density Epot and the
effective nucleon mass m∗

q , containing the interaction effects,
defines the equation of state. For the applications shown in this
paper we have considered a large set of different well-known
Skyrme functionals for these two quantities [30], which have
been successfully confronted with different nuclear structure
data and are also compatible with the most recent experimental
constraints on nuclear matter properties [31–33].

In the present NSE model, the free energy density of the
nucleon gas is reduced with respect to the homogeneous gas
expression, Eq. (2), in order to account for the finite volume
occupied by the clusters [34,35] in the dense medium. The
result is

fg = fHM

(
1 −

∑
N,Z

n(N,Z) A

n0(δ)

)
. (4)

The sum runs here over the different clusters weighted by
their multiplicity per unit volume n(N,Z). n0(δ) denotes the
saturation density of asymmetric matter evaluated at the cluster
asymmetry δ and accounts for the compressible character of
the clusters. δ differs from the global asymmetry of the cluster,
(N − Z)/A, because of Coulomb and skin effects. Within
the present model, the expression for δ has been additionally
modified in order to account for the influence of the external
gas [28,36].

We have checked that, within these phenomenological
limits, the choice of the interaction does not produce any
sensible effect on our results. The reason is that the gas of
unbound nucleons is very dilute and not very neutron rich
under the thermodynamics conditions during collapse we are
considering here, such that its energetics does not play a
significant role, either for matter composition or for the total
electron-capture rates. This result is perfectly compatible with
previous findings [18,37].
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The multiplicities of the clusters are given by the self-
consistent NSE expression:

ln n(N,Z) = − 1

T
(FT − μBAe − μ3Ie), (5)

where we have defined the bound fraction of clus-
ters by Ae = A[1 − ng/n0(δ)], Ie = (Ae − 2Ze) and Ze =
Z[1 − npg/n0p(δ)], with n0p = n0(δ)(1 − δ)/2. The chemical
potentials can be expressed in terms of the gas densities:

μB ≡ ∂fHM

∂ng

; (6)

μ3 ≡ ∂fHM

∂(ng − 2ngp)
. (7)

In Eq. (5), FT is the free energy of the cluster immersed in
the nucleon gas:

FT (N,Z,ng,δg) = −B − T ln
(
A

3
2
e cT Vtot

)
− fHM (ng,δg)

A

n0(δ)
+ δFCoulomb + δFsurf .

(8)

Here, the total volume Vtot has been introduced. Again, because
of the low gas densities considered in this application, the third
and fifth terms in Eq. (8), representing the in-medium bulk and
surface modification of the free energy of the clusters due to
the presence of the gas, turn out to be negligible.

The most important ingredient of the NSE model is thus
the binding energy of the clusters. Its vacuum value, B, is
corrected in medium by the well-known electron screening
effect δFcoul and, to less extent, by thermal effects. The latter
are described by the temperature-dependent degeneracy factor
cT ,

cT =
(

mT

2π�2

)3/2 ∫ 〈S〉

0
dE[DN,Z(E) exp(−E/T )]. (9)

DN,Z denotes here the density of states of the cluster, 〈S〉 =
min(〈Sn〉,〈Sp〉) is the average particle separation energy, and
m(= mn = mp) is the nucleon mass. For the density of states,
we use a back-shifted Fermi gas model with parameters fitted
to experimental data [38]. The key quantity of the model is
thus the cluster binding energy, which we shall discuss in
more detail in the following subsection.

C. Mass model

Consistency with the EoS of free nucleons would in
principle require that the masses of the different clusters are
evaluated with the energy functional employed for the gas. This
is indeed the case in most recent NSE models [34,35,39,40].
However, no functional model sufficiently precisely repro-
duces nuclear ground states. Therefore, whenever experi-
mentally measured nuclear masses are available, they are
preferentially used in some recent NSE models [28,29,35,40].
It is also important to stress that, independent of the nuclear-
matter parameters of the EoS (symmetric nuclear-matter
incompressibility K∞, symmetry energy per nucleon at the
saturation density of symmetric matter J0, slope L, and

