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Role of pentaquark components in φ meson production proton-antiproton annihilation reactions
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The pentaquark component uudss̄ is included in the proton wave functions to study φ meson production
proton-antiproton annihilation reactions. With all possible configurations of the uuds subsystem proposed for
describing the strangeness spin and magnetic moment of the proton, we estimate the branching ratios of the
annihilation reactions at rest pp̄ → φX (X = π 0, η, ρ0, ω) from atomic pp̄ S- and P -wave states by using
effective quark line diagrams incorporating the 3P0 model. The best agreement of theoretical prediction with the
experimental data is found when the pentaquark configuration of the proton wave function takes the flavor-spin
symmetry [4]FS[22]F [22]S .
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I. INTRODUCTION

The apparent Okubo-Zweig-Iizuka (OZI) rule violation
in φ production nucleon-antinucleon annihilation reactions
suggests the existence of strange quarks in the nucleon
[1,2]. There are also other experimental results indicating
the strangeness content in the nucleon; for example, the
strange quark-antiquark contributions to the electric and
magnetic strange form factors of the nucleon in parity violation
experiments of electron scattering from the nucleon [3]. The
strangeness magnetic moment μs is obtained by extrapolating
the magnetic strange form factors Gs

M (Q2) at momentum
transfer Q2 = 0, which suggests a positive value for μs [4], but
most theoretical calculations in the 3q picture of the proton
derive a negative value for this observable, as reviewed in
Refs. [5,6].

There is an interesting work in which the strangeness
magnetic moment of the proton is studied by including
the pentaquark component uudss̄, in addition to the 3q
component (uud), into the proton wave function [7]. It is
shown in Ref. [7] that almost all 5q configurations give the
strangeness spin contribution σs a negative value, consistent
with the experimental and theoretical indications of the spin
structure of the proton [8]. However, only the 5q configu-
rations, where the subsystem uuds is in the S state but the
s̄ is in the P state relative to the uuds subsystem, result
in negative values for μs , while positive values for μs are
found in the 5q configurations where the subsystem uuds is
in the P state but the s̄ is in the S state relative to the uuds
subsystem. The proposed pentaquark picture has been applied
to other works such as the estimation of the admixture uudss̄
component in the nucleon wave function with the strangeness
form factor of the proton [9–11], the study of the amplitudes
for the electromagnetic transition γ ∗N → N∗(1535) [12], and
the electromagnetic decay of the N (1440) resonance [13,14].

The recent report by the LHCb Collaboration [15] of
two charmonium pentaquark states P +

c (4380) and P +
c (4450)

*Corresponding author: yupeng@sut.ac.th

has cast more light on the works in which the pentaquark
configuration is considered a possible component of the
nucleon.

In the present work we study φ meson production
proton-antiproton annihilation reactions pp̄ → φX (X =
π0,η,ρ0,ω), considering all possible uudss̄ configurations for
the proton wave function in addition to the 3q component.
In our previous work [16], the proton-antiproton annihilation
reactions have been studied with the 5q components in
three models, namely, the uud cluster with a ss̄ sea quark
component, kaon-hyperon clusters based on the chiral quark
model, and the pentaquark picture uudss̄ where the subsystem
uuds is in the S state but the s̄ is in the P state relative to
the uuds subsystem, resulting in negative values for the σs .
In the case of the pentaquark picture, two configurations of
uudss̄, the mixed flavor-spin symmetries [31]FS[211]F [22]S
and [31]FS[31]F [22]S , were considered, since these two con-
figurations result in negative values for σs and μs . For the
atomic pp̄ S-wave states, the theoretical branching ratios in
comparison with experimental data were discussed and listed
in Table III in Ref. [16].

