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Large-Nc limit reduces the number of independent few-body parity-violating
low-energy constants in pionless effective field theory
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The symmetries of the standard model dictate that for very low energies, where nucleon dynamics can be
described in terms of a pionless effective field theory (EFT(/π)), the leading-order parity-violating nucleon-
nucleon Lagrangian contains five independent unknown low-energy constants (LECs). We find that imposing the
approximate symmetry of QCD that appears when the number of colors Nc becomes large reduces the number
of independent LECs to two at leading order in the combined EFT(/π) and large-Nc expansions. We also find a
relation between the two isoscalar LECs in the large-Nc limit. This has important implications for the number
of experiments and/or lattice calculations necessary to confirm this description of physics. In particular, we find
that a future measurement of the parity-violating asymmetry in �γ d → np together with the existing result for
parity-violating �pp scattering would constrain all leading-order (in the combined expansion) LECs. This is a
considerable improvement on the previous understanding of the system.
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I. INTRODUCTION

While the attempt to understand parity violation in few-
nucleon systems has challenged scientists for decades and
generated new experimental techniques and new theoretical
paradigms, only more recently have weak interactions been
recognized as a potential tool for probing QCD in few-nucleon
systems. Weak interactions are well understood in isolation
on the quark level, but how they are embedded in the
nonperturbative environment of the nucleon/nucleus is not.
The hope is that the lever of the weak interaction symmetry
can expose QCD behavior. For reviews of parity violation in
nucleon-nucleon interactions, see, e.g., Refs. [1–4].

Because QCD is nonperturbative at low energies, attempts
to make rigorous predictions in this energy regime typically
involve either discretizing QCD and attempting to solve it
numerically on the lattice or building effective field theories
(EFTs) that, while applicable only in a narrow energy range,
include QCD predictions. EFTs of QCD involve a number of
unknown low-energy constants (LECs). The values of these
LECs are not fixed by the symmetries of QCD but must
be extracted from experiments or calculated on a lattice.
Fortunately, up to the order we work in the EFT power
counting, there are more observables available (even if not
easily measurable) than LECs, which is why the EFT can have
predictive power.
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An EFT utilizes one or more small parameters obtained
from ratios of disparate scales in the problem, which are then
used as expansion parameters in a perturbative calculation.
To increase the calculational power, it is desirable to find as
many small parameters as possible and to invoke as many
symmetries (or near symmetries) of nature as possible. In
addition to small parameters formed from ratios of masses
and momenta, another expansion parameter available in QCD
is 1/Nc in the limit where the number of colors Nc becomes
large [5,6]. Inclusion of this additional expansion typically
results in relationships among LECs at a given order in the
EFT power counting, thus reducing the number of LECs
that occur at a given order in this combined expansion.
An example is the heavy baryon chiral perturbation theory
analysis of the interaction of the octet and decuplet of baryons
with the octet of mesons. Expansion parameters include p
or mq in the numerator and �χ and mB in the denominator,
with p a typical momentum transfer, mq a light quark mass,
�χ the chiral-symmetry-breaking scale, and mB the baryon
mass. Imposing an SU(3) flavor symmetry yields four LECs
for describing leading strong interactions. However, when
the approximate symmetry of large Nc is included, only
one independent LEC remains in the combined expansion.
Further, measured decay rates indicate that this dual-expansion
treatment works well [7].

At low enough energies, pionless EFT (EFT(/π)) is well
established as a systematic and rigorous way to determine
the restrictions that QCD symmetries place on few-nucleon
observables in the parity-conserving (PC) sector. See, e.g.,
Refs. [8–10] for reviews and Ref. [11] for an example of a high-
precision calculation. More recently the methods have been
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adapted to the parity-violating (PV) sector. At energies where
the pion mass is not dynamical (i.e., E < m2

π/MN ), QCD and
weak interaction symmetries dictate that five LECs encode all
of the physics of parity violation among two nucleons up to and
including next-to-leading-order (NLO) corrections expected at
the 10% level [12–15].

Decades of experimental and theoretical effort have been
dedicated to measuring parity violation and understanding its
interplay with QCD. In the EFT framework, this can be viewed
as an effort to determine whether the QCD-symmetry-based
description is indeed consistent by overconstraining the values
of the above LECs. Given the difficulties of gathering reliable
experimental (or lattice QCD)1 information on the LECs, any
additional theoretical constraint is valuable.