curvature Ksym of symmetry energy at symmetric matter
saturation density), no functional model gives completely
reliable extrapolations of nuclear masses in the neutron-rich
region where experimental masses are not available. This
leads to a model dependence of the results, which is not
related to any unknown nuclear-matter parameter but rather to
the poor performance of the Hartree-Fock or Thomas-Fermi
approximations applied in the evaluation of nuclear masses,
especially in the very neutron-rich region. Very few nuclear
functional models exist, with parameters fitted with the same
degree of accuracy on infinite nuclear matter and to properties
of finite nuclei [41–45], and even in this case the behavior
of nuclear mass towards the dripline is subject to great
uncertainties.

Anyway, since in the applications considered here, the
energetics of the gas plays a negligible role, the argument
of consistency is not very compelling. For this reason we
have chosen to employ the Duflo-Zuker mass model [46],
whenever experimental measurements are missing. At present,
it reproduces, within a microscopically inspired formalism,
best the measured nuclear masses. For unbound nucleons, the
SLy4 [47] Skyrme effective interaction is used.

In order to get an idea of the performance of the different
mass models, Fig. 2 shows the evolution of the two-neutron
separation energy for different elements as predicted by the
10 parameter model of Duflo and Zuker [46] and two other
extremely successful and popular nuclear mass models, the
Bruxelles functional BSK22 [48] and the finite-range droplet
model (FRDM) by Moller and Nix [49,50], in comparison with
experimental data from Ref. [51]. Since we are here mainly
interested in the region around N = 50 and N = 82, elements
from that region are shown. Within the different mass models,
the overall dispersion on the binding energy over the global
mass table1 is 561 KeV for DZ10, 580 KeV for BSK22, and
656 KeV for FRDM [48,52].

All mass models reproduce experimental data more or less
equally well. The extrapolations in the neutron-rich region,
however, increasingly deviate from each other approaching
the dripline. In particular, a clear and strong slope change
is visible at N = 50 and N = 82 for all elements including
the lightest ones for the phenomenological models DZ10
and FRDM. This indicates the presence of a very strong
magic number, unmodified by the increasing neutron richness.
Conversely the more microscopic BSK22 shows a more
irregular behavior, and a certain quenching of magicity going
towards the neutron dripline [53,54], especially for N = 50.
This shell quenching appears to be closely related to the
treatment of the residual interaction. A proper inclusion of
pairing correlations is certainly a very delicate issue, but
one can at least expect that it should be better treated in
a self-consistent Hartree-Fock-Bogoliubov calculation such
as BSK22 than in a phenomenological mass model. These
differences show the difficulty of extrapolation of nuclear
masses far from stability.

1These numbers are obtained on the more restricted AME mass
table from 2003.
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FIG. 2. Two-neutron separation energy over selected isotopic chains as predicted by different mass models (DZ10 [46], FRDM [49,50],
and HFB22 [48]) (solid stars), and in comparison with experimental data (solid circles) from Ref. [51].

III. RESULTS

A. Thermodynamic conditions during core collapse

Exact values of temperature, baryon number density, and
proton fraction reached during core collapse depend on
many ingredients, among others, the chosen EoS and weak
interaction rates. Thus, without performing a simulation, the
results cannot be completely consistent. We think, however,
that it is sufficient to take typical values for the purpose of the
present paper, where we aim to illustrate the possible impact
of a modification of nuclear masses far from stability on the

electron capture rates. A detailed simulation is left for future
work.

To obtain such typical values, we consider here two different
core collapse trajectories from Refs. [2,6], as reported by
Juodagalvis et al. in Ref. [25]. They correspond to the
prebounce evolution for the central element of the star at an
enclosed mass of 0.05 solar masses, in the case of a 15M�
and a 25M� progenitor. These simulations use rates from
tables in Refs. [21,22]. For further details on the simulations,
see Ref. [2]. A more complete study would certainly require
a complete and consistent simulation. We expect, however,
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FIG. 3. Thermodynamic conditions (T ,nB,Ye) reached by the
central element in the core collapse of two progenitor stars with
zero-age main sequence masses 15M� and 25M� as reported in
Ref. [25].

that the qualitative findings do not depend strongly on the
quantitative details. In addition, it was observed [55] that the
electron fraction profiles are well correlated with the density
during the collapse phase, meaning that matter, independent of
the exact position inside the star, will follow similar trajectories
and that our example conditions taken from the central element
are valid more generally.