There are 15 possible 5q configurations, where the subsys-
tem uuds is in the P state but the s̄ is in the S state relative to
the uuds subsystem, resulting in negative values for the σs . It is
shown in Ref. [7] that the configuration with [4]FS[22]F [22]S
flavor-spin symmetry is likely to have the lowest energy. In this
work, we study the proton-antiproton annihilation reactions
from atomic pp̄ S- and P -wave states, focusing on these
15 configurations. The paper is organized as follows. Proton
wave functions with various 5q component are constructed in
Section II. In Sec. III we evaluate the branching ratios for the
reactions pp̄ → φX. Finally a summary and conclusions are
given in Sec. IV.

II. PROTON WAVE FUNCTIONS WITH
PENTAQUARK COMPONENTS

According to the OZI rule, violations in the NN̄ annihila-
tion reactions involving the φ meson suggest the presence of
an intrinsic ss̄ in the nucleon wave function. The proton wave
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function with the addition of uudss̄ components to the uud
quark component have been written generally in the form [17]

|p〉 = A|uud〉 + B|uudss̄〉, (1)

where A and B are the amplitude factors for the uud and uudss̄
components in the proton, respectively. It is suggested that the
strange quark contribution to the strangeness σ term appears to
lie somewhere in the range of 2–7% of the nucleon mass [18].
Therefore, the strangeness admixture can be treated as a small
perturbation in the proton wave function, that is, B2 � A2.
However, the five-quark component is the main contribution
to the φ production in pp̄ annihilation. The 5q states may be
constructed by coupling the uuds wave function with the s̄ one.

In the language of group theory, the permutation symmetry
of the four-quark configuration is characterized by the S4

Young tabloids [4], [31], [22], [211], and [1111]. That the
pentaquark wave function should be a color singlet demands
that the color part of the pentaquark wave function must be a
[222]1 singlet. The color state of the antiquark in pentaquarks is
a [11] antitriplet, thus the color wave function of the four-quark
configuration must be a [211]3 triplet,

χc
[211]λ (q4) =

1 2
3
4

, χc
[211]ρ (q4) =

1 3
2
4

,

χc
[211]η (q4) =

1 4
2
3

. (2)

The q4 color wave functions can be derived by applying
the λ-type, ρ-type, and η-type projection operators of the
irreducible representation IR[211] of the permutation group
S4 in Yamanouchi basis onto single-particle color states. The
details can be found in Ref. [19] and Appendix A. The singlet
color wave function of the pentaquark at color symmetry
pattern j = λ,ρ,η is given by

χC
[222]j = 1√

3

[
χc

[211]j (R) R̄ + χc
[211]j (G) Ḡ + χc

[211]j (B) B̄
]
.

(3)

The total wave function of the four quark configuration is
antisymmetric, implying that the spatial-spin-flavor part must
be a [31] state. The total wave function of the q4 configuration
may be written in the general form

ψ[1111] =
∑

i,j=λ,ρ,η

aij χc
[211]i χ

osf
[31]j . (4)

The coefficients aij can be determined easily by applying the
IR[31] and IR[211] of the permutation group S4 in Yamanouchi
basis onto the equation. The total wave function of the q4

subsystem takes the form

ψ[1111] = 1√
3

(
χc

[211]λχ
osf
[31]ρ − χc

[211]ρ χ
osf
[31]λ + χc

[211]ηχ
osf
[31]η

)
. (5)

TABLE I. Spatial-spin-flavor configurations of q4 clusters.

[31]OSF

[4]O [31]SF

[1111]O [211]SF

[22]O [31]SF,[211]SF

[211]O [31]SF,[211]SF,[22]SF

[31]O [4]SF,[31]SF,[211]SF,[22]SF

The spatial-spin-flavor and spin-flavor states of the q4 cluster
in the above equation can be written in the general forms

χosf
[31] =

∑
i,j

aijχ
o
[X]i χ

sf
[Y ]j

, (6)

χ
sf
[Z] =

∑
i,j

aijχ
f
[X]i

χ s
[Y ]j , (7)

where χo
i , χ

f
i , and χs

i are respectively the q4 spatial, flavor,
and spin wave functions of symmetry (S), antisymmetry (A),
λ type, ρ type, and η type. The possible spatial-spin-flavor
and spin-flavor configurations and explicit forms of the wave
functions are determined by applying the S4 representations in
Yamanouchi basis. Listed in Tables I and II are respectively the
possible spatial-spin-flavor and spin-flavor configurations.

