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Photoproduction of K� on the proton
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Kaon photoproduction on the proton is studied in the resonance region using an isobar model. The higher-spin
nucleon (3/2 and 5/2) and hyperon (3/2) resonances were included in the model utilizing the consistent formalism
by Pascalutsa, and they were found to play an important role in data description. The spin-1/2 and spin-3/2
hyperon resonances in combination with the Born terms contribute significantly to the background part of the
amplitude. Various forms of the hadron form factor were considered in the construction, and the dipole and
multidipole forms were selected as those most suitable for the data description. Model parameters were fitted to
new experimental data from CLAS, LEPS, and GRAAL collaborations, and two versions of the model, BS1 and
BS2, were chosen. Both models provide a good overall description of the data for the center-of-mass energies from
the threshold up to 2.4 GeV. Predicted cross sections of the models at very small kaon angles being consistent with
results of the Saclay-Lyon model indicate that the models could be also successful in predicting the hypernucleus
production cross sections. Although kaon photoproduction takes place in the third-resonance region with many
resonant states, the total number of included resonances, 15 and 16, is quite moderate, and it is comparable with
numbers of resonances in other models. The set of chosen nucleon resonances overlaps well with the set of the
most probable contributing states determined in the Bayesian analysis with the Regge-plus-resonance model.
Particularly, we confirm that the missing resonances P13(1900) and D13(1875) do play an important role in the
description of data. However, the spin-1/2 state P11(1880) included in the Bayesian analysis was replaced in our
analysis with the near-mass spin-5/2 state N∗(1860), recently considered by the Particle Data Group.
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I. INTRODUCTION

The investigation of kaon-hyperon photo- and electro-
production from nucleons in the nucleon resonance region
provides important information about the baryon resonance
spectrum and interactions in hyperon-nucleon systems arising
from QCD. Besides studying the reaction mechanism, one can
learn more about the existence and properties of the “missing”
resonances that are predicted by the quark models [1,2] but
that are weakly coupled to the πN final state and therefore are
not seen in the pion production or πN scattering processes. A
correct description of the elementary �-production process is
also important for getting reliable predictions of the excitation
spectra for production of � hypernuclei [3,4].

Numerous theoretical studies of the hyperon production
have been performed over the past decades. The analyses
before 2004, however, suffered from a lack of high-quality
experimental data, see, e.g., Refs. [5–12] and references
therein. The situation changed significantly after new high-
duty-factor accelerators, providing good quality high-current
polarized continuous beams, were constructed in Jefferson
Lab (CEBAF) and Bonn University (ELSA). Number of
good quality data, especially from the CLAS [13,14], LEPS
[15], GRAAL [16], and SAPHIR [17] collaborations, rose by
more than a factor of 10, which revived interest in modeling
the process [18–25]. Now various response functions are
accessible and measured with a good level of precision in
the energy region from the threshold up to 2.8 GeV, which
allows us to perform more rigorous tests of theoretical models
and improve our understanding of the elementary process.
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The models of γp −→ K+� that are in a close connection
with QCD are based on quark degrees of freedom [26–28].
These quark models need a relatively small number of param-
eters and assume explicitly a spatial-extended structure of the
baryons, which was found to be important for a reasonable
description of the photoproduction data [27]. Contributions of
baryon resonances in the intermediate state then arise naturally
from effects of excited states of the quark system. Alternative
approaches to description of the production process at low
energies assume hadrons as appropriate effective degrees of
freedom. Calculations grounded in an effective Lagrangian
containing interacting meson, baryon, and electromagnetic
fields provide us with a valuable tool for analysis of exper-
imental data. As there is no explicit connection to QCD, the
number of parameters in the models is related to the number
of resonances included in the calculations and is, therefore,
relatively large for the kaon production [6–10,23]. The short-
range physics manifesting itself via a spatial structure of
hadrons can be simulated by a form factor introduced in the
interaction vertex. This, however, brings another ambiguity
into the model: the forms and parameters of the form factors,
which have to be fixed in a data analysis.

In some models the concept of chiral symmetry is utilized
to include pseudoscalar mesons as the Goldstone bosons in
the chiral quark model [26] or to build up a chiral effective
meson-baryon Lagrangian in the gauge-invariant chiral unitary
model [21]. Attempts were also made to calculate the kaon-
hyperon photoproduction processes in the threshold region in
the framework of the chiral perturbation theory [29].

In the hadrodynamical approach, the production channels
are coupled by the meson-baryon interaction in the final state
and should be, therefore, treated simultaneously to maintain
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unitarity. In the coupled-channel approaches [18–21], the
rescattering effects in the meson-baryon final-state system
are included, but the models face the problem of missing
experimental information on some transition amplitudes, e.g.,
K+� −→ K+�. Considerable simplification originates from
neglecting the rescattering effects in the formalism, assuming
that their influence on the results is included to some extent
by means of effective values of the coupling constants fitted to
experimental data. This simplifying assumption was adopted
in many single-channel isobar models, e.g., Saclay-Lyon
(SL) [6,7], Kaon-MAID (KM) [30], and Gent-Isobar [8–
10]. Unitarity corrections in the single-channel approach can
be included by energy-dependent widths in the resonance
propagators [30]. Since the early work of Thom [31], the isobar
models were among the first models capable of describing the
kaon photoproduction in the resonance region.

The kaon production takes place in the third-resonance
region, with many possible nucleon and hyperon higher-spin
states coupling to the kaon-hyperon channels. Therefore, the
contributions of higher-spin baryon resonances are particularly
important in the isobar models. The theoretical description of
the interacting baryon fields with a spin higher than 1/2 causes
problems due to the presence of nonphysical lower-spin com-
ponents in the Rarita-Schwinger field [32]. Some prescriptions
for the propagator and vertexes had to be adopted to handle
the higher-spin problem; see, e.g., Refs. [6,7] for the case
of spin-3/2 nucleon resonances. This prescription, however,
requires fixing additional free parameters in the Lagrangian:
the off-shell parameters [7–10]. Moreover, the prescription
used in Ref. [6] did not allow inclusion of the hyperon
resonances with spin 3/2 due to the terms in the propagator
diverging for the u-channel exchanges. These divergences
were removed in Ref. [7] by considering the correct propagator
for massive spin-3/2 particle [32], which, however, contains
the spin-1/2 contribution. These problems were removed by
Pascalutsa who formulated a consistent theory for massive
spin-3/2 fields requiring invariance of the interactions under
the local gauge transformation of the Rarita-Schwinger field
[33]. This formalism was recently generalized to arbitrary spin
by the Gent group [34].

Description of the kaon-hyperon photo- and electropro-
duction from the threshold up to energies rather above
the resonance region (Eγ ≈ 16 GeV) is possible with the
Regge-plus-resonance model (RPR) constructed by the Gent
group [22,35]. This hybrid model combines the Regge model
[36], appropriate for description above the resonance region
(Eγ > 3 GeV), with the isobar model eligible for description in
the resonance region. The Regge-based part of the amplitude,
which is a smooth function of energy, constitutes the main
contribution to the background in the resonance region. The
resonance part of the amplitude is modeled by the s-channel
exchanges of nucleon resonances, with strong hadron form
factors ensuring that these resonant contributions vanish
above the resonance region where the Regge part dominates.
This concept significantly reduces the number of background
parameters in comparison with an isobar model, and removes
the necessity to introduce the hadron form factors in the
background to reduce too large contributions from the Born
terms [8,9,30].

In this work, we have constructed a new isobar model
for photoproduction of K�; however, most of the presented
formulas are valid also for K� electroproduction. We have
used the new consistent formalism for the description of the
higher-spin baryon resonances by Pascalutsa [33,34], allowing
us to include the hyperon resonances with spin 3/2. We also
paid attention to properties of the model at very forward
kaon-angle production which is relevant to calculations of the
cross sections in the hypernucleus photoproduction [3,4].

This article is organized as follows: In Sec. II we present
important ingredients of our model. The basic formalism is
given in Sec. III. The method of fitting free model parameters
to experimental data is described in Sec. IV. Discussion of
obtained results and conclusions are presented in Secs. V and
VI. Contributions to the invariant amplitude from the Feynman
diagrams are given in the Appendix.

II. SINGLE-CHANNEL ISOBAR MODEL

In this section, we give the main features of the theoretical
framework used in our approach. For other details we refer
the reader to Refs. [6,37] and references therein. Here we
investigate the K� photoproduction on the proton at center-
of-mass (c.m.) energies �2.5 GeV, but the presented formulas
can be used also for electroproduction.

In the isobar model, the amplitude is constructed from an
effective meson-baryon Lagrangian as a sum of the tree-level
Feynman diagrams representing the s-, t-, and u-channel
exchanges of the ground-state hadrons (the Born terms)
and various resonances (the non-Born terms); see Fig. 1.
The higher-order contributions, that account for, e.g., the
rescattering effects, are neglected. Only the exchanges of
nucleon resonances in the s channel make a resonant structure
in the observables. The other diagrams contribute to the
background part of the amplitude as the corresponding poles
are far from the physical region.

Since there exists no dominant resonance in photoproduc-
tion of kaons, unlike in π or η photoproduction, one has to take
into account a priori more than 20 resonances with the mass
�2 GeV (see Table I). This leads to a huge number of possible

FIG. 1. The tree-level contributions to the p(γ,K+)� amplitude
are shown. The Born terms with a ground-state hadron exchanges
and the non-Born terms with nucleon-, kaon- and hyperon-resonance
exchanges are shown in the upper and lower rows, respectively.
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TABLE I. Meson and baryon resonances which can be included
in a description of the p(γ,K+)� process. For each resonance, the
mass, width, spin, parity, and status are shown. Entries are from
Particle Data Tables 2014 [41] except for the P2 width, which was
taken from the Bayesian analysis of the Gent group.