The thermodynamic conditions during the evolution in
terms of temperature, baryon number density, and proton
fraction are shown in Fig. 3. The vertical bar indicates
the region in Yp = Ye, where the experimental information
on nuclear masses starts to be incomplete. The nuclear
abundances have thereby been obtained within our NSE model
employing experimental masses [51] complemented with the
DZ10 mass table [46]. For both progenitors, this happens at
densities higher than nB ≈ 4 × 10−4 fm−3 and temperatures
above T ≈ 1.4 MeV. We expect thus that the mass model has
a considerable influence at this stage of the collapse.

B. Chemical composition and capture rates

Using experimental masses [51] complemented with the
DZ10 mass table [46], the distribution of cluster masses shows
a multipeaked structure at any time during collapse and for
both collapse trajectories. A first light cluster component
exponentially decays up to a minimum around A ≈ 20; then
the abundances increase and, at higher masses, one or several
peaks can be observed. The exact abundances and the mass
numbers of the most abundant nuclei evolve with time during
collapse. In order to get a global idea of these distributions,
Fig. 4 displays the mass fraction corresponding to nucleons,
light clusters (2 � A < 20), and heavier clusters (A � 20).
The thermodynamic conditions corresponding to different
times during collapse are labeled by the baryon number
density. Other mass models lead to very similar results, and
we will keep Duflo and Zuker [46] as our fiducial mass model
in the subsequent calculations.

For the trajectory followed by the central element of the
more massive progenitor, nucleons and light clusters are

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

10
-6

10
-5

10
-4

10
-3

nucleons

heavy clusters

light clusters

nB (fm-3)

m
as

s 
fr

ac
tio

ns

FIG. 4. Mass fractions of free nucleons and light (2 � A < 20)
and heavy (A � 20) clusters obtained for the central element of the
core collapse with a 15M� (thin blue lines) and a 25M� (thick
magenta lines) progenitor; see Ref. [25]. The temporal evolution is
labeled via the baryon number density as in Fig. 3. The color coding
is the same as in Fig. 3.

more abundant than for the lower mass progenitor. For the
latter, heavy clusters are largely dominant during the entire
evolution considered here. The reason is the systematically
higher temperature obtained within the former (see Fig. 3).
In addition, the abundances display a nonmonotonic behavior
along the trajectory of the more massive progenitor. This is
due to the interplay between the increasing temperature during
collapse, which favors light clusters with respect to heavy ones,
and the increasing density, which favors heavy clusters.

The composition of heavy (A � 20) clusters is further
explored in Fig. 5. It shows the average and most probable
neutron and proton numbers of heavy clusters for both
trajectories. Qualitatively, similar patterns are obtained. In
particular, with increasing density larger clusters are produced.
At the same time, the electron fraction decreases, see Fig. 3,
leading to more neutron-rich clusters. The standard deviation
of the distribution of neutron and proton numbers (signaled
by the vertical bars) is never negligible. This means that
treating the composition of matter within the single nucleus
approximation (SNA) would have produced erroneous results,
as already acknowledged in the pioneering work [1].

For both trajectories, and over most of the explored density
range, average N and Z numbers differ from the most probable
ones. The main reason is that the distributions are not only
broad but multipeaked, too. Indeed, very often the most prob-
able nuclei lie around the N = 50 and N = 82 neutron magic
numbers. Proton magic numbers are not explored because of
the smaller total number of protons. The reduced number of
protons with respect to neutrons explains also the systemati-
cally narrower distributions in Z. Finally, the increasing width
of the distributions in neutron number with increasing density
is due to the competition between the two magic numbers.