A general classification of the PV potential in the large-Nc

picture was given in Ref. [17], where they found that there
are two leading-order (LO) terms, four terms at NLO, and
six terms at next-to-next-to-leading order (NNLO) in the
large-Nc counting. This information was used to analyze PV
meson-nucleon couplings that appear in the meson-exchange
picture of PV nucleon-nucleon forces [18]. Here, we consider
the implications that a large-Nc analysis has on the LECs of
EFT(/π). The benefit of the EFT(/π) formalism is that it is
valid for the experiments we wish to describe, has fewer LECs
than theories that contain mesons, and has a well-understood
prescription for including higher-order corrections. The results
of this paper continue the efforts in Refs. [4,15], and [19–22]
to express two- and three-body PV processes in a unified
description. We show that in a combined EFT(/π ) and large-Nc

expansion, the five EFT(/π ) LECs are not equally important:
only two are of LO, as expected from the findings in Ref. [17].
Arriving at this result requires a careful analysis of the Fierz
relations that are used when constructing a minimal form of
the EFT(/π) Lagrangian (for an example see Appendix A). One
of the two dominant couplings is the isotensor LEC, which
may be accessible in the reaction �γ d → np at an upgraded
High Intensity Gamma-Ray Source (HIGS) at the Triangle
Universities Nuclear Laboratory [22,23]. In addition, we find
that the two isoscalar EFT(/π ) LECs are equal up to order 1/N2

c ,
i.e., up to corrections expected to be at the 10% level. This
presents a significant constraint on the EFT(/π ) LECs because
it matches or surpasses the expected precision of upcoming
relevant experiments.

II. LARGE-Nc ANALYSIS OF THE
PARITY-VIOLATING POTENTIAL

The terms contributing to the PV nucleon-nucleon potential
up to NNLO in the large-Nc counting were determined in
Ref. [17], which used the definition of the general nucleon-
nucleon potential [24]

V (p−,p+) = 〈(p′
1,γ,c),(p′

2,δ,d)|Ĥ |(p1,α,a),(p2,β,b)〉, (1)

1See Ref. [16] for the first connected diagram calculation of a PV
pion-nucleon coupling in lattice QCD.

where Greek indices denote the spin components and Latin
indices the isospin components of the nucleons, respectively.2

The momenta p± are given by

p± ≡ p′ ± p, (2)

where p′ and p are the outgoing and incoming relative
momenta,

p′ = p′
1 − p′

2, p = p1 − p2. (3)

As defined, both p+ and p− are P-odd, and p+ is T-odd, while
p− is T-even. The Hamiltonian Ĥ is the Hartree Hamiltonian,
which can be written as [6,24]

Ĥ = Nc

∑
n

∑
s,t

vstn

(
Ŝ

Nc

)s(
Î

Nc

)t(
Ĝ

Nc

)n−s−t

, (4)

where

Ŝi = q̂† σ
i

2
q̂, Î a = q̂† τ

a

2
q̂, Ĝia = q̂† σ

iτ a

4
q̂. (5)

The q̂’s denote the doublet of light quarks, which, in the
large-Nc analysis, are colorless bosonic fields. The coefficients
vstn contain momenta. All vector, spin, and isospin indices
[not shown in Eq. (4)] are contracted to give the desired
symmetry properties. In the case considered here, we require
the resulting potential to be invariant under rotations, P-odd,
and T-even. The large-Nc scaling of the terms in the potential
are determined from the matrix elements of the operators Ŝ, Î ,
Ĝ, and the identity operator 1 between nucleon states, which
are given by [28,29]

〈N ′|Ŝ|N〉 ∼ 〈N ′|Î |N〉 ∼ 1, 〈N ′|Ĝ|N〉 ∼ 〈N ′|1|N〉 ∼ Nc.
(6)

Products of these operators acting on the same nucleon state
can be reduced to single factors of the operators using operator
identities and the Wigner-Eckart theorem [28]. In addition, the
momenta scale as [24,28,29]

p− ∼ 1 , p+ ∼ N−1
c . (7)