Nickname Particle Mass Width J π Status
(MeV) (MeV)

K∗ K∗(892) 891.66 50.8 1−

K1 K1(1270) 1272 90 1+

N1 P11(1440) 1430 350 1/2+ ****
N3 S11(1535) 1535 150 1/2− ****
N4 S11(1650) 1655 150 1/2− ****
N8 D15(1675) 1675 150 5/2− ****
N9 F15(1680) 1685 130 5/2+ ****
N5 D13(1700) 1700 150 3/2− ***
N6 P11(1710) 1710 100 1/2+ ***
N7 P13(1720) 1720 270 3/2+ ****
P5 F15(1860) 1860 270 5/2+ **
P1 P11(1880) 1870 235 1/2+ **
P4 D13(1875) 1875 220 3/2− ***
P2 P13(1900) 1900 500 3/2+ ***
P3 F15(2000) 2050 198 5/2+ **
L1 �(1405) 1405 50 1/2− ****
L2 �(1600) 1600 150 1/2+ ***
L3 �(1670) 1670 35 1/2− ****
L4 �(1800) 1800 300 1/2− ***
L5 �(1810) 1810 150 1/2+ ***
L6 �(1520) 1519.54 15.6 3/2− ****
L7 �(1690) 1690 60 3/2− ****
L8 �(1890) 1890 100 3/2+ ****
S1 �(1660) 1660 100 1/2+ ***
S2 �(1750) 1750 90 1/2− ***
S3 �(1670) 1670 60 3/2− ****
S4 �(1940) 1940 220 3/2− ***

resonance configurations that should be investigated [5,6,35],
still resulting in a large number of models that describe the
data quite well (with a small χ2). To reduce this large number
of models one imposes constraints to acceptable values of the
K�N and K�N coupling constants, relating them to the well
known πNN value by means of the SU(3) symmetry [5,6,8].

One of the characteristic features of the p(γ,K+)� process
described by an isobar model is a too large contribution of the
Born terms to the cross sections, which largely overpredicts
the data. To get a realistic description of the cross sections
and the other observables allowing analysis of the resonant
content of the amplitude, the nonphysically large strengths
of the Born terms have to be reduced. This can be achieved
by the introduction of form factors into the strong vertexes
(hadron form factors) [30] or by exchanges of several hyperon
resonances [6] or by a combination of both methods [8,9].
In our model we combine both methods. Needless to say, the
choice of the method strongly affects the dynamics of the
model. Note that this problem is not present in the Regge-
plus-resonance model [22,35].

Another ambiguity in construction of the gauge-invariant
Lagrangian arises from a coupling in the K�N vertex, which
can be either pseudoscalar- or pseudovector-like [38]. Whereas

the former makes the total contribution of the Born terms gauge
invariant, the use of the latter requires introducing the contact
term even with no form factors inserted. The role of these
couplings was investigated in the threshold region [24], and
it was concluded that both couplings can describe the K�
photoproduction data very well. In this work we have used the
pseudoscalar coupling as in the most of isobar models.

To ensure a regularity of the tree-level invariant amplitude in
the physical region, the poles corresponding to the resonances
are shifted into the complex plane, mR → mR − i�R/2,
introducing the decay width �R which accounts for a finite
lifetime of the resonant state. Then the Feynman propagator
can be written as

1

�q − mR + i�R/2
= �q + mR − i�R/2

q2 − m2
R + imR�R + �2

R/4
, (1)

and the following approximations are assumed in various
isobar models:

�q + mR

q2 − m2
R + imR�R

(2)

in the Saclay-Lyon and Gent models or

�q + mR − i�R/2

q2 − m2
R + imR�R

(3)

in the Kaon-MAID model and in Ref. [37]. In the tree-level
approximation, the decay widths can mimic to some extent
a dressing of the propagator. In most of the isobar models
the widths are assumed as constant parameters, and the Breit-
Wigner values suggested in the Particle Data Tables are used.
In order to approximately account for unitarity corrections
in the single-channel approach, the energy-dependent widths
for the nucleon resonances were used in the KM model. The
energy dependence of �R is given by a possibility of resonance
decay into various opened channels. In this work we use the
approximation (2) with constant decay widths.

A. Resonances with spin 3/2 and 5/2

The Rarita-Schwinger (R-S) description of high-spin
fermion fields includes nonphysical degrees of freedom con-
nected with their lower-spin content. If the R-S field is off
its mass shell, the nonphysical parts may participate in the
interaction, which is then called “inconsistent.” Almost two
decades ago, Pascalutsa proposed a new consistent interaction
theory for massive spin-3/2 fields [33], where the interaction
is mediated by the spin-3/2 modes only. The consistency of the
theory is ensured by the invariance of the spin-3/2 interaction
vertexes under the local U(1) gauge transformation of the R-S
field. This scheme was generalized to arbitrary high spin by
the Gent group [34] and is used in this work.

The R-S propagator of the spin-3/2 field in terms of the
spin-projection operators is [39]

Sμν(q) = �q + mR

q2 − m2
R + imR�R

P (3/2)
μν − 2

3m2
R

( �q + mR)P (1/2)
22,μν

+ 1

mR

√
3

(
P

(1/2)
12,μν + P

(1/2)
21,μν

)
, (4)
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where P
(3/2)
μν projects on the spin-3/2 states,

P (3/2)
μν = gμν − 1

3
γμγν − �qqνγμ + qμγν �q

3q2
, (5)

and P
(1/2)
12,μν , P

(1/2)
21,μν , and P

(1/2)
22,μν project on the spin-1/2 sector,

P
(1/2)
22,μν = qμqν

q2
, P

(1/2)
12,μν = qρqνσμρ√

3q2
, P

(1/2)
21,μν = qμqρσρν√

3q2
,

(6)
where σρν = i

2 [γρ,γν].
The gauge invariance of the strong, K(pK ) �N∗(q), and

electromagnetic, N∗(q) p γ (k), couplings [33] generates the
transverse interaction vertexes

V S
μ (K�N∗) = f

mKmR

ελμαβ γ5 γ α qλ p
β
K , (7)

and

V EM
ν (N∗pγ ) = iγ5

mR(mR + mp)
qτ [g1Fτν

+ g2 ( γτγ
σFνσ − γνγ

σFτσ )], (8)

where Fμν = kμεν − εμkν , ε0123 = 1, and

V S
μ qμ = V EM

ν qν = 0. (9)

Then it is obvious from Eqs. (4) and (6) that this property
removes all nonphysical contributions of the spin-1/2 sector
to the invariant amplitude. Moreover, one sees in Eq. (5) that
the pole term in P

(3/2)
μν also vanishes, which makes it possible

to include in the model the hyperon exchanges with spin 3/2
in the u channel (see Sec. II C below).

In general, for arbitrary high spin n + 1/2 (n = 1,2, . . . ),
the transversality of the interaction vertexes prevents the
momentum-dependent terms in the propagator from contribut-
ing, allowing us to write the R-S propagator in the consistent
theory only by means of the projection operator onto the pure
spin-(n + 1/2) state [34]:

Sμ1···μn,ν1···νn
(q) → �q + mR

q2 − m2
R + imR�R

P (n+1/2)
μ1···μn,ν1···νn

(q).

(10)
The gauge invariance of the interaction results also in a

relatively high-power momentum dependence in the invariant
amplitude, which rises with rising spin of the R-S field as ∼q2n

[34]. For the spin-3/2 field it is apparent from Eqs. (7) and (8)
that the momentum dependence is ∼qλqτ ; see also (A17) for
the s-channel invariant amplitude. In the case of spin 5/2, the
invariant amplitude can be schematically written as

MN∗(5/2)
NBs ∼ q4 �q + mR

q2 − m2
R + imR�R

P (5/2)
μν,λρ(q)Oμν,λρ

5/2 , (11)

where P (5/2)
μν,λρ(q) projects onto the spin-5/2 state [34] and

Oμν,λρ
5/2 stands for the remaining structure in the strong and

electromagnetic vertexes; see (A20).
This strong momentum dependence from derivatives in the

gauge-invariant vertexes regularizes the amplitude, but it also
causes nonphysical structures in the energy dependence of
the cross section, which needs to be cut off especially above
the resonance region. Therefore, the hadron form factors with

a higher, spin-dependent energy power in the denominator
and with relatively small values of the cutoff parameter in
comparison with standard hadron form factors are used in
the RPR model [34,35]. We have, therefore, also carefully
investigated this property in our isobar approach, considering
various forms of the hadron form factor; see Sec. II D below.

Note that after the substitution
√

s → mR the propagator
used in the SL model [6] equals that in Eq. (4). The interaction
Lagrangians in SL, constructed as the most general form
invariant under the so-called point transformation [7], lead
in general to an inconsistent description. Moreover, this point-
transformation invariance adds three more free parameters, the
off-shell parameters, to each spin-3/2 resonance [7–10]. Using
the consistent formalism in our approach, we have avoided this
additional uncertainty in the model.

B. Nucleon and kaon resonances

In selection of a set of baryon resonances that preferably
describe the world’s p(γ,K+)� data, one has to perform
thousands of fits assuming all acceptable resonance combi-
nations. To our knowledge, such a robust analysis has been
performed by Adelseck and Saghai [5], further extended by
the Saclay-Lyon group [6] and by the Gent group [35] using
more sophisticated technique in the data analysis based on
a Bayesian inference method. Another data analysis in the
multipole approach was performed by Mart and Sulaksono
[23] who considered resonances with the spin up to 9/2 with 93
free parameters performing the χ2 minimization fits to CLAS,
SAPHIR, and LEPS data. The Gent group made the Bayesian
test of a huge number of nucleon resonance combinations
and selected two sets of the resonances with highest evidence
values. We have chosen one of these solutions, RPR-2011A
[35], as the starting point in our analysis. The corresponding
resonances are N3, N4, N7, N9, P1, P2, P3, and P4 (see Table I
for the notation). Since we limit ourselves only to the K+�
channel, there is no need to introduce � resonances which
cannot decay to K+� due to isospin conservation.

The four-star resonance N3 [S11(1535)], which is of crucial
importance for the description of η photoproduction, lies below
the K� threshold, but its coupling to the K� channel is
possible due to its large width and predicted strong coupling
to the strangeness sector. In the Bayesian analysis with the
RPR model the N3 resonance was found to contribute with
a moderate probability [35], whereas in the isobar model its
coupling strength to the K� channel was found to be quite
small [40].