In Ref. [18], very similar multiplicity distributions have
been obtained for a bunch of different trajectories with
different progenitor models and EoS. We therefore conclude
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correspond to the standard deviation of the distribution. For better
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that the present thermodynamic conditions are reasonably
representative of the generic evolution of the central element.

To better understand the origin of this behavior, Fig. 6
displays the isotopic abundances corresponding to nB =
1.18 × 10−3 fm−3, T = 2 MeV, Ye = 0.275, i.e., at the time
where the dispersion of the distribution of Fig. 5 starts to
become non-negligible. The distribution is centered around
the N = 50 neutron magic number, and the important width
is due to the emergence of a second peak around N = 82.
This finding is in agreement with the simulations in Ref. [18]
and a similar effect was observed for the neutron star crust in
Refs. [56,57]. In particular, in Ref. [18] it was shown that the
overall variation of the electron fraction during the collapse
is most sensitive to the electron-capture rate on nuclei in the
mass range 74 � A � 84, particularly on 78Ni, 79Cu, and 79Zn
close to the N = 50 shell closure. Our findings confirm these
results. The two lines in Fig. 6 show the borders of the region
where mass measurements exist, though with a variable degree
of precision. We can see that the most abundant nuclei lay just
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FIG. 6. Nuclear abundances (arbitrary units) corresponding to
nB = 1.18 × 10−3 fm−3, T = 2 MeV, Ye = 0.275. The solid lines
mark the boundaries of experimental mass measurements. The dotted
lines mark magic numbers.

outside this border. This means that their abundance, and there-
fore their pre-eminent role in the electron capture mechanism,
relies on the extrapolation of the N = 50 and N = 82 shell
closure far from stability, in a neutron-rich region where mass
measurements do not exist and spectroscopic information is
scarce and incomplete. This means that small modifications
in the nuclear binding energies of nuclei with masses not
yet measured, but measurable in a near future, can change
star matter composition and, consequently, all astrophysical
quantities depending on it, notably weak rates. This point will
be explored in more detail in the following subsection.

For this fiducial model, we now show the NSE aver-
aged electron-capture (EC) rates on the different species
C , 〈λC

EC〉 = ∑
(N,Z)∈C n(N,Z)λ

(N,Z)
EC /

∑
N,Z n(N,Z). The two

above-mentioned core-collapse trajectories will be considered
and L03 formulas (see Sec. II A) will be used. Let us first
concentrate on the capture rates on heavy nuclei. As is
well known [1], a huge number of different nuclear species
contribute to the total rate in all thermodynamics conditions.
This can be appreciated by limiting the rate calculation to the
N most probable nuclei, 〈λN

EC〉 = ∑N
i=1 niλ

i
EC/

∑
N,Z n(N,Z),

where ni is the abundance of the ith most probable cluster.
Comparing the result obtained with N = 30 and N = 60 with
the one corresponding to the whole distribution, one can see
how important it is to properly account for the complete
distribution of nuclear species. In the case of both progenitors,
the 60 most probable nuclei never exhaust the average
electron-capture rate on heavy nuclei and, for instance, at
nB = 1.4 × 10−5 fm−3 they account for only 60% of 〈λheavy

EC 〉.
The inadequacy of the single-nucleus approximation was

recently stressed in Ref. [16]. In that work it was shown
that sizable differences in the collapse dynamics are obtained
if the NSE model is replaced with a more conventional
model [58] considering a single representative Wigner-Seitz
cell for each thermodynamic condition, even if the same TM1
energy functional was employed in both models. However,
in that work the individual rates were replaced by a single
rate on the most probable cluster, using the simplified Bruenn
parametrization [15].
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Our results show that the complete nuclear distribution
should also be used in the calculation of the rates. If we replace
the folding of the individual rates with the electron-capture
rate of the most probable nucleus weighted by the baryon
number fraction bound in clusters, 〈λSNA

EC 〉 = (ncl/nB)λMP
EC ,

the result (lines with points) is seen to very badly reproduce
the complete folding result. As one may see in Fig. 7,
at low densities 〈λSNA

EC 〉 generally underestimates the NSE
averaged electron-capture rate. In addition, due to structure
effects related to the low temperatures at these densities,
it manifests a huge scattering. On the contrary, at higher
densities and temperatures (nB > 3 × 10−5 fm−3), 〈λSNA

EC 〉
largely overestimates the NSE-averaged electron capture rate.
Obviously, different values are expected if instead of the
L03 approximation, other prescriptions are employed for
the individual electron-capture rates; see the discussion in

Ref. [18], too. However, the general trend induced by the
different averaging procedures should remain the same.