According to the requirement of positive parity for the
proton wave function, if the uuds subsystem is in the
ground state then the relative angular momentum between
the subsystem and the s̄ must be odd. For the uuds subsystem
in the ground state, the spatial part of the subsystem takes
the [4]O symmetry and hence the spin-flavor part must take
the [31]FS symmetry as shown in Table I in order to form
an antisymmetric spatial-color-spin-flavor uuds part of the
pentaquark wave function. If the spin symmetry of the uuds
subsystem is described by [22]S corresponding to spin 0,
the flavor symmetry representations [31]F and [211]F may
combine with the spin symmetry state [22]S to form the mixed
symmetry spin-flavor states [31]FS as shown in Table II here
and in Ref. [7]. In this case, the 5q component may be written

TABLE II. Spin-flavor configurations of q4 clusters.

[4]FS

[22]F [22]S [31]F [31]S [4]F [4]S

[31]FS

[31]F [22]S [31]F [31]S [31]F [4]S [211]F [22]S
[211]F [31]S [22]F [31]S [4]F [31]S

[22]FS

[22]F [22]S [22]F [4]S [4]F [22]S [211]F [31]S
[31]F [31]S

[211]FS

[211]F [22]S [211]F [31]S [211]F [4]S [22]F [31]S
[31]F [22]S [31]F [31]S
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in the general form

|uudss̄〉 =
[∣∣∣∣1

2
,ms̄

〉
⊗ |1,μ〉

]
1
2 ,m5q

1√
3

(
χC

[222]λ

(
s̄χFS

[31]ρ

)

−χC
[222]ρ

(
s̄χFS

[31]λ

) + χC
[222]η

(
s̄χFS

[31]η

))
, (8)

where ( 1
2 ,m5q) denotes the spin of the 5q component. The

spin state of s̄ and the angular momentum � = 1 are denoted
by | 1

2 ,ms̄〉 and |1,μ〉, respectively. The function χFS
[31](λ,ρ,η)

represents the coupled spin-flavor part with the mixed sym-
metry [31]FS. The 5q component with the configurations
[31]FS[211]F [22]S and [31]FS[31]F [22]S results in negative
values for σs and μs [7].

For the P -state uuds subsystem, in the language of group
theory, the orbital angular momentum � = 1 means that the
spatial wave function of the subsystem has the mixed symme-
try [31]O . Therefore, the possible spin-flavor configurations
are [4]FS, [31]FS, [211]FS, and [22]FS, as shown in Table II,
which couple with the [31]O spatial state to form the [31]OSF

spatial-flavor-spin components of the uuds subsystem. There
are three possible spin symmetries of the uuds subsystem:
[22]S , [31]S , and [4]S representations as shown in Table I,
corresponding to spin S = 0, 1, 2, respectively. For this case,
the full wave functions of the 5q component will be presented
in Sec. III.

III. THE N N̄ TRANSITION AMPLITUDE AND
BRANCHING RATIOS

In this work we study the annihilation reactions NN̄ →
Xφ(X = π0,η,ρ0,ω) with the effective quark line diagram
for the shake-out of a φ meson from the 5q component, as
described in Fig. 1 [17].

According to the quark diagram, the transition amplitudes
from the 5q component |uudss̄〉 and the antiproton |ūūd̄〉 wave
function in the momentum space representation are given by

TA1 =2AB

∫
d3q1 · · · d3q8d

3q1′ · · · d3q4′ 〈φX|
q1′ · · · 
q4′ 〉

× 〈
q1′ · · · 
q4′ |OA1 |
q1 · · · 
q8〉〈
q1 · · · 
q8|(uudss̄) ⊗ (ūūd̄)〉.
(9)

FIG. 1. The quark line diagram corresponding to the production
of two meson final states in pp̄ annihilation [17,20]. The dots refer to
the effective vertex of the 3P0 for qq̄ pairs destroyed with the quantum
numbers of the vacuum: 3P0, isospin I = 0, and color singlet [21].