In the KM and Gent isobar models, the N4, N6, and N7
established resonances were chosen along with the missing
resonances P4 [D13(1875)] and P1 [P11(1880)], respectively.
In the SL model [6] for the K� electroproduction, only the
well established resonances N1, N7, and N8 were selected.
The older RPR model, RPR2007 [22], selected N4, N6, N7,
P2, and P4 resonances. The resonances N1, N6, and N8 were
ruled out in the new Bayesian analysis whereas N4 and N7
and the missing P1, P2, and P4 resonances were confirmed.
Note that, due to large decay widths of most resonances,
their contributions overlap each other, resulting in interference
among many states. This makes the analysis of the resonance
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content of the invariant amplitude difficult, and even though
high-quality data are available it still brings uncertain results
(several possible solutions).

In the past, nucleon resonances P3 and P5 were considered
as a one state only. Recently, the Particle Data Group [41]
decided to consider them as two separate states. Since both of
these states have only two-star status, they are not included in
the PDG Summary Tables.

In many studies the vector K∗ and pseudovector K1 meson
resonances were found to be important in the data description
[6,11] and are used in all realistic isobar models. We have
therefore included them in the basic resonance set. Let us
remind that these two states together with the kaon are the
lowest poles in the K+ and K∗ Regge trajectories included
in the Regge [36] and RPR [22,35] models, which also
corroborates the importance of these states.

C. Hyperon resonances

The exchanges of hyperon resonances in the u channel
contribute to the background and were not included in some
isobar models, e.g., in KM. They can play, however, an
important role in the dynamics as shown in the SL [6] and
Gent isobar [8,9] models. Particularly, they can compensate the
nonphysically big contributions of the Born terms. Moreover,
their presence can significantly improve description of data,
reducing the χ2, and shift the value of the hadron cut-off
parameter to a harder region [42].

Formerly, mainly spin-1/2 hyperon resonances were in-
cluded in the models, with inconsistent description of the
spin-3/2 baryons. To our knowledge, the only attempt to
include a spin-3/2 hyperon resonance in the isobar model
was done by the Saclay-Lyon group in Ref. [7], the version
“C” of the SL model. The reason for this limitation was that
the pole in the u = q2 variable, which appears in the invariant
amplitude from the projection operator of the propagator (4),
lies in the physical region (u = 0) causing a divergence of the
amplitude with the inconsistent interaction. In the consistent
formalism, the pole term does not contribute owing to the
transversality of the interaction vertexes, Eq. (9), and regularity
of the amplitude,

V EM
μ (N∗p γ )

�q + mR

u − m2
R + imR�R

× 1

3u
( �q qνγ μ + qμγ ν �q) V S

ν (K�N∗) = 0, (12)

leaving only nonzero contributions from the momentum-
independent terms in the projection operator (5). It is therefore
safe to include the spin-3/2 hyperon resonances with relatively
small masses, see Table I, which are expected to be important
in describing the background.

Here we have considered only the spin-3/2 � and � well
established four- or three-star resonances as reported in the
Particle Data Tables 2014 [41] (Table I): �(1520) 3/2− (L6),
�(1690) 3/2− (L7), and �(1890) 3/2+ (L8), with the branch-
ing ratios to NK̄ 45%, 20–30%, and 20–35%, respectively;
�(1670) 3/2− (S3) and �(1940) 3/2− (S4) with 7–13% and
<20%, respectively.

D. Hadron form factors

Apart from reduction of the Born terms, the hadron form
factor can also mimic the internal structure of hadrons in the
strong vertexes, which is neglected in the hadrodynamical
approach. However, there is still an ambiguity in the selection
of a form of the hadron form factor: one can choose among
dipole Fd , multidipole Fmd , Gauss FG, or multidipole Gauss
shape FmdG [34]:

Fd (x,mR,�R) = �4
R(

x − m2
R

)2 + �4
R

, (13a)

Fmd (x,mR,�R,JR) = F
JR+1/2
d (x,mR,�R), (13b)

FG(x,mR,�R) = exp
[−(

x − m2
R

)2/
�4

R

]
, (13c)

FmdG(x,mR,�R,JR,�R) = F
JR−1/2
d (x,mR,mR�̃R)

×FG(x,mR,�R), (13d)

where mR , JR , �R , and x ≡ s,t,u denote the mass and spin
of the particular resonance, cutoff parameter of the form
factor, and Mandelstam variables, respectively. Moreover, it
is required to introduce a modified decay width

�̃R(JR) = �R√
21/2JR − 1,

(14)

which depends on the spin of the resonance and leads to
preserving the interpretation of the resonance decay width
as the full width in half maximum (FWHM) of the resonance
peak [34].

Since the high-power momentum dependence of the ampli-
tude leads to a substantial growth of the resonance contribution
to the cross section, we need to introduce a hadron form factor
to refine this behavior. In fact, the form factor should ensure
that the resonant diagram does not contribute far from the
mass pole of the exchanged particle. Unfortunately, with the
form factor the cutoff dependence is introduced into the cross
section. In Fig. 2, we demonstrate the dependence for the

FIG. 2. Contribution of the spin-5/2 resonance with the mass
1800 and width 100 MeV to the cross section using different form
factors. The cutoff dependence of the contribution is shown: the larger
the cutoff value �, the more pronounced the effect.
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contribution of a particular resonance with spin 5/2 in the s
channel using the dipole (13a), multidipole (13b), Gauss (13c),
and multidipole Gauss (13b) form factors with various values
of the cutoff parameters. The use of the dipole form factor leads
to enlarging the tail of the resonant peak, whereas the Gauss
form factor creates an artificial cutoff-value-dependent peak,
while the actual resonant peak contributes only as its shoulder.
Introducing the spin-dependent form factor, multidipole or
multidipole Gauss, makes the effect moderate even for larger
values of the cutoff parameter. Using the latter form factor
makes the contribution almost independent of the cutoff value
producing the real resonance pattern in the cross section (see
Fig. 2).

The total amplitude constructed with the help of the effec-
tive Lagrangians is gauge invariant. The resonant amplitudes
and the u-channel Born contribution are gauge invariant on
their own, and the gauge noninvariant terms occur in the s-
and t-channel Born contributions; see Eqs. (A5) and (A9) in
Appendix A. However, these terms cancel in the sum of these
two Born contributions. Unfortunately, while introducing the
hadron form factors, these gauge noninvariant terms no longer
cancel. The remedy is to introduce a contact term which
ensures the gauge invariance [8]; see Appendix B for more
details.

The generally accepted cutoff values lie in the range from
approximately 0.7 to 3.0 GeV; the lower the cutoff, the
stronger the suppression. The values around the lower limit
are considered as too soft, and the form factors are, in this
situation, regarded as a rather artificial tool to suppress the
Born term contribution. As our analysis showed, obtaining a
harder cutoff value is much easier than a softer one, which
we attribute to the presence of many hyperon resonances in
background.

Values of the cutoff parameters are established when
optimizing the model parameters against experimental data.
A single common cutoff value �R is assumed for all resonant
diagrams, whereas for the background terms another value
�bgr is used.

III. OBSERVABLES

In the electroproduction

e(k1) + p(p) → e(k2) + K+(pK ) + �(p�),

the transition amplitude in the one-photon exchange approx-
imation is a product of the matrix elements of the hadron
Jμ and lepton lμ = e ū(k2)γμu(k1) currents mediated by the
photon propagator:

Mf i = 1

k2
lμ Jμ(k2,s,t,u), (15)

where k = k1 − k2 is the four-momentum of the virtual photon
and s = (p + k)2, t = (pK − k)2, and u = (p� − k)2 are the
Mandelstam variables. Conservation of the hadron and lepton
currents implies Jμkμ = lμkμ = 0. The matrix element of the
hadron current therefore can be decomposed into the linear

combination of six covariant gauge-invariant contributions:

Jμεμ =
6∑

j=1

Aj (k2,s,t,u) ū(p�) γ5 Mj u(p), (16)

where Mj are explicitly gauge-invariant operators

M1 = ( �k �ε− �ε �k)/2, (17a)

M2 = p · ε − k · p k · ε/k2, (17b)

M3 = p� · ε − k · p� k · ε/k2, (17c)

M4 = �εk · p− �kp · ε, (17d)

M5 = �εk · p�− �kp� · ε, (17e)

M6 = �kk · ε− �εk2, (17f)

and εμ is the polarization vector of the virtual photon. The
scalar amplitudes Aj (k2,s,t,u) contain contributions from the
considered tree-level Feynman diagrams. Their expressions for
various types of particle exchanges are given in Appendix A.
In the photoproduction case (k2 = 0), there are only four terms
in the decomposition (16) [5].

In the calculations which involve also a nonrelativistic
input, e.g., the calculation of the hypernucleus production
cross sections [3] with nonrelativistic wave functions of the
nucleus and hypernucleus, one also needs a more convenient
representation of the Lorentz invariant matrix element (16)
in terms of the two-component spinor amplitudes known as
the Chew, Goldberger, Low, and Nambu (CGLN) amplitudes
[5,6,37]. These amplitudes are, however, also widely used in
calculations of observables in the elementary process. In the
c.m. frame, the Lorentz invariant matrix element (16) can be
written as

Jμεμ = χ+
� F χp, (18)

where χp and χ� are the Pauli spinors and

F = f1 	σ · 	ε − if2 	σ · 	̂pK 	σ · (	̂k × 	ε)

+ f3 	σ · 	̂k 	̂pK · 	ε + f4 	σ · 	̂pK 	̂pK · 	ε
+ f5 	σ · 	̂k 	̂k · 	ε + f6 	σ · 	̂pK

	̂k · 	ε. (19)

Here 	̂k = 	k/|	k|, 	̂pK = 	pK/| 	pK |, 	σ are the Pauli matrices, and
	ε is the spatial component of the virtual-photon polarization
vector. The CGLN amplitudes fi(k2,s,t,u) are expressed via
the scalar amplitudes Aj :

f1 = N∗[−(W − mp)A1 + k · pA4

+ k · p� A5 − k2A6], (20a)

f2 = N∗ |	k|| 	pK |
(E∗

� + m�)(E∗
p + mp)

[(W + mp)A1

+ k · pA4 + k · p� A5 − k2A6], (20b)

f3 = −N∗ |	k|| 	pK |
E∗

p + mp

[A3 + (W + mp)A5], (20c)
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f4 = N∗ | 	pK |2
E∗