Concerning the electron-capture rates on light nuclei, they
are negligible at the beginning of the collapse but increase
strongly, mainly due to the increasing temperature, and become
dominant in the latest stage. This underlines the importance
of including microscopic calculation of electron-capture rates
for light nuclei, too [59].

The total rates are given by the sum of the different
contributions, including electron capture on free protons
(dotted lines), which, however, plays a minor role at all times
considered here. Comparing Figs. 3, 5, and 7, we note that
for thermodynamic conditions where very neutron-rich nuclei
start to dominate, with masses which are not experimentally
known, they still represent the major electron-capture source.
This qualitative picture is independent of the progenitor mass.
From a more quantitative point of view, the relative importance
of heavy clusters is higher for the lower mass progenitor,
essentially because of the lower temperatures reached during
the collapse.

C. Evolution of magicity far from stability

It is well known in the recent nuclear structure literature
that even major shell closures can be quenched far from
stability; see, e.g., [19,60,61]. Very clear evidence exists for the
N = 20 magic number [19,60], which corresponds to a huge
gap for decreasing proton number up to 34Si, and suddenly
disappears in the next even-even isotope 32Mg. This is partly
due to the modification of single-particle energies far from
stability, with the consequence that new magic numbers can
appear corresponding to strongly deformed configurations.
However, the main reason for the modification of magicity
relies on effects which go beyond the naive single-particle
shell model. First, the effect of the proton-neutron residual
interaction in nuclei with strong asymmetry is decreased;
second, correlations play an increasing role which makes the
very concept of shell closure less relevant. As a consequence,
the main effect is a quenching of the shell gap, even if
secondary new gaps can appear in very localized regions of
the nuclear chart.

The possible modification of the N = 50 and N = 82 shell
gaps far from stability is the object of intense theoretical and
experimental research in nuclear structure (e.g., [19,61]). Here,
we do not have the ambition to model this phenomenon but
simply analyze the modifications in the matter composition and
associated electron-capture rates, which would be induced by
the expected shell quenching.

A similar idea was proposed in Ref. [62], who showed that
a modified mass formula built to incorporate the possibility of
shell quenching has a striking impact on canonical calculations
of the r-process. We follow a similar strategy as in Ref. [62]
and introduce a modified expression for the binding energy in
the following form:

Bm(A,Z)

⎧⎪⎨
⎪⎩

=Bexp(A,Z), Z
exp
i (A) � Z � Z

exp
s (A)

=BLD(A,Z) + f
(
Z

exp
i (A) − Z,�Z,α

)
(BDZ(A,Z) − BLD(A,Z)), ZDZ

i (A) � Z < Z
exp
i (A)

=BLD(A,Z) + f
(
Z − Z

exp
s (A),�Z,α

)
(BDZ(A,Z) − BLD(A,Z)), Z

exp
s (A) < Z � ZDZ

s (A),

(10)
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FIG. 8. LDM-shifted binding energy as a function of neutron number for different isotopes strongly populated during core collapse.
DZ10 [46] results (solid black dots) are plotted along modified results Bm corresponding to two different scenarios of shell quenching (see text
for details).

where Bexp(A,Z) and BDZ(A,Z) stand for the experimen-
tal binding energy [51] and predictions of DZ10 mass
model [46], respectively. Zexp

i (A) (resp., ZDZ
i (A)) and Z

exp
s (A)

(resp., ZDZ
s (A)) correspond to the most neutron-rich and,

respectively, most neutron-poor nucleus with A nucleons for
which experimental masses (resp., predictions of DZ10) exist.
BLD(A,Z) is a simple liquid-drop binding energy calculated
according to