The reason for the suppression of p+ is as follows [24]: it is
consistent to interpret the potential derived from the Hartree
Hamiltonian in terms of a meson-exchange picture [25]. In
the t channel, a factor of p+ can only appear as a relativistic
correction and is therefore always accompanied by an inverse
power of the nucleon mass MN . Since MN ∼ Nc, p+ is
taken to scale as N−1

c . In the u channel the roles of p+
and p− are reversed, but it is common to take this exchange
potential into account by considering matrix elements of the
potential between states that are properly antisymmetrized. A
parametrization of the PV potential in terms of one-meson

2This approach does not take into account the effects of virtual
baryons, such as the � resonance. In the large-Nc limit nucleons
and the � resonance become degenerate, and as shown in Ref. [25]
inclusion of the � is important for the interpretation of the potential
in the large-Nc limit to be consistent with meson exchange. Here
we project onto the subspace of nucleons, assuming that this does
not affect the large-Nc analysis. In a more detailed approach the �

resonance would be integrated out [26,27].

025502-2



LARGE-Nc LIMIT REDUCES THE NUMBER OF . . . PHYSICAL REVIEW C 93, 025502 (2016)

exchanges is given in Ref. [18]. Starting from the relativistic
Hamiltonians for PC and PV meson-nucleon interactions given
there, a nonrelativistic expansion of the resulting potential
satisfies the above counting; i.e., each term proportional to p+
is suppressed by a factor of 1/MN . See Appendix B for details.

Using these ingredients, Ref. [17] determined the operator
structures that appear in the PV nucleon-nucleon potential up
to NNLO in the large-Nc counting. At LO, i.e., O(Nc), they
are

p− · (�σ1 × �σ2) �τ1 · �τ2, (8)

p− · (�σ1 × �σ2) Iabτ
a
1 τ b

2 , (9)

where I = diag(1,1, − 2). The NLO terms (O(N0
c ) sin2 θW )

are

p+ · (�σ1τ
3
1 − �σ2τ

3
2 ), (10)

p− · (�σ1 + �σ2) (�τ1 × �τ2)3, (11)

p− · (�σ1 × �σ2) (�τ1 + �τ2)3, (12)

[(p+ × p−) · �σ1 p− · �σ2 + (p+ × p−) · �σ2 p− · �σ1] (�τ1 × �τ2)3,

(13)

while at NNLO (O(N−1
c )),

p− · (�σ1 × �σ2), (14)

p2
+ p− · (�σ1 × �σ2) �τ1 · �τ2, (15)

p+ · (�σ1 − �σ2), (16)

p+ · (�σ1 − �σ2) �τ1 · �τ2, (17)

p+ · (�σ1 − �σ2) Iabτ
a
1 τ b

2 , (18)

p2
+ p− · (�σ1 × �σ2) Iabτ

a
1 τ b

2 . (19)

In the physical world, Nc = 3 and the expansion parameter
is 1/3. However, in some cases observables or relations
between operators are protected from corrections at the next
order, which leads to corrections of roughly 10%. Similarly,
the power counting parameter in EFT(/π) is p

�/π
∼ 1/3, with p

a typical momentum and �/π � mπ , but the correction to the
leading PV S-P wave mixing does not occur until two orders
higher [15].

III. LARGE-Nc ANALYSIS OF PARITY-VIOLATING
LOW-ENERGY CONSTANTS IN EFT(/π)

Our starting point is the LO EFT(/π ) Lagrangian in the
minimal form as given in Ref. [14],

Lmin
PV = G1(N † �σN · N †i

↔
DN − N †NN † �σ · i

↔
DN)

− G̃1εijkN
†σ iNDj (N †σ kN )

−G2εijk[N †τ 3σ iNDj (N †σ kN )

+N †σ iNDj (N †τ 3σ kN )]

− G̃5IabεijkN
†τ aσ iNDj (N †τ bσ kN )

+G6εab3 �D(N †τ aN ) · N †τ b �σN, (20)

where

DμN = ∂μN + ie
1 + τ 3

2
AμN (21)

is the nucleon covariant derivative and we define a O
↔
Db to

be3

a O
↔
Db = a O �Db − ( �Da)Ob, (22)

with O some spin-isospin operator. The Gi are related to
the Ci in Ref. [14] by Gi = Ci/�

3
χ , with �χ the scale of

chiral symmetry breaking. The potential derived from this
Lagrangian is

V min = −G1p+ · (�σ1 − �σ2) − iG̃1p− · (�σ1 × �σ2)

− iG2p− · (�σ1 × �σ2)(τ1 + τ2)3

− iG̃5p− · (�σ1 × �σ2)Iabτ
a
1 τ b

2

+ i

2
G6p− · (�σ1 + �σ2)(τ1 × τ2)3. (23)

Comparing the terms in Eq. (23) with the terms given in
Eqs. (8)–(19), a naive (and incorrect) assignment of large-Nc

scaling to the PV LECs appears to be

G̃5 ∼ Nc,

G2 ∼ G6 ∼ N0
c sin2 θW , (24)

G1 ∼ G̃1 ∼ N−1
c .

If true, this suggests that in the combined EFT(/π ) and large-Nc

expansion the isoscalar couplings are suppressed compared to
the isotensor and isovector ones. This seems to conflict with the
general form of the potential in Eqs. (8)–(19), which contains
an isoscalar part at LO in the large-Nc counting.

The minimal form of the potential of Eq. (23) is found
by starting with the most general Lorentz-invariant form of
the PV Lagrangian with a single derivative and applying
Fierz identities as well as a nonrelativistic reduction [13,14].4

Because Fierz identities allow a nonunique set of operators to
be expressed as linear combinations of other operators, there
exists a freedom to choose which operators to eliminate in favor
of others in the “minimal” form of the Lagrangian. From the
EFT perspective, all of these choices are equivalent because the
Fierz identities only apply to spin-isospin operators, but do not
change the number of derivatives or dimensionful quantities
such as masses. On the other hand, the large-Nc counting
is related to the spin-isospin structure of the operators, and
therefore it is possible to find operators at different orders
in 1/Nc that are related by Fierz identities. Thus, different
minimal forms of the Lagrangian, while equivalent in the EFT
counting, can have different large-Nc scaling. To find the most

3This definition is not universal. Some authors use the opposite sign
convention.

4In Ref. [14] the Fierz identities are applied to the relativistic forms
of the operators in the basis of Dirac matrices. First performing the
nonrelativistic reduction and then applying Fierz identities to the
resulting Pauli matrices produces the same set of five nonrelativistic
operators.
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conservative estimate of large-Nc behavior, we start from the
most general form of the potential, identify the Nc scaling
of the operator coefficients, and then apply Fierz identities to
reduce the number of operators while maintaining the most
dominant Nc scaling for each resulting coefficient.5

As discussed in Refs. [13] and [14], the most general
relativistic PV Lagrangian with one derivative contains 12

operators before the application of any Fierz identities. Two of
these operators (O6 and Õ6 in the notation in Ref. [13]) result
in the same leading nonrelativistic structure, while two of the
other nonrelativistic operators (those proportional to C̃2 and
C̃4 in Ref. [13]) are related by integration by parts.6 Thus, the
most general nonrelativistic Lagrangian contains 10 operators
and is given by (cf. Ref. [13])

Lnonmin
PV = A+

1 [N †N (N † �σ · i
↔
DN ) − N † �σN · (N †i

↔
DN )] + A−

1 εijkN
†σ iNDj (N †σ kN ) + A+

2 [N †N (N †τ 3 �σ · i
↔
DN)

−N †τ 3 �σN · (N †i
↔
DN)] + A−

2 εijkN
†σ iNDj (N †τ 3σ kN ) + A+

3 [N †τ aN (N †τ a �σ · i
↔
DN) − N †τ a �σN · (N †τ ai

↔
DN )]

+A−
3 εijkN

†τ aσ iNDj (N †τ aσ kN ) + A+
4 [N †τ 3N (N † �σ · i

↔
DN ) − N † �σN · (N †τ 3i

↔
DN )]