� + m�

[A3 − (W − mp)A5], (20d)

f5 = N∗ |	k|2
E∗

p + mp

[
A1 − 1

k2
[(k2 + k · p)A2

+ k · p� A3] − (W + mp)(A4 + A6)

]
, (20e)

f6 = N∗ E∗
γ |	k||pK |

(E∗
� + m�)(E∗

p + mp)

{
A1 − mpA4

+ k · p�

E∗
γ

A5 + (E∗
p + mp)

E∗
γ k2

[(k2 + k · p)A2

+ k · p� A3] − (W + mp)A6

}
, (20f)

where W = √
s and E∗

p, E∗
�, E∗

K , and E∗
γ are the c.m. energies

of the proton, hyperon, kaon, and photon, respectively. The
normalization factor reads

N∗ =
√

(E∗
� + m�)(E∗

p + mp)

4m�mp

. (21)

The triple-differential cross section for electroproduction
of unpolarized hyperon with unpolarized electron beam and
target is obtained as

d3σ

dEe′d�e′d�c.m.
K

= �[σT + εσL + εσT T cos 2φK

+
√

2εL(ε + 1)σLT cos φK ], (22)

where φK , �, ε, and εL are the angle between the lepton
and hadron planes, the virtual-photon flux factor, and the
transverse and longitudinal photon polarization parameters,
respectively [37]. The response functions σT and σL describe
the cross sections for the unpolarized and longitudinally
polarized photon beams, respectively, while σT T stands for
the asymmetry of a transversally polarized photon beam. The
last term containing σLT describes the interference effects
between the longitudinal and transverse components of the
photon beam. Note that σT and σT T correspond to the cross
section and beam asymmetry in the photoproduction process,
respectively. The response functions in terms of the CGLN
amplitudes read as follows:

σT = C Re
{|f1|2 + |f2|2 − 2f1f

∗
2 cos θK

+ sin2 θK

[
1
2 (|f3|2 + |f4|2) + f1f

∗
4

+ f2f
∗
3 + f3f

∗
4 cos θK

]}
, (23a)

σL = C Re{|f̃5|2 + |f̃6|2 + 2f̃5f̃
∗
6 cos θK}, (23b)

σT T = C Re
{

1
2 (|f3|2 + |f4|2) + f1f

∗
4 + f2f

∗
3

+ f4f
∗
3 cos θK

}
sin2 θK, (23c)

σLT = −C Re{(f1 + f4)f̃ ∗
6 + (f2 + f3)f̃ ∗

5

+ (f3f̃
∗
6 + f4f̃

∗
5 ) cos θK} sin θK, (23d)

where we have defined the linear combinations

f̃5 = f1 + f3 cos θK + f5, (24)

f̃6 = f4 cos θK + f6 (25)

and the normalization factor C is given as

C = (�c)2 α

4π

m�| 	pK |
|	k|W . (26)

The general expression for the electroproduction cross section
considering all three possible types of polarization can be
found in Ref. [43]. Here we give only the single-polarization
observables in photoproduction that we use in the analysis and
which, in terms of the CGLN amplitudes, read

P = − Im[2f ∗
1 f2 + f ∗

1 f3 − f ∗
2 f4 − (f ∗

2 f3 − f ∗
1 f4) cos θK

− f ∗
3 f4 sin2 θK ] sin θK, (27)

� = − Re[(|f3|2 + |f4|2)/2 + f ∗
2 f3 + f ∗

1 f4

+ f ∗
3 f4 cos θK ] sin2 θK (28)

T = Im[f ∗
1 f3 − f ∗

2 f4 + cos θK (f ∗
1 f4 − f ∗

2 f3)

− f ∗
3 f4 sin2 θK ] sin θK, (29)

where P , �, and T stands for hyperon polarization, beam
asymmetry [see also Eq. (23c)], and target polarization,
respectively.

IV. FITTING MODEL PARAMETERS

Since the isobar model is an effective model with the
coupling constants and cutoff values of hadron form factors
undetermined, our goal is to fix these free parameters to the
experimental data during the fitting process.

The free parameters to be adjusted are the coupling
constants of the Born terms gK�N and gK�N , the nucleon,
kaon, and hyperon resonances and two cutoff parameters of
the hadron form factor. Each spin-1/2 resonance contributes
with one parameter, whereas higher-spin resonances as well
as kaon resonances contribute with two parameters. As well
as in the well-known Kaon-MAID model, we assume a single
cutoff value �R for all resonant (s-channel) diagrams, whereas
for background terms another value �bgr is used. Altogether,
the number of free parameters varies from 20 to 25 depending
on the number and spin of considered nucleon and hyperon
resonances.

In order to test whether a given hypothetical function
describes the given data well, the χ2 is calculated. The
optimum set of free parameters (c1, . . . ,cn) for a given set
of data points (d1, . . . ,dN ) is that with the lowest value of χ2.
The χ2 is

χ2 =
N∑

i=1

[di − pi(c1, . . . ,cn)]2

(σ tot
di

)2
, (30)

where N is the number of data points and n the number of
free parameters; pi represents the theoretical prediction of
observables (differential cross section, hyperon polarization
and beam asymmetry in our case) for the measured data point
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di , with the total error given as

σ tot
di

=
√(

σ
sys
di

)2 + (
σ stat

di

)2
, (31)

where σ
sys
di

and σ stat
di

represent systematic and statistical errors
of a given datum, respectively. Whereas systematic errors tend
to be strongly correlated within a given data set, the correlation
weakens when using several independent subsets. Since we
assume several data sets (see Sec. IV A), we have adopted
the definition (31) similarly to the analysis by Adelseck and
Saghai [5]. Some groups, e.g., the Gent group, use an even
more conservative prescription for the total error [35].

In order to obtain the optimum set of parameters, one is
forced to minimize χ2 in the n dimensional space. In the
ideal case, χ2 = n.d.f., where n.d.f. = N − n is the number of
degrees of freedom.

The minimization was performed with the help of the least-
squares fitting procedure using the MINUIT code [44]. Since
MINUIT uses a nonlinear transformation for the parameters
with limits, which makes the accuracy of the resulting
parameter worse when it approaches a boundary value, the
limits should be avoided if they are not necessary to prevent
the parameter from reaching nonphysical values. The main
coupling constants gK�N and gK�N were kept inside the limits
of 20% broken SU(3) symmetry:

− 4.4 � gK�N√
4π

� −3.0, (32a)

0.8 � gK�N√
4π

� 1.3. (32b)

In order to avoid too soft or too hard form factors, the
cutoff parameters of the hadron form factor were kept inside
the limits from 0.7 to 3.0 GeV.

The coupling parameters entering the fitting procedure are
always products of the strong and electromagnetic coupling
constants. In order to guarantee a correct dimension of the
interacting Lagrangians, the coupling constants have to be
normalized appropriately. Since the Lagrangian for the spin-
3/2 nucleon resonance contains two derivatives of the R-S
field, the coupling parameters read

G1 = fg1

m2
RmK (mR + mp)

, (33a)

G2 = fg2

m2
RmK (mR + mp)

. (33b)

In the case of spin-3/2 hyperon resonances, mp is replaced
with m�. Analogously, the spin-5/2 coupling parameters are
normalized as follows:

G1 = − fg1

16m4
Km4

p

, (34a)

G2 = − fg2

32m4
Km5

p

. (34b)

The high mass powers in the denominator result in very
small values of Gi for N∗(5/2) in comparison with the
coupling parameters of lower-spin nucleon resonances.

The hyperon coupling parameters tend to be very large
compared with coupling parameters of other resonances.
Therefore, we did not take into account results with hyperon
coupling parameters significantly bigger than 10.

A. Experimental data

Recently, new precise data from LEPS, GRAAL, and
particularly from CLAS collaborations became available. For
the fitting procedure, we selected around 3400 data points
stemming from CLAS and LEPS collaborations with addition
of several tens of data points collected by Adelseck and Saghai
[5]. Namely, we used the CLAS 2005 [13], CLAS 2010
[14], and LEPS [15] cross-section data, CLAS 2010 hyperon
polarization data [14], and LEPS beam asymmetry data [15].

In our analysis, we are concerned mainly with the resonance
region and therefore have restricted the CLAS 2010 data sets
to the energy range up to 2.355 GeV and 2.225 GeV for the
cross-section and hyperon polarization data, respectively.

Since the CLAS and SAPHIR [17] data are not consistent
with each other, especially in the forward-angle region [4]
which is of particular interest here, we decided not to use the
SAPHIR cross-section data in the analysis. Unfortunately, the
CLAS 2005 and CLAS 2010 data sets show inconsistency
with each other of about one or two standard deviations in the
threshold region for kaon angle less than approximately 60◦.

B. Results of fitting

While minimizing the χ2 it is important to find a global
minimum. Since this task occurs in a huge parameter space
that has a lot of local minima, the result of the fitting procedure
often depends on starting values of the fitted parameters.

Generally, choosing the best solution is not an easy task.
The χ2 value is only a mathematical tool showing the goodness
of a fit. However, results with similar χ2 values can still
give rather different predictions of the observables in some
kinematic regions. Therefore, not only thorough inspection of
the numerical values of the fitted parameters, but also a brief
check of the predicted observables, is welcome.

We have done several hundreds of fits considering various
resonance configurations and different shapes of hadron form
factor. While the set of nucleon resonances chosen in the RPR-
2011A model provided us the starting point, we have consid-
ered many other resonant states during the procedure of fitting.

Since one cannot be sure that the detected minimum is the
global one, we have selected several models with similar χ2.
The models differ mainly in the choice of nucleon and hyperon
resonances and their coupling constants, cutoff values of the
hadron form factor, and the shape of the form factor. Partic-
ularly, the smallness of hyperon coupling constants plays an
important role when deciding if the model should be rejected or
not. Since the isobar model is only a tree-level approximation,
the couplings even larger than 1 are still justifiable.

During the fitting procedure, we also tried to slightly modify
the mass and width of several intermediate particles in the
ranges provided by the Particle Data Tables 2014 [41] (or when
there were no preferred values). On the one hand, this forced
the models to improve their description of the cross section;

025204-8



PHOTOPRODUCTION OF K� ON THE PROTON PHYSICAL REVIEW C 93, 025204 (2016)

especially the reduction of the width of P2 from 500 MeV to a
value of about 400 MeV or less led to filling up the second peak
in the cross-section data. On the other hand, the modification
of the width of P2 resulted in a growth of the χ2 value and
made the description of single-polarization observables worse.