BLD(A,Z) = avA − asA
2/3 − avi4I (I + 1)/A

+ asi4I (I + 1)/A4/3 − acZ(Z − 1)/A1/3

+Vp(A,Z), (11)

with I = |A − 2Z|/2, av = 15.62 MeV, as = 17.8 MeV,
avi = 29 MeV, asi = 38.5 MeV, ac = 0.7 MeV, and Vp =
±12/

√
A MeV for even-even (+) and, respectively, odd-odd

nuclei (−).
Finally we introduce a smearing function depending on the

parameters �Z and α < 0 which determine how sudden the
shell quenching is supposed to be:

f (x,�Z,α) = exp[αx/�Z]. (12)

Small values of �Z correspond to maximum quenching,
while in the limit �Z → ∞ we recover the DZ10 functional
form, which predicts preserved magic numbers up to the
dripline.

The impact of the shell quenching following Eq. (10)
on the binding energy is illustrated in Fig. 8 for different
arbitrary values of the smearing parameter �Z = 5,10,∞ and
α = log(10−2). Different clusters are displayed as a function

of neutron number. These elements have been chosen since
they are strongly populated in the later phase of the collapse.

As observed before, the DZ10 model shows a pronounced
shell closure at N = 50 and N = 82 for all elements including
the exotic ones like 72Ti and 118Kr. In the modified expression,
Eq. (10), the gap is quenched far from stability, and the
quenching is more or less pronounced depending on the choice
of the parameter �Z.

The effect of the modification of the mass formula on the
distribution of nuclei is shown in Fig. 9 for three different
representative conditions during the collapse, taken from the
25M� progenitor [25]. Obviously, the effect of shell quenching
is to reduce the size of the magic peaks and favor open shell
nuclei, thus leading to a wider isotopic distribution.

D. Effect on the electron capture rates

Our final result about the impact of shell quenching towards
the dripline on NSE-averaged electron capture rate is shown
in Fig. 10. The different predictions are plotted in terms of
relative deviations with respect to the fiducial model. The
strength of the quenching of magicity has thereby been varied
considering different values of the parameters �Z = 2,5,10
and α = log(10−2) and the results are shown for the trajectories
followed by the two different progenitors. Figure 10(a) shows
the NSE-averaged electron capture rates on heavy nuclei.
A similar pattern is obtained for both trajectories and for
all considered shell-quenching scenarios. When neutron-rich
nuclei start to become abundant, shell quenching first leads
to an increased electron-capture rate. The reason is that
nonmagic nuclei become significantly more abundant and the
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abundance of N = 50 magic nuclei decreases slightly. In this
regime shell quenching on the electron-capture rates on heavy
nuclei is more pronounced, and lasts for a longer time, in
the case of the 25M� progenitor. Towards the end of the
considered trajectories, the opposite effect is observed. Here
shell quenching is responsible for a reduction of one order of
magnitude in the abundance of N = 50 and N = 82 magic
nuclei, not compensated by the increase in the abundance
of nonmagic nuclei and the corresponding increase in the Q
value. In the two regimes, the amplitude of the effect depends
on both, the quenching parameter �Z, and the progenitor
mass. It may amount up to 30%. Figure 10(b) shows that,
despite the fact that heavy nuclei represent only a fraction of the
whole mass and more isospin-symmetric light nuclei are not
affected by shell quenching, the modification of the electron-
capture rate on heavy nuclei still impacts the inclusive rate
up to nB � 3 × 10−4 fm−3, where Xheavy � 0.8 (see Fig. 4),
〈λm

EC〉/〈λEC〉 ≈ 〈λmheavy
EC 〉/〈λheavy

EC 〉. For the highest considered
densities the overall modification of electron-capture rates is
the opposite of that seen for heavy clusters. More precisely,
shell quenching here points toward an increase of electron
capture. This happens because light clusters are favorably
produced.