The effective operators OAI
, corresponding to the quark line

diagram, take the form

OA1 = λA1δ
(3)(
q1 − 
q1′ )δ(3)(
q2 − 
q2′ )δ(3)(
q3 − 
q3′ )δ(3)

× (
q8 − 
q4′ )V 56V 47, (10)

where λA1 is a parameter describing the effective strength of
the transition topology which can be fitted by experimental
data. The 3P0 quark-antiquark vertex is defined as

V ij =
∑

μ

σ
ij
−μY1μ(
qi − 
qj )δ(3)(
qi + 
qj )(−1)1+μ1ij

F 1ij
C , (11)

where σ
ij
−μ is the spin operator for destroying qi q̄j pairs with

spin 1 while Y1μ(
q) is the spherical harmonics in momentum
space [22]. The unit operators in flavor and color spaces are
denoted by 1ij

F and 1ij
C , respectively. Nevertheless, if the 5q

component is treated as a small perturbative admixture in
the proton (B2 � 1), the transition amplitude with the term
〈
q1 · · · 
q8|(uudss̄) ⊗ (ūūd̄ s̄s)〉 corresponding to the rearrange-
ment process [17] can be ignored. The wave functions of the
mesons M (φ and X) and p̄ (q̄3) and q4q̄ states are given in
Appendix B.

In the present work we consider the φ meson production
pp̄ annihilation reactions with the 5q component for the
case of the subsystem uuds in the P state. Fifteen possible
configurations of uudss̄ will be considered. In order to
involve relative motion, we choose the plane wave basis
for the relative motions of pp̄ and φX in the center-of-
momentum system: δ(3)(
q1 + 
q2 + 
q3 + 
q4 + 
q5 − 
k)δ(3)(
k +

q6 + 
q7 + 
q8) and δ(3)(
q − 
q1′ − 
q2′ )δ(3)(
q + 
q3′ + 
q4′ ), re-
spectively. In the low-momentum approximation, as done in
Ref. [16], the leading order of the transition amplitude T

SP(PS)
f i

for the S to P (L = 0, �f = 1) and P to S (L = 1, �f = 0)
transitions from the initial state |i〉 to final state |f 〉 with the
quark line diagram A1 can be obtained as

T
SP(PS)
f i (
q,
k)

= 2ABλA1Nπ4qlf kLexp
{−Q2

qq
2 − Q2

kk
2
}〈f |OA1 |i〉,

(12)

where N = NφNXNuudss̄Np̄ and

〈f |OA1 |i〉 = 〈f |
∑
ν,λ

(−1)ν+λσ 56
−νσ

47
−λ156

F 147
F 156

C 147
C

×
∑
m,n

�SP(PS)
m,n f SP(PS)

m,n (ν,μ,λ,L,M,lf ,mf )|i〉,

(13)

is the spin-color-flavor weight. Here Q2
k,Q

2
q and �SP(PS)

m,n are
geometrical constants depending on the meson and baryon
with f SP(PS)

m,n (ν,μ,λ,L,M,lf ,mf ) being the spin-angular mo-
mentum functions as shown in Appendix C.