In order to gain insight into the effect of high-spin
resonances on the observables, some of the fits were performed
with the inconsistent formalism for the spin-3/2 and spin-5/2
resonances used in the SL model. Particularly, the fit of the BS2
model (see below) with the inconsistent formalism led to an
enlargement of the χ2 from 1.64 to 1.91, growth of the cutoff
parameter for the hadron form factor to almost 3 GeV, and
decrease of the cross-section prediction in the forward-angle
region. In this fit we omitted the spin-3/2 hyperon resonance
S4. Generally, the use of the inconsistent high-spin formalism
results in larger couplings for spin-5/2 resonances which is
due to a different normalization introduced into the coupling
parameters [see Eq. (34)].

The main asset of the presence of high-spin hyperon
resonances is the reduction of coupling parameters of spin-
1/2 hyperon resonances. With no Y ∗(3/2) introduced, the
couplings of Y ∗(1/2) tend to acquire values of the order of
10 or even more. While the Y ∗(3/2) are implemented, the
couplings of both Y ∗(1/2) and Y ∗(3/2) are only exceptionally
bigger than 10.

In the analysis, we examined the effect of distinct shapes
of the hadron form factor on the resonance behavior. As
seen from the definition (13), the multidipole form factor
affects the resonance behavior more strongly than the dipole
one. Therefore, introducing the multidipole form factor leads
to bigger cutoff parameters for resonances (�res ∼ 3 GeV)
than considering the dipole form factor (�res ∼ 2 GeV).
Unfortunately, we were not able to achieve a single result
with χ2 < 2 using the multidipole Gauss form factor. This
shape of form factor was introduced by the Gent group in
their Regge-plus-resonance model to strongly suppress the
contribution of the nucleon resonances in the high-energy
region. However, it seems there is no need to introduce such a
strong form factor in the isobar model.

The predictions of the models with χ2 < 2 were tested in
the comparison with the experimental data. Particularly, the
comparison with hyperon polarization data can reveal a subtle
interplay among many resonances. Even though the smallness
of χ2 denotes a good agreement of the model prediction with
the data, in the kinematic regions where data are scarce (e.g.,
the forward-angle region) the model predictions can still differ.

The best solutions regarding the smallness of the χ2, values
of fitted parameters and correspondence with data were coined
BS1 and BS2. Whereas the model coined BS1 was obtained
using a multidipole form factor, the BS2 model was gained
using a dipole shape of the form factor. Moreover, the mass of
the P5 resonance was slightly modified from 1820 MeV in the
BS1 model to 1860 MeV in the BS2 model.

V. DISCUSSION OF RESULTS

In this section we present the new isobar models BS1
and BS2 for photoproduction of K+� and compare their
predictions for the cross section, hyperon polarization, and

TABLE II. Coupling constants, cutoff values, and χ 2 of the final
models BS1 and BS2 are compared with the parameters of the Kaon-
MAID and Saclay-Lyon models.

BS1 BS2 KM SL

gK�N − 3.00 − 3.00 − 3.80 − 3.16
gK�0N 1.11 0.80 1.20 0.91
GV (K∗) − 0.18 − 0.17 − 0.79 − 0.05
GT (K∗) 0.02 − 0.03 − 2.63 0.16
GV (K1) 0.28 0.30 3.81 − 0.19
GT (K1) − 0.28 − 0.23 − 2.41 − 0.35
G(N1) − 0.02
G(N3) 0.10 0.17
G(N4) − 0.07 − 0.05 − 0.13
G(N6) − 0.05 − 0.26
G1(N7) − 0.09 − 0.07 0.05 − 0.04
G2(N7) − 0.01 − 0.0057 0.61 − 0.14
G1(N8) − 0.63
G2(N8) − 0.05
G1(P 4) 0.21 0.23 1.10
G2(P 4) 0.26 0.26 0.63
G1(P 5) − 0.04 − 0.02
G2(P 5) 0.04 0.02
G1(P 2) 0.11 0.09
G2(P 2) − 0.02 − 0.01
G1(P 3) − 0.0003 − 0.0018
G2(P 3) − 0.0029 − 0.0015
G1(N9) 0.05 0.03 − 0.63
G2(N9) − 0.05 − 0.03 − 0.05
G(L1) 9.67 − 0.42
G(L3) 1.75
G(L4) − 8.39 − 11.55
G(L5) − 1.96
G1(L6) 0.86
G2(L6) − 0.09
G1(L8) − 2.33
G2(L8) 0.0033
G(S1) − 11.58 − 8.09 − 7.33
G(S2) 15.77
G1(S4) − 8.32 − 0.86
G2(S4) 0.81 0.18
�bgr 1.88 1.94 0.64
�res 2.74 2.15 1.04
χ 2/n.d.f. 1.64 1.64

beam asymmetry with the data and results of the older models
Saclay-Lyon and Kaon-MAID. Note that the numerical results
of the SL and KM models have been obtained by using our
code with the parameters presented in Table II.

The nucleon-resonance content of the BS1 and BS2 models
almost does not differ; see Table II. The BS2 contains only
one more resonance N6 with a small coupling constant. The
coupling constants of the other nucleon resonances have the
same sign and their values are very similar. This set of
N∗ significantly overlaps with that suggested by the Gent
group. The only difference, except for N6, is that the two-star
resonance P1 with spin 1/2 in the RPR was replaced with
the almost equal mass two-star spin-5/2 resonance P5 in our
models.
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More differences between BS1 and BS2 are observed
in description of the background. The values of the main
coupling constants, gK�N and gK�N , and those for K∗ and K1

exchanges are very similar, and the signs are identical except
for the tensor coupling of K∗ which has the opposite sign. In
both models the value of gK�N is at the upper limit allowed
in fitting (32a), which suggests a considerable violation of
SU(3) symmetry. Note that the differences in these coupling
constants, particularly gK�N and GT (K∗), might have an
impact on the model predictions in the n(γ,K0)� process
[45].

Significant differences are found in the included sets of
the hyperon resonances and their couplings. The BS2 contains
only one spin-3/2 hyperon resonance S4 and three spin-1/2
resonances L1, L4, and S1, whereas BS1 includes three
spin-3/2 resonances L6, L8, and S4 and only one spin-1/2
resonance L4. The general feature of the presented models
and other solutions found during the fitting procedure is that
the coupling strengths of the hyperon exchanges tend to be
relatively large in comparison with the typical values obtained
for the couplings of the nucleon resonances. This experience
is similar to that gained in the analyses by the Saclay-Lyon [6]
and Gent [9] groups on a role of the hyperon resonances in
p(γ,K+)�. Note that in version C of the Saclay-Lyon model
[7] the only �(1890) 3/2+ (L8) resonance was included; they
concluded, however, that this resonance is not required by the
data set available at that time, i.e., before 1998. Reasonable
values of the hyperon couplings, −20 � G(Y ∗) � 20, were
therefore used in our analysis as a criterion for a model
selection. These observations suggest that, whereas the current
new experimental data are able to fix relatively well the set of
the nucleon resonances producing genuine resonance patterns
in the observables, they still cannot determine uniquely the
non-resonant part of the amplitude (background). Therefore,
one still cannot select a set of hyperon resonances, contributing
to the process, with certainty.

Let us note that, in view of the achieved quality of
data description, the total number of resonances included in
BS1 and BS2, 16 and 15, respectively, is quite moderate in
comparison with the older models KM and SL and the recent
models by Mart [23,24] and Maxwell [25].

Angular dependence of the calculated cross sections in
comparison with the CLAS data is shown in Fig. 3 for
three energies. Both BS1 and BS2 models give very similar
predictions which differ from predictions of the other models
mainly in the forward- and backward-angle regions. In the
small kaon-angle region, θc.m.

K < 40◦, the new models predict
descending angular dependence like the SL model, contrary
to the KM which predicts very suppressed cross sections for
energies W � 2 GeV. In the backward-angle region the models
agree with the KM, describing the data very well. The subtle
difference between BS1 and BS2 model in the description
of backward angles (apparent for W = 1.805 GeV) can be
assigned to the sign change of the tensor coupling of K∗. One
may conclude that the BS1 and BS2 models describe the cross
sections in the full angular and considered energy regions very
well. Note that the consistency of the cross sections in the very
small kaon-angle region with the results of the SL model and
the fact that these cross sections are dominated by the spin-flip

FIG. 3. Angular dependence of the cross sections is shown for
three values of the c.m. energy. In the forward-angle region, the
Saclay-Lyon (solid curve), BS1 (dashed curve), and BS2 (dash-dotted
curve) models predict decreasing dependence of the cross section.
In contrast the Kaon-MAID model (dotted curve) predicts a bump
around θc.m.

K = 30◦. The data are from the CLAS 2005 [13] and CLAS
2010 [14] collaborations.

part of the amplitude could predetermine the new models for
succesful predictions of the cross sections in the production of
hypernuclei, like the SL model [3,46].

The model dynamics in the small-angle area is driven
mainly by the background contributions in which the spin-1/2
hyperon resonances, surprisingly, play a very important role.
In spite of their large contribution in the backward angles, they
give the largest contribution in the forward-angle region when
combined with the Born terms. On the other hand, the spin-3/2
hyperon resonances combined with the Born terms contribute
predominantly in the backward-angle region. The role of the
kaon resonances is to suppress the Born term contributions in
the central-angle region.

In Fig. 4 we show resonance effects in the energy-dependent
differential cross sections for four kaon angles as they are
revealed by the data and the models. First, let us note that
the resonance pattern revealed by the CLAS data around W =
1.7 GeV for the forward angles is sharper in the CLAS data set
from 2010 than in the older one from 2005. The new models
predict conservative cross sections lying in between these data
sets preferring rather the older data. The N6 in BS2 is not
strong enough to make the peak around 1.7 GeV sharper. The
older CLAS data set is also favored by the hybrid RPR-2011A
and RPR-2011B models [35]. Both new isobar models BS1
and BS2 predict a peak around 1.9 GeV in the central- and
backward-angle regions but not at very small angles. In the
forward-angle region some strength is also apparent around
W = 2 GeV modeled by the higher-mass resonances P2, P3,
and P4. The strong grow of the cross section in the threshold
region is described by the BS1 and BS2 models satisfactorily,
better than by the SL model.