+A+
5 Iab[N †τ aN (N †τ b �σ · i

↔
DN ) − N †τ a �σN · (N †τ bi

↔
DN )] + A−

5 IabεijkN
†τ aσ iNDj (N †τ bσ kN )

+A−
6 εab3N

†τ aN �D · (N †τ b �σN ), (25)

where the A+
i correspond to terms resulting in a p+ in the potential, while the A−

i terms give a factor of p−. The corresponding
potential can be written as (cf. Ref. [13])

V nonmin = A+
1 p+ · (�σ1 − �σ2) + A−

1 p− · i(�σ1 × �σ2) + A+
2 p+ · (�σ1τ

3
1 − �σ2τ

3
2 ) + 1

2A−
2 p− · i(�σ1 × �σ2)(τ1 + τ2)3

+A+
3 p+ · (�σ1 − �σ2)�τ1 · �τ2 + A−

3 p− · i(�σ1 × �σ2)�τ1 · �τ2 + A+
4 p+ · (�σ1τ

3
2 − �σ2τ

3
1 ) + A+

5 p+ · (�σ1 − �σ2)Iabτ
a
1 τ b

2

+A−
5 p− · i(�σ1 × �σ2)Iabτ

a
1 τ b

2 − 1
2A−

6 p− · (�σ1 + �σ2)i(τ1 × τ2)3. (26)

The nonminimal potential V nonmin contains all operators in
Eqs. (8)–(19) as identified in Ref. [17] with the exception of
Eqs. (13), (15), and (19). These operators contain more than
one power of momentum and therefore cannot be reproduced
by starting from operators with a single derivative. In addition,
the operator structure multiplied by A+

4 is of order N−2
c and is

not considered in Ref. [17]. We extract the following large-Nc

scaling of the couplings:

A+
1 ∼ N−1

c , A−
1 ∼ N−1

c ,

A+
2 ∼ N0

c sin2 θW , A−
2 ∼ N0

c sin2 θW ,

A+
3 ∼ N−1

c , A−
3 ∼ Nc, (27)

A+
4 ∼ N−2

c ,

A+
5 ∼ N−1

c , A−
5 ∼ Nc,

A−
6 ∼ N0

c sin2 θW .

Applying Fierz identities to arrive at the minimal form of
Eq. (23), the relations between the nonminimal and the
minimal couplings are

G1 = −A+
1 + A+

3 − 2A−
3 ,

G̃1 = −A−
1 − 2A+

3 + A−
3 ,

G2 = − 1
2 (A−

2 + A+
2 + A+

4 ), (28)

G̃5 = −(A−
5 + A+

5 ),

G6 = −A−
6 + A+

2 − A+
4 .

5We thank L. Girlanda for discussions on this point; see also [30].
6This was indicated in Ref. [14].

A detailed example is worked out in Appendix A. The scaling
of these couplings is determined by the leading behavior of
the LECs A±

i of Eq. (27), which gives

G1 ∼ Nc,

G̃1 ∼ Nc,

G2 ∼ N0
c sin2 θW ,

G̃5 ∼ Nc,

G6 ∼ N0
c sin2 θW .

(29)

The isotensor coupling is LO and the isovector couplings again
appear at NLO, as in the naive analysis; see Eq. (24). However,
the isoscalar couplings are now also counted as LO in large
Nc, unlike in the naive analysis. While it may seem that there
are now three LO terms, the two isoscalar couplings are not
independent. As seen from Eq. (28), the LO contribution to
both G1 and G̃1 comes from the coupling A−

3 , so that up to
corrections of order 1/N2

c the relation

G1 = −2G̃1 (30)

holds. This means that up to corrections of the order of approx-
imately 10%, two of the five LECs that are independent from
the EFT point of view are in fact related to each other. Given
the difficulty in determining the LECs from either experiments
or lattice QCD and the resulting uncertainties in such an
extraction, this result presents a significant simplification.