E. Shell quenching and individual rates

In the discussion of Sec. III D we have considered that
the individual capture rates are conveniently described by
Eq. (1) also in the extreme neutron-rich case around N = 50
and N = 82. However, in that region Eq. (1) does not any
more represent a fit of microscopic estimations, but only an
extrapolation. Recent large-scale shell-model calculations for
r-process waiting point nuclei [63], including the 0g9/2 neutron
orbit in the valence space and employing matrix elements
optimized on the neutron-rich Ni isotopic chain [64], obtain a
much steeper decrease of the decay half-lives with the proton
number at N = 50, and an overall improved agreement with
experimental data, with respect to the previous SM calculation
used to benchmark Eq. (1). On more general grounds, the rates
reflect the fragmentation of the Gamow-Teller strength which,
in turn, originates from the fragmentation of the single-particle
states in the daughter nucleus due to correlations. These
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same correlations are known to be responsible for magicity
quenching in neutron-rich nuclei [19], meaning that the rates
and the mass model are closely linked. Specifically, in the
extreme independent particle model, where magic numbers are
preserved over the nuclear chart, GT transitions in nuclei with
N > 40 are Pauli blocked in the ground state. In that simplified
picture the capture probability can take place only due to finite
temperature effects, and is therefore strongly reduced [15].
Dedicated QRPA calculations [65] are in progress to achieve
the aim of a consistent calculation of the individual electron-
capture probabilities together with the mass model and the
energy functional describing the self-interaction of unbound
particles. This ambitious project is beyond the purpose of the
present paper. However, to give a flavor of the sensitivity
of the NSE-averaged electron-capture rates on individual
electron capture rates, we have also performed calculations
using, instead of Eq. (1), the analytical formula proposed in
Ref. [26], which is based on the single-particle picture for
the GT transition (FFN). The inserts in Figs. 10(a) and 10(b)
show the corresponding results. Several differences are to be
noted with respect to the previous results. First, the evolution
as a function of density is qualitatively different. Then, the
consequences of shell quenching appear to be much more
important, especially when electron capture on heavy nuclei
is analyzed. They may reach 180%.

IV. SUMMARY AND CONCLUSIONS

In this paper we have examined the consequence of a pos-
sible quenching of the N = 50 and N = 82 shell closures on
the electron-capture rates during core collapse. As basis of the
analysis, we have considered the same typical thermodynamic
conditions as in Ref. [25]. They correspond to the prebounce
evolution of the central element of the star obtained within
a core-collapse simulation using two different progenitors,
a 15M� and a 25M� one, from Refs. [2]. In agreement
with Ref. [18] we find that the properties of very exotic
nuclei around these two shell closures is a key microscopic
information to predict the evolution of the electron fraction
during collapse.

We have pointed out that a possible quenching of these
shell closures considerably affects the nuclear distribution
and consequently the electron-capture rates during collapse.
Using the parametrization of Ref. [7], Eq. (1), for the rates
on individual nuclei, we have analyzed the modification of
NSE average electron-capture rates for different scenarios of
shell quenching. Depending on the progenitor mass and the
importance of shell quenching, modifications of the electron
capture rates of up to 30% have been obtained. An effect even
stronger would be obtained if the unblocking effect of N > 40
nuclei of Ref. [7] is overestimated far from stability, as it
seems to be suggested by the recent large-scale shell-model
calculations of Ref. [63]. We expect that such effects, once
consistently included in the time-dependent evolution of the
collapse, have a sizable effect on neutrino emissivity and on
the enclosed mass at bounce.

In this work the quenching effect is governed by the parame-
ter �Z whose value is chosen in an arbitrary way. More sophis-
ticated calculations in microscopic theories, such as modern in-
teraction configuration shell-model calculations in the relevant
nuclear chart region [66], are currently under way, and will give
essential information on the effective importance of the shell
quenching. However, the last word will be clearly given by phe-
nomenology. New precise mass measurements at the edges of
the known isotopic table could allow for a much better extrap-
olation towards the neutron-rich region in the very near future.

Finally, it is important to stress that the modification of
nuclear structure far from stability is expected to influence not
only the nuclear mass, but also the individual electron-capture
probabilities, which should be consistently calculated together
with the mass model and the energy functional describing the
self-interaction of unbound particles.
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