The new isobar models, eligible for the resonance region,
describe data well up to energy W ≈ 2.4 GeV. Above this
energy the cross sections systematically rise, overshooting
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FIG. 4. Differential cross section in dependence on the c.m.
energy W is shown for various kaon angles. Notation of the curves
is the same as in the Fig. 3. The data are from CLAS 2005 [13],
CLAS 2010 [14], LEPS [15], and from the publication of Adelseck
and Saghai [5]. The LEPS data are for cos θc.m.

K = 0.85.

the data, which is more apparent at forward angles in Fig. 4
and which is a well-known feature of isobar models. In the
new models, the contributions of the nucleon resonances in
the s channel are regularized by the strong-enough hadron
form factors as shown in Fig. 2. The high-energy divergence
is therefore created mainly by the background part of the
amplitude. This divergent behavior, however, differs for
various models: in the KM model, predictions start diverging
at forward angles above 2.2 GeV (the maximum energy for
which the model was constructed) but predictions of the SL
model strongly overshoot the data at backward angles above
2 GeV. This divergent behavior of the isobar models is also
well seen in the energy dependence of the total cross section as
shown in Fig. 5. Whereas the KM model begins to diverge at

FIG. 5. Model predictions of the p(γ,K+)� total cross section.
For comparison, the Gent isobar model (model A) was added as read
from Fig. 7 in Ref. [8]. Notation of the rest of the curves is the same
as in the Fig. 3. Data stem from Fig. 20 in Ref. [13].

FIG. 6. Predictions of the differential cross section for photo-
production at θc.m.

K = 6◦ is shown for several models. The only
available photoproduction data point in this region is from Bleckmann
et al [47]. The data points of Brown [49] and E94-107 [48] are for
electroproduction with a very small value of the virtual-photon mass
|k2|. Notation of the curves is the same as in the Fig. 3.

Elab
γ = 2.2 GeV, i.e., beyond its scope, the SL model produces

a divergent behavior above Elab
γ = 1.6 GeV. Note, however,

that the KM, SL, and Gent models were fitted to the old
SAPHIR data and, therefore, slightly underestimate the current
CLAS data (see Fig. 20 in Ref. [13]).

The spin-3/2 and spin-5/2 nucleon resonances contributing
mainly in the central-angle region are also important in the
forward-angle region. They contribute in combination with the
background terms. Moreover, they give rather diverse results:
the spin-3/2 resonances raise the cross section, making the
peak around θc.m.

K = 45◦, whereas the spin-5/2 resonances lead
to a decrease of the cross section for kaon angles around 60◦.

In the extreme forward-angle region, the discrepancies
between different model predictions are substantial, especially
for Elab

γ > 1.5 GeV; see Fig. 6. The BS1, BS2, and Saclay-
Lyon models predict similar magnitudes of the cross section
in the whole energy range shown, but the Kaon-MAID model
reveals a strong reduction of the results for higher energies
due to suppression of the proton exchange by the hadron form
factors. Recall that the BS1 and BS2 models also contain the
form factors and that the strength they predict at small angles
is made by another, more complex mechanism—interference
effects of the hyperon resonances with the Born terms and
of higher-spin nucleon resonances with the background—
discussed above. The energy dependence of the SL result
is quite flat, being dominated by the nonresonant proton
exchange, which is not suppressed in SL, while the BS1
and BS2 models predict two broad peaks at Elab

γ = 1.1 GeV
(W = 1.7 GeV) and Elab

γ = 1.7 GeV (W = 2 GeV). It is
well-known that for kaon angles smaller than θc.m.

K = 25◦ there
are almost no available experimental data. Consequently, the
models cannot be reliably tested in this region, which increases
uncertainties in calculations of the hypernucleus production
spectra [3,4]. In Fig. 6, the only data point for photoproduction
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FIG. 7. Results for energy-dependent hyperon polarization are
shown for several kaon angles θc.m.

K . Notation of the curves is the
same as in the Fig. 3. The CLAS data are from [14].

is that by Bleckmann [47] at Eγ = 1.3 GeV, which is consistent
with all shown model predictions. The other two data points are
from the measurements of electroproduction with almost real
photons, e.g., −k2 = 0.07 (GeV/c)2 for the JLab experiment
E94-107 [48], which prefer predictions of the SL, BS1, and
BS2 models.

The spin observables are very important in fine-tuning the
interference among many different contributions. Plenty of
new high-quality data for hyperon polarization and several tens
for beam asymmetry and target polarization are now available.
These data were also used in fitting the BS1 and BS2 models.
In Figs. 7, 8, and 9, we compare results of the models with the
LEPS and CLAS data.

In the case of hyperon polarization, the Born terms on their
own yield zero contribution, but their interference with other
terms appears to be important, especially the interference with
the nucleon resonances. The models were fitted to the hyperon

FIG. 8. Results for the angular dependence of hyperon polariza-
tion are shown for several c.m. energies W . Notation of the curves is
the same as in the Fig. 3. The CLAS data are from [14].

FIG. 9. Results for the angular dependence of beam asymmetry
are shown for several photon laboratory energies. Notation of the
curves is the same as in the Fig. 3. The LEPS data are from [15].

polarization data from the threshold up to 2.225 GeV. In this
energy range and mainly in the central-angle region, the data
are captured by the BS1 and BS2 models well. On the other
hand, the Saclay-Lyon and Kaon-MAID models do not even
fit the shape of the data. Note, however, that these old models
were not fitted to the hyperon polarization or beam-asymmetry
data.

For photon laboratory energy higher than 1.9 GeV, the BS1,
BS2, and Kaon-MAID models describe the beam-asymmetry
data satisfactorily, whereas the Saclay-Lyon model tends to
underpredict the data in the whole energy range. Note that the
data at lower energies, Fig. 9, have larger relative errors and
therefore they cannot restrict the model parameters as much
as the data for energies larger that 1.9 GeV.

The exchanges of the nucleon resonances in the s channel
constitute the resonant structure in the cross section. The effect
of a particular resonance strongly depends on the magnitude
and sign of its coupling constants, but this effect is hard to esti-
mate in the kaon photoproduction due to overlapping of many
resonances and occurrence of the complicated background.
In Fig. 10 we show effects of the nucleon resonances in the
model BS1 on the forward-angle differential cross section. A
contribution of the resonance on its own, in its combination
with the background, and a prediction of the full model without
the resonance are shown. Comparing the latter with the full
result, one can infer an importance of the particular resonance
in this kinematic region.

In the BS1 model, the contribution of the subthreshold N3
resonance is small, as can be concluded from the relatively
small value of its coupling parameter; see Table II. How-
ever, N3 significantly lowers, by 20–30%, the background
contribution, which is important in the threshold region where
it balances the contribution of N4. Omitting this resonance
therefore leads to a growth of the cross section in the threshold
region. Similarly, a strong effect is apparent for the N4, N7,
and P2 resonances, where the latter two resonances affect
the cross section rather at larger energies. On the other
hand, the influence of the resonances P3, P5, and N9 on the

025204-12



PHOTOPRODUCTION OF K� ON THE PROTON PHYSICAL REVIEW C 93, 025204 (2016)

FIG. 10. Analysis of the resonance part of the BS1 model. Con-
tributions of background (dotted curve), included nucleon resonances
(double dash-dotted curve), and their combination with background
(dashed curve) to the differential cross section are compared with the
full BS1 model (solid curve) and the BS1 model when omitting a
particular nucleon resonance (dash-dotted curve).

forward-angle cross section is very small. Their influence is
apparent only for energies above 2 GeV. The contributions of
the spin-5/2 resonances N9 and P5 start to rise sharply around
2.2 GeV, which instigates the introduction of strong hadron
form factors, e.g., the multidipole or multidipole Gauss [35].
This effect is not seen for the P3 resonance because it is shifted
to higher energies due to its larger mass. Since the BS2 model
contains, except for the N6, the same nucleon resonances with
very similar values of the coupling parameters, it behaves in a
manner similar to the BS1 model.

In Fig. 11, the predictions of double-polarization observ-
ables Cx and Cz are shown for various kaon angles. Our new
models as well as the well-known Kaon-MAID and Saclay-
Lyon models were not fitted to these data sets. Therefore,
the figure shows the predictive power of considered models.
The Saclay-Lyon model fails to reproduce the Cz data for
larger kaon angles (whereas the data are positive, the model
predictions have opposite sign). The correspondence between
other model predictions and the data sets is considerably better:
the Kaon-MAID predictions are of the same sign as the data
and the BS models capture even the shape of the data.

Our findings on the nucleon resonances agree quite well
with the results of the Bayesian analysis which used the

FIG. 11. Double-polarization observables Cx and Cz are shown
for various kaon angles. Since none of the models were fitted to the
Cx or Cz data, the figure collects merely predictions of the models.
Notation of the curves is the same as in the Fig. 3 and the data stem
form the CLAS 2005 analysis [13].

Regge-plus-resonance model [35]. In this analysis the N3, N4,
and N7 resonances were assigned large relative probabilities,
13, 34, and 99, respectively, that they contribute to the kaon
photoproduction process. Importance of these resonances was
confirmed in our analysis. However, the resonances N9 and
P3 were also shown to contribute significantly; their relative
probabilities are 16 and 18, respectively, in the RPR-based
analysis, contrary to our findings which we attribute to the
smaller energy window of our analysis (P3 and N9 contribute
more at higher energies as shown in Fig. 10). In the Bayesian
analysis, it was shown that the N5, N6, and N8 resonances
are not required to describe the γp −→ K+� data, which
is also consistent with our conclusions, except for N6 in the
BS2 model with the very small coupling parameter G(N6) =
−0.05. The two-star spin-1/2 resonance P11(1880) (P1) was
excluded in our analysis whereas it was included in the set of
probable resonances in the Bayesian analysis with the relative
probability 11. The spin-5/2 state with near mass, N∗(1860)
(P5), was assumed in both new models instead. Note that
adding P1 into the models does not improve the χ2 too much
but it raises the number of considered resonances, which we
tried to keep as small as possible (according to the principle
of the Occam’s razor).