The physics encoded in the minimal Lagrangian in Ref. [14]
can also be expressed in a physically more intuitive basis, in
which the incoming and outgoing two-nucleon states are in
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particular partial waves [15],

LPV = − [C( 3S1− 1P1)(NT σ 2 �στ 2N )† · (NT σ 2τ 2i
↔
DN) + C( 1S0− 3P0)

(�I=0) (NT σ 2τ 2 �τN )†(NT σ 2 �σ · τ 2 �τ i
↔
DN )

+ C( 1S0− 3P0)
(�I=1) ε3ab(NT σ 2τ 2τ aN )†(NT σ 2 �σ · τ 2τ b

↔
DN ) + C( 1S0− 3P0)

(�I=2) Iab(NT σ 2τ 2τ aN )†(NT σ 2 �σ · τ 2τ bi
↔
DN )

+ C( 3S1− 3P1) εijk(NT σ 2σ iτ 2N )†(NT σ 2σ kτ 2τ 3
↔
DjN )

] + H.c., (31)

where �I is the isospin change involved in the process.
The relations between the couplings in the two formalisms
are [15,31]

C( 3S1− 1P1) = 1
4 (G1 − G̃1),

C( 1S0− 3P0)
(�I=0) = 1

4 (G1 + G̃1),

C( 1S0− 3P0)
(�I=1) = 1

2G2, (32)

C( 1S0− 3P0)
(�I=2) = − 1

2 G̃5,

C( 3S1− 3P1) = 1
4G6.

These relations can be established using Fierz identites, which,
as discussed earlier, can hide the large-Nc scaling of the
associated couplings. However, since we have kept the leading
terms for the couplings Gi , the relations of Eq. (32) also
establish the leading scaling behavior for the partial-wave
couplings C(X−Y ):

C( 3S1− 1P1) ∼ Nc,

C( 1S0− 3P0)
(�I=0) ∼ Nc,

C( 1S0− 3P0)
(�I=1) ∼ N0

c sin2 θW ,

C( 1S0− 3P0)
(�I=2) ∼ Nc,

C( 3S1− 3P1) ∼ N0
c sin2 θW .

(33)

As before, the two isoscalar terms are not independent at LO in
the large-Nc counting, but up to 1/N2

c corrections are related by

C( 3S1− 1P1) = 3 C( 1S0− 3P0)
(�I=0) . (34)

Again, the large-Nc analysis shows a relation between two
of the five LECs, which is valid at the ≈10% level. A
determination of one of the isoscalar couplings from either
experiments or a future lattice QCD calculation constrains
the second isoscalar LEC significantly without the need for
further experimental or lattice QCD input.

The relations derived above apply to renormalized LECs.
As is common in EFT(/π), we assume that dimensional
regularization in combination with the power divergence sub-
traction renormalization scheme [32] is applied to obtain any
observable. As shown in Refs. [15] and [19], the dependence
of the PV LECs on the subtraction point μ is the same as the
corresponding S-wave PC LECs, given by [32]

C(1S0) ∼ 1

−1/a(1S0) − μ
, C(3S1) ∼ 1

−1/a(3S1) − μ
. (35)

Here, a(1S0) and a(3S1) are the scattering lengths in the singlet
and triplet channels, respectively. In the large-Nc limit the

LO PC interactions are Wigner-SU(4) symmetric [33], which
implies that C(1S0) = C(3S1) in this limit [29]. As a result the μ
dependence of all PC and PV LO LECs becomes identical. In
general, since we are considering the scaling of the LECs with
Nc, the relations should hold for any renormalization condition
that itself is independent of the number of colors. However,
as pointed out in Ref. [29], the approximate Wigner-SU(4)
symmetry is hidden for the physical case of Nc = 3 if the
strong LECs are fit close to threshold, which corresponds to
choosing μ close to 0 as the renormalization condition. The
S-wave scattering lengths are unnaturally large and choosing
μ = 0 means that the applicability of the EFT(/π ) expansion
is very limited [32]. From the EFT point of view it is therefore
beneficial to use a renormalization condition in which μ is of
the order of momenta significantly above threshold. In these
cases, the ratio of PC LECs also gives a much better indication
of the approximate Wigner-SU(4) symmetry. Because physical
observables relevant to hadronic parity violation always
involve an interplay of PC and PV interactions, i.e., both PC
and PV LECs appear, renormalization conditions in which the
consequences of the large-Nc limit are manifest in the PC
LECs should be chosen.