VI. CONCLUSION

In this work, we have presented two new isobar models BS1
and BS2 for the p(γ,K+)� process in the energy range from
threshold to W = 2.4 GeV. The models provide satisfactory
descriptions of experimental data in the whole energy region
and for all kaon angles. Their predictions for the cross sections
at small kaon angles, being consistent with the results of
the Saclay-Lyon model, suggest that the models can give
reasonable values of the cross sections for the hypernucleus
production. Construction of a new isobar model utilizing
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new precision data which could be used as an input in the
hypernucleus calculations was one of the aims of this work.

In the construction of the single-channel models based on an
effective Lagrangian we have utilized the consistent formalism
by Pascalutsa for description of baryon fields with higher
spin (3/2 and 5/2 in our case). This formalism ensures that
only the physical degrees of freedom contribute in the baryon
exchanges. Moreover, it provides regular amplitudes which are
especially important for the u-channel exchanges, allowing
the inclusion of hyperon resonances with spin 3/2. These
resonances were found to play an important role in description
of the background part of the amplitude. They have not been
considered in the older isobar models with the inconsistent
formalism, except for version C of the Saclay-Lyon model [7].

The set of selected nucleon resonances with spins 1/2, 3/2,
and 5/2 contributing most to the process agrees well with
that selected in the Bayesian analysis with the Regge-plus-
resonance model by the Gent group. We mostly confirm their
result on the structure of the resonant part of the amplitude. The
differences for the resonance part, e.g., different forms of the
hadron form factor, stem from the fact that we limit our analysis
only to the resonance region. As for the missing resonances,
we confirm importance of the P13(1900) and D13(1875) states
for reasonable data description. We have found, however, that
the spin-5/2 state N∗(1860), recently included in the PDG
Tables, is preferable to the spin-1/2 state P11(1880) included
in the Bayesian analysis.

Special attention was paid to the analysis of the background
part of the amplitude, which is important for a correct descrip-
tion of the forward-angle cross sections. In the background,
which is a complicated effect of many various contributions
in the isobar approach, the hyperon-resonance exchanges with

spin 1/2 and 3/2 together with the Born terms appeared to
be important components in the forward- and backward-angle
regions, respectively. However, the current extensive data set
still does not allow one to select the most significant hyperon
resonances in the u channel unambigously.

In the analysis, several forms of the hadron form factors
were considered; we chose the dipole and multidipole forms
as the most suitable for the data description. The obtained
values of the cutoff parameters, around 2 GeV, suggest rather
hard form factors.

The free parameters of the models were adjusted by
fitting the cross section, hyperon polarization, and the beam
asymmetry to new high-quality data from CLAS and LEPS and
to older data. The overall number of resonances in the models,
15 and 16, is quite moderate in view of complexity of the kaon
photoproduction in comparison with π or η photoproductions.

It is our desire and purpose to extend the model to study
the electroproduction. The presented formalism can be easily
extended in this line. Another possibility to improve the model
is to account for the unitarity by making the widths of the
nucleon resonances energy-dependent functions, as done, e.g.,
in the Kaon-MAID model.
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APPENDIX A: CONTRIBUTIONS TO THE INVARIANT AMPLITUDE

We consider the process

γV (k) + p(p) → K+(pK ) + �(p�) (A1)

with corresponding four-momenta given in the parentheses. The four-momentum of the intermediate particle is denoted by q.
In the next sections, we summarize the invariant amplitudes with no hadron form factors. These are introduced in the manner
shown in Appendix B. The electromagnetic form factors are explicitly included in the Born contributions only. For the rest of
the contributions, they are introduced merely by multiplying the coupling parameter with the appropriate electromagnetic form
factor.

1. Born s channel

The electromagnetic vertex function reads

V EM
μ = F1(k2)γμ + 1 − F1(k2)

k2
kμγ · k + i

F2(k2)

2mp

σμνk
ν, (A2)

where F1(k2) and F2(k2) are standard electromagnetic proton form factors, F1(0) = 1 and F2(0) = κp, where κp is anomalous
proton magnetic moment. In the strong vertex, the pseudoscalar coupling is used:

VS = igK�pγ5. (A3)

The invariant amplitude reads

MBs = ū(p�)VS

�p+ �k + mp

s − m2
p

V EM
μ εμu(p), (A4)

025204-14



PHOTOPRODUCTION OF K� ON THE PROTON PHYSICAL REVIEW C 93, 025204 (2016)

and can be cast into the form (16)

MBs = ū(p�)γ5

[
A1M1 + A2M2 + A4M4 + A6M6 + gK�p

k · ε

k2

]
u(p), (A5)

where the last term in the brackets is the gauge-invariance breaking term. One then gets for the scalar amplitudes

A1 = gK�p

s − m2
p

(F1 + F2), (A6a)

A2 = 2
gK�p

s − m2
p

F1, (A6b)

A4 = gK�p

s − m2
p

F2

mp

= −2A6. (A6c)

2. Born t channel

The electromagnetic vertex factor for pseudoscalar mesons K+ reads

V EM
μ = F (k2)(2pK − k)μ + 1 − F (k2)

k2
(2pK − k) · q qμ, (A7)

where F (0) = 1. The strong interaction vertex factor is the same as in (A3). The invariant amplitude has the form

MBt = ū(p�)VS

1

t − m2
K

V EM
μ εμu(p), (A8)

which can again be cast to the compact form

MBt = ū(p�)γ5

[
A2M2 + A3M3 − gK�p

k · ε

k2

]
u(p), (A9)

where the last term in the brackets is the same gauge-invariance breaking term as in the Born s-channel contribution, Eq. (A5),
but with the opposite sign. Therefore, these two terms cancel in the total amplitude of the process and the gauge invariance
remains preserved. There are only two nonzero scalar amplitudes,

A2 = −A3 = 2
gK�p

t − m2
K

F. (A10)

3. Born u channel

The electromagnetic γ�� vertex factor has the form

V EM
μ = F1(k2)

[
γμ − kμγ · k

k2

]
+ i

F2(k2)

2m�

σμνk
ν, (A11)

where F1(0) = 0 and F2(0) = κ�. The strong interaction vertex factor is the same as in (A3). The Born u-channel amplitude
reads

MBu = ū(p�)V EM
μ

�p�− �k + m�

u − m2
�

VS εμu(p) (A12)

and the scalar amplitudes Aj are

A1 = gK�p

u − m2
�

(F1 + F2), (A13a)

A3 = 2
gK�p

u − m2
�

F1, (A13b)

A5 = gK�p

u − m2
�

F2

m�

= 2A6. (A13c)
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4. Non-Born s channel: N∗(1/2±) exchange

The amplitude for this contribution has the form

MN∗(1/2)
NBs = iū(p�)gK�Rγ5�

�p+ �k + mR

s − m2
R + imR�R

μpR

mp + mR

σμνkν�εμu(p). (A14)

In the case of nucleon resonances we have to distinguish between the positive and negative parity resonances. This can be done
by using � in the form

� =
{

1, P = +1,
γ5, P = −1.

(A15)

The scalar amplitudes are

A1 = gK�R

s − m2
R + imR�R

mR ± mp

mR + mp

μpR, (A16a)

A4 = ± gK�R

s − m2
R + imR�R

2μpR

mp + mR

, (A16b)

A6 = −1

2
A4, (A16c)

where the upper (lower) sign corresponds with the case of positive (negative) parity of the nucleon resonance.

5. Non-Born s channel: N∗(3/2±) exchange

The amplitude of the spin-3/2 contribution reads

MN∗(3/2)
NBs = ū(p�) �

if

mRmK

εμνλρ γ5 γ λqμp
ρ
K

�q + mR

s − m2
R + imR�R

(
gνβ − 1

3
γ νγ β

)

× 1

mR(mR + mp)
(g1q

αFαβ + g2 �q Fβα γ α − g2γβ qα Fατ γ τ )� γ5 u(p), (A17)

where g1 and g2 are the electromagnetic coupling constants and f is the strong coupling constant. Casting the amplitude to the
compact form (16), the individual scalar amplitudes Aj read

A′
1 = −G1

3
(q · p� ± mRm�) q · k + G2

3
(2s q · p� − 3s k · p� + 2s mpm� ∓ mRm� q · k ± 2s mRm�

±2mpmRq · p� + 2q · p� q · k), (A18a)

A′
2 = G1

[
s k · p� ∓ mRmp k · p� − 1

3q · p� k2 ∓ 1
3mRm�k2

] + G2
[ − 2s k · p� ∓ 1

3m�mRk2 + 2
3k2 q · p�

]
, (A18b)

A′
3 = G1(±mRmp − s)q · k + G2(2q · k − k2)s, (A18c)

A′
4 = G1

[ − 1
3 s m� + 1

3 (mp ∓ mR) q · p� ± 1
3m�mpmR ± mR k · p�

]
−G2

[ − s m� ∓ 1
3m�mpmR + 2

3mp q · p�

]
, (A18d)

A′
5 = ∓G1mR q · k + G2(±mR + mp)s, (A18e)

A′
6 = G1

[ ∓ 1
3m�mpmR ∓ mR k · p� + 1

3m�s − 1
3q · p� (mp ∓ mR)

]
+G2

[ − 1
3m�s ∓ 1

3m�mpmR + 2
3q · p� (mp ± mR)

]
, (A18f)

where the coupling parameters G1 and G2 are given in Eq. (33) and the upper (lower) sign corresponds to the case of positive
(negative) parity of the nucleon resonance.