IV. APPLICATION TO EXISTING MEASUREMENTS

There has been only one nonzero measurement of a PV
two-nucleon observable: the longitudinal asymmetry in �pp
scattering.7 The lowest energy result was found in Refs. [35–
37]:

A
�pp
L (E = 13.6 MeV) = (−0.93 ± 0.21) × 10−7. (36)

This gives the following constraint on a linear combination of
the EFT(/π ) LECs [15]:

4
(C( 1S0− 3P0)

(�I=0) + C( 1S0− 3P0)
(�I=1) + C( 1S0− 3P0)

(�I=2)

)
C(1S0)

= (−1.5 ± 0.3) × 10−10 MeV−1. (37)

The ratio of the PV and strong LECs is subtraction point

independent. Because C( 1S0− 3P0)
(�I=0) and C( 1S0− 3P0)

(�I=2) dominate in

the large-Nc limit, we neglect C( 1S0− 3P0)
(�I=1) . In particular, one

immediate result is that in the large-Nc limit, the longitudinal
asymmetry of �pp scattering and �nn scattering is the same [15].

7The NPDGamma [34] experiment has finished taking data and a
result for the PV angular asymmetry in �np → dγ is expected to be
announced shortly.
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Imposing the large-Nc relationship between C( 3S1− 1P1) and

C( 1S0− 3P0)
(�I=0) yields

4(C( 3S1− 1P1)/3 + C( 1S0− 3P0)
(�I=2) )

C
= (−1.5 ± 0.3) × 10−10 MeV−1, (38)

where C denotes the large-Nc limit of C(1S0). With only one
equation and two unknowns, it is not possible to make any
statement about the relative size of the two LECs.

However, the reason for expressing C( 1S0− 3P0)
(�I=0) in terms of

C( 3S1− 1P1) is that an experimental limit exists on the induced
circular polarization in unpolarized neutron capture, np →
d �γ [38,39], which also depends on C( 3S1− 1P1). Imposing the
large-Nc results on the expression for this process [19] yields

Pγ = −16MN

C
1

κ1(1 − γ a(1S0))

(
C( 3S1− 1P1)

(
1 − 5

9
γ a(1S0)

)

− 2

3
γ a(1S0)C( 1S0− 3P0)

(�I=2)

)

= (1.8 ± 1.8) × 10−7, (39)

where we have also set C(3S1) ∼ C as dictated by the large-Nc

limit [29]. γ is the binding momentum of the deuteron, κ1

is the isovector anomalous magnetic moment, and a(1S0) is the
singlet channel scattering length. This relationship allows us to

say with some confidence that C( 1S0− 3P0)
(�I=2) is of the same size as

C( 3S1− 1P1). If it were not, but negligible compared to C( 3S1− 1P1),
then the �pp scattering measurement would yield

C( 3S1− 1P1)

C ≈ (−1.1 ± 0.2) × 10−10 MeV−1 (40)

and predict a Pγ larger than its present bound.

V. CONCLUSIONS

We have shown that a large-Nc symmetry imposed on
the EFT(/π) description of low-energy parity violation in
two-nucleon systems through NLO in EFT(/π ) power counting
reduces the number of independent LECs from five to two at
LO in the combined expansion. This is in agreement with
the general large-Nc analysis of PV nucleon-nucleon forces in
Ref. [17]. However, we find the result expressed in the EFT(/π)
formalism to be more useful for interpreting experimental
measurements in few-nucleon systems, both because there are
fewer LECs and because analyzing higher-order corrections is
straightforward. Further, the result in the EFT(/π) formalism is
not obvious from a naive application of the large-Nc counting
rules to the minimal form of the EFT(/π ) potential. The reason
is that the Fierz identities used in reducing the most general
Lagrangian to its minimal form can hide the order in large-Nc

counting at which a given term first contributes. We have also
found a relation between the two isoscalar LECs, C( 3S1− 1P1) and
C( 1S0− 3P0)