Each amplitude A′
i , i = 1, . . . ,6, has to be multiplied by the propagator denominator

Ai = 1

s − m2
R + imR�R

A′
i . (A19)
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6. Non-Born s channel: N∗(5/2±) exchange

The amplitude for the N∗(5/2±) exchange reads

MN∗(5/2)
NBS = − f

m4
K

ū(p�)γ5� q2p
μ
Kpν

K

�q + mR

s − m2
R + imR�R

Pμν,λρ(q) q2 pλ

[
g1

(2mp)4
γα Fαρ + g2

(2mp)5
pα Fαρ

]
� u(p). (A20)

Casting the amplitude to the compact form (16), the scalar amplitudes then read

A′
1 = G1

{
∓ Qp�pQkp�

± 1

5
Qp�p�

Qkp − 1

5
Qkp�

(B q · p + Cmp) + 1

5
Qp�p[2Cmp + (2s − q · k)B]

}
− G2

5
Qp�pCk · p,

(A21a)

A′
2 = G1

{ ± Qp�p(k2q · p� − 2sk · p�) ∓ 1
5Qp�p�

k2(q · p + s) − 1
5 [∓2q · p� k · p� q · ks ± k2(q · p�)2(q · k + s)

+ 2smRm�k · p�q · k − mRm�k2q · p�(q · k + s) + Cmpk2q · p�] − 1
5Qp�pk2B

}
+G2

{
(mR ± mp)Qp�pD − 1

5 (mR ± mp)k2q · pQp�p�
+ 1

5 (sk · p� − k2q · p�)(Bmpq · k − Ck · p) − 1
5Qp�pBmpk2

}
,

(A21b)

A′
3 = G1

{ ± sQp�p(2k · p + k2) − 1
5 s[(2k · p q · k − k2q · p)B − mpk2C]

}
+G2

{
s(mR ± mp)k · p Qp�p − 1

5 sk · p(Bmpq · k − Ck · p)
}
, (A21c)

A′
4 = G1

{
1
5 (mR ∓ mp)q · kQp�p�

− AQp�p + 1
5 {q · p�[Bmpq · k + C(2k2 + k · p) + 2s mRk · p�] ± 2k · p�s2m�}

− 1
5Qp�p[m�(mRmp ∓ 3s) + (3mR ∓ mp)q · p�]

} + G2
{ ± 1

5k2q · pQp�p�
∓ DQp�p + 1

5DE

− 1
5Qp�p[mRm�(k2 ∓ s) + q · p�(mRmp ∓ k2) ± s(q · p� − m�mp)]

}
, (A21d)

A′
5 = G1

{
s(±mp − mR)Qp�p − 1

5 s(Bmpq · k − Ck · p)
} + G2

{ ± sk · p Qp�p + 1
5Esk · p

}
, (A21e)

A′
6 = G1

{
AQp�p − 1

5q · p(±mp − mR)Qp�p�
− 1

5q · p�(Bmpq · k − Ck · p) − 1
5Qp�p[m�(±s − mRmp) + A]

}
−G2

{ ± q · p� k · p Qp�p ± 1
5q · p k · p Qp�p�

+ 1
5q · p� k · pE + 1

5Qp�pB k · p
}
, (A21f)

where the coupling parameters G1 and G2 are given as in (34) and

A = q · p�(±mp − mR), (A22a)

B = ±q · p� − m�mR, (A22b)

C = ±sm� − mR q · p�, (A22c)

D = k2 q · p� − s k · p�, (A22d)

E = mpC − q · p B, (A22e)

where the upper (lower) sign corresponds with the case of positive (negative) parity of the nucleon resonance.
The terms Qp�p, Qkp�

, Qp�p�
, and Qkp include four-momenta products given by the general prescription

QXY = s X · Y − X · q Y · q. (A23)

The notation of four-momenta is given in (A1).
Each amplitude A′

i , i = 1, . . . ,6, has to be multiplied by the propagator denominator as in Eq. (A19).

7. Non-Born t channel: K1(1270) and K ∗(892) exchange

The amplitude for the pseudovector meson K1(1270) (Jπ = 1+) exchange reads

MK1
NBt = ū(p�)

g

m
[gαμ k · (p − p�) − kα(p − p�)μ]

( − gαλ + (p − p�)α(p − p�)λ/m2
K1

)
t − m2

K1
+ imK1�K1

×
[
fV γλγ5 + fT

m� + mp

( �p�− �p)γλγ5

]
εμu(p), (A24)
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and the scalar amplitudes Aj are given as

A2 = −2GT

(m� + mp)
(
t − m2

K1
+ imK1�K1

) p� · k, (A25a)

A3 = 2GT

(m� + mp)
(
t − m2

K1
+ imK1�K1

) p · k, (A25b)

A4 = GV + GT (m� − mp)/(m� + mp)

t − m2
K1

+ imK1�K1

, (A25c)

A5 = −A4, (A25d)

with GV,T = gfV,T /m. The mass scale m is arbitrarily chosen as 1 GeV.
The vector meson K∗(892) (Jπ = 1−) exchange amplitude is

MK∗
NBt = iū(p�)

g

m
εμναβkα(p� − p)β

(−gνσ + (p − p�)ν(p − p�)σ /m2
K∗ )

t − m2
K∗ + imK∗�K∗

[
fV γ σ + fT

m� + mp

( �p�− �p)γ σ

]
εμu(p). (A26)

The scalar amplitudes are given as

A1 = GV (m� + mp) + GT t/(m� + mp)

t − m2
K∗ + imK∗�K∗

, (A27a)

A2 = 2k · p� GT

(m� + mp)
(
t − m2

K∗ + imK∗�K∗
) , (A27b)

A3 = −2k · p GT

(m� + mp)(t − m2
K∗ + imK∗�K∗ )

, (A27c)

A4 = GV − GT (m� − mp)/(m� + mp)

t − m2
K∗ + imK∗�K∗

, (A27d)

A5 = GV + GT (m� − mp)/(m� + mp)

t − m2
K∗ + imK∗�K∗

, (A27e)

with GV,T = gfV,T /m. As in the pseudovector case, the mass m is arbitrarily chosen to be 1 GeV.

8. Non-Born u channel: Y ∗(1/2±) exchange

The non-Born amplitude for the Y ∗(1/2±) exchange is

MY ∗(1/2)
NBu = iū(p�)

κ�R

m� + mR

σμνkν�
�p�− �k + mR

u − mR + imR�R

gK�∗pγ5�εμu(p), (A28)

with � defined as in (A15).
The scalar amplitudes Aj are then

A1 = gK�∗p

u − m2
R + imR�R

mR ± m�

mR + m�

κ�R, (A29a)

A5 = ± gK�∗p

u − m2
R + imR�R

2κ�R

m� + mR

, (A29b)

A6 = 1

2
A5, (A29c)

where the upper (lower) sign corresponds with the positive (negative) parity of the resonance.

9. Non-Born u channel: Y ∗(3/2±) exchange

The amplitude for the Y ∗(3/2±) exchange in the u-channel reads

MY ∗(3/2)
NBu = ū(p�) � γ5

1

mR(mR + m�)
[g1 qα Fαβ + g2( �q Fβαγ α − γβ qα Fαρ γ ρ)]

�q + mR

u − m2
R + imR�R

(
gβν − 1

3
γ βγ ν

)
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×�
if

mRmK

εμνλρ γ5γ
λqμp

ρ
K u(p), (A30)

Casting the amplitude to the compact form, the scalar amplitudes are given as

A′
1 = −1

3
G1q · k (±mRmp + q · p)

+ 1

3
G2

[±5mRmp q · k ± 2mRmpu + 2q · p q · k ± 2mRm� q · p + 2u q · p + 2m�mpu + 3up · k
]
, (A31a)

A′
2 = G1q · k (±mRm� − u) + G2(2q · k u − uk2 ∓ 4mRm� q · k), (A31b)

A′
3 = G1

{
1

3
k2(±mpmR + q · p) + p · k (u ∓ mRm�)

}
+ G2

[
± 4mRm� p · k ∓ 5

3
mRmpk2 − 2

3
q · p k2 − 2p · k u

]
,

(A31c)

A′
4 = ∓G1mR q · k + G2[±4mR q · k + u(±mR + m�)], (A31d)

A′
5 = 1

3
G1[q · p (±mR − m�) ∓ mRmpm� + ump ± 3mR p · k]

+G2

[
± 5

3
mRmpm� ∓ 4mR p · k − 1

3
ump + 2

3
m� q · p ∓ 4

3
mR q · p

]
, (A31e)

A′
6 = 1

3
G1[q · p (±mR − m�) ∓ mRmpm� + ump ± 3mR p · k]

+G2

[
±5

3
mRmpm� ∓ 4mR p · k ∓ 2mR q · p − ump + 2

3
m� q · p

]
, (A31f)

where G1,2 are given as in (33) with mp replaced by m� and the upper (lower) sign corresponds with the case of positive
(negative) parity of the hyperon resonance. Each amplitude A′

i , i = 1, . . . ,6, has to be multiplied by the propagator denominator,

Ai = 1

u − m2
R + imR�R

A′
i . (A32)

APPENDIX B: INCLUSION OF HADRON FORM FACTORS AND THE GAUGE-INVARIANCE RESTORATION

The hadron form factors are included in a similar manner as the electromagnetic ones for a gauge-invariant vertex: it is
sufficient to multiply the coupling parameter with the hadron form factor, G → FG, where G and F are the coupling parameter
and hadron form factor, respectively.

With the introduction of hadron form factors the gauge noninvariant terms in the s- and t-channel Born contributions no longer
cancel each other and the gauge invariance is lost. In order to restore it, the contact term

Mcontact = − gK�pū�(p�)γ5

[
2pμ+ �kγ μ

s − m2
p

(F̂DW − Fs) + 2p
μ
K

t − m2
K

(F̂DW − Ft )

]
up(p)εμ, (B1)

is implemented. For F̂DW the form

F̂DW = Fs(s) + Ft (t) − Fs(s)Ft (t) (B2)

introduced by Davidson and Workman [50] is used. In the definition (B2) it holds that Fs(s = m2
p) = Ft (t = m2

K ) = 1 and

F̂DW (s = m2
p,t) = F̂DW (s,t = m2

K ) = 1, which prevents the poles in the contact-term contribution (B1) from being reached.
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D. SKOUPIL AND P. BYDŽOVSKÝ PHYSICAL REVIEW C 93, 025204 (2016)

[9] S. Janssen, J. Ryckebusch, W. Van Nespen, D. Debruyne, and
T. Van Cauteren, Eur. Phys. J. A 11, 105 (2001).

[10] S. Janssen, D. G. Ireland, and J. Ryckebusch, Phys. Lett. B 562,
51 (2003).

[11] R. A. Williams, Chueng-Ryong Ji, and S. R. Cotanch, Phys.
Rev. C 46, 1617 (1992).
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