(�I=0) , that is expected to hold up to corrections of order
1/N2

c , i.e., of the order of 10%.
This could have important implications for how quickly

parity violation in two- and few-nucleon systems can be

understood. In particular, the existing measurement of the
longitudinal asymmetry in �pp scattering along with the limit
of the np → d �γ PV asymmetry suggests that the two PV
LECs that are of LO in the combined EFT(/π ) and large-Nc

expansion, C( 3S1− 1P1) and C( 1S0− 3P0)
(�I=2) , are in fact of the same

size. That is, current experiments support the LO analysis.
One linear combination of these two LECs can be determined
from the existing experimental result on �pp scattering. If the
result that these two LECs are of the same size holds when
higher-order EFT(/π) and large-Nc corrections are included, it

is a motivation to measure C( 1S0− 3P0)
(�I=2) at the potential HIGS2

facility [23] and provides further motivation to perform a

lattice calculation of C( 1S0− 3P0)
(�I=2) [40]. Because of the large-

Nc relation between C( 3S1− 1P1) and C( 1S0− 3P0)
(�I=0) , knowledge of

C( 1S0− 3P0)
(�I=2) would then constrain both isoscalar LECs.
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APPENDIX A: EXAMPLE OF THE APPLICATION
OF FIERZ IDENTITIES

As an example of how to reduce the nonminimal EFT(/π )
Lagrangian to its minimal form, consider the term proportional
to A−

3 ,

εijkN
†τAσ iNDj (N †τAσ kN ), (A1)

which, in components, reads(
τA
abτ

A
cd

)(
εijkσ

i
αβσ k

γ δ

)
N †

α,aNβ,bD
j (N †

γ,cNδ,d ). (A2)

Applying the Fierz identity

τA
abτ

A
cd = 2δadδcb − δabδcd , (A3)

the second term immediately gives

−εijkN
†σ iNDj · (N †σ kN ), (A4)

i.e., the operator structure proportional to A−
1 . For the

remaining term, the Fierz identity in spin space

σ i
αβσ k

γ δ = 1
2

[
σ i

αδσ
k
γβ + σ k

αδσ
i
γβ + δik

(
δαδδγβ − σ l

αδσ
l
γβ

)
+ iεik

l

(
σ l

αδδγβ − δαδσ
l
γβ

)]
(A5)

can be applied. In addition, using integration by parts and
dropping the term proportional to a total derivative, the
combination of nucleon fields can be rewritten as

N †
α,aNβ,bD

j (N †
γ,cNδ,d )

= 1
2 [N †

α,aNβ,bD
j (N †

γ,cNδ,d ) − Dj (N †
α,aNβ,b)(N †

γ,cNδ,d )]

= 1
2 [N †

α,aNδ,d (N †
γ,c

↔
DNβ,b) − (N †

α,a

↔
DNδ,d )N †

γ,cNβ,b)].

(A6)
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The resulting term has the same form as the operator structure
proportional to A+

1 . Therefore, the term proportional to A−
3

can be removed by a redefinition of A+
1 and A−

1 .

APPENDIX B: MOMENTUM DEPENDENCE IN THE
PARITY-VIOLATING MESON-EXCHANGE POTENTIAL

As an example of how the suppression of terms proportional
to p+ with a factor of 1/MN arises in the meson-exchange
picture, we consider the PV potential as given in Ref. [18],
which parameterizes the PV interactions in terms of π , ρ,
and ω exchange. Here we further restrict the discussion to
ω exchange, but analogous arguments apply to π and ρ
exchanges. The PC Hamiltonian is given by [18]

Hω
PC = gω�̄

(
γ μ + i

χS

2�χ

σμνkν

)
ωμ�, (B1)

where, compared to Ref. [18], we have replaced a factor of
MN ∼ Nc by �χ ∼ 1 in the denominator (see the discussion
in Ref. [17]) because the origin of this scale is not dynamical
and should not introduce spurious Nc dependence. The PV
Hamiltonian reads

Hω
PV = �̄

(
h0

ωωμ + h1
ωτ 3ωμ

)
γ μγ5�. (B2)

Under a nonrelativistic expansion, the terms proportional to
gω are LO for μ = 0 and suppressed by 1/MN for μ = i,
while the terms proportional to gωχS scale as 1/MN for
(μν) = (0i) and are LO for (μν) = (ij ). Analogously, the
PV terms scale as 1/MN for μ = 0 and are LO for μ = i.
Combining these expressions, the terms proportional to p+
arise in combination with gωh0,1

ω and are suppressed by 1/MN ,
while terms proportional to p− come with gωχSh

0,1
ω and are

LO in the nonrelativistic expansion. Analogous relations hold
for π and ρ exchanges.
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