In this work, we choose the radial parameter of the internal
meson wave function RM = 4.1 GeV−1, corresponding to the
rms radius 〈r2〉1/2

S-wave = 0.5 fm of the qq̄ system [22]. For
the radial parameters of the proton, we use RB = 3.1 GeV−1

for the q3 wave function, leading to the rms radius 〈r2〉1/2 =
0.61 fm for the q3 component of the nucleon [23]. There
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is no solid evidence of the existence of a pentaquark state
and, therefore, we have indeed no reliable knowledge of the
length parameter of the q5 wave function. The simplest way
is to use the same length parameter for the q5 wave function,
that is, Ruudss̄ = 3.1 GeV−1, which results in the rms radius
〈r2〉1/2 = 0.67 fm for the q5 component. Considering the small
contribution of the q5 component, the combined rms radius of
the nucleon is almost the same as the rms radius of the q3

component.
The initial state |i〉 and final state |f 〉 can be written as

|i〉 = ∣∣{χ 1
2 ,m5q

(uudss̄) ⊗ χ 1
2 ,mp̄

(ūūd̄)
}

S,Sz
⊗ (L,M)

〉
J,Jz

, (14)

|f 〉 = ∣∣{χ1,mα
(φ) ⊗ χjm,m3′ ,4′ (X)

}
j,mε

⊗ (�f ,mf )
〉
J,Jz

, (15)

where χ 1
2 ,m5q

(uudss̄) is the spin-flavor-color part of the 5q

component, L and lf are respectively the initial and final orbital
angular momenta, J is the total angular momentum, and I is
the isospin. The matrix element 〈f |OA1 |i〉 can be evaluated by
using the two-body matrix elements for spin, flavor, and color,
corresponding to the 3P0 quark model,

〈0|σ ij
υ

∣∣χJij

mij
(ij )

〉 = δJij ,1δmij ,−υ(−1)υ
√

2, (16)

〈0|1ij
F

∣∣χTij

tij (ij )
〉 = δTij ,0δtij ,0

√
2, (17)

and

〈0|1ij
C

∣∣qi
αq̄

j
β

〉 = δαβ, (18)

where α and β are the color indices.
Since we consider pp̄ annihilations at rest, the proton-

antiproton wave function is strongly correlated due to the NN̄
interaction [24,25]. Therefore the initial state interaction for
the atomic state of the pp̄ system has to be involved [23],
resulting in the transition amplitude

Tf,i(
q) =
∫

d3k T
SP(PS)
f i (
q,
k)φI

LSJ(
k), (19)

where φI
LSJ(
k) is the protonium wave function in the momen-

tum space for fixed isospin I . With the transition amplitude,
the partial decay width for the transition of pp̄ atomic states
to two-meson final states φX can be calculated by

�pp̄→φX = 1

2E

∫
d3pφ

2Eφ

d3pX

2EX

δ(3)( 
pφ + 
pX)δ(E − Eφ − EX)

× |Tf,i(
q)|2 , (20)

where E is the total energy (E = 1.876 GeV) and Eφ,X =√
m2

φ,X + 
p2
φ,X is the energy of the outgoing mesons φ and

X with mass mφ,X and momentum 
pφ,X. With the obtained
transition amplitude given by Eqs. (12) and (19), the partial
decay width for the transition from the pp̄ atomic state |i〉 =
|ILSJ 〉 can be written as

�pp̄→φX = |AB|2λ2
A1

f (φ,X)〈f |OA1 |i〉2γi(I ). (21)

Here, the function f (φ,X) is the kinematical phase-space
factor depending on the relative momentum and the masses
of φX system, while γi(I ) is the factor depending on the
initial-state interaction. Thus, the branching ratio BR of the

annihilation reactions at rest pp̄ → φX(X = π0,η,ρ0,ω) can
be expressed as

BRi(φ,X) = (2J + 1)�pp̄→φX

�tot(i)
, (22)

where (2J + 1) are the statistical weights corresponding to the
initial values of the total angular momentum J . The fraction
�tot(i) denotes the total annihilation width of the pp̄ atomic
state with fixed principal quantum number [26].

The functions γi(I ), depending on the initial-state inter-
action, are related to the probability of a protonium state to
have isospin I and spin J . We adopt the probability γi(I )
and the total decay width �tot(J ) obtained in an optical
potential calculation [24,26]. The model dependence due to
the harmonic oscillator approximation may be reduced by
applying a simplified phenomenological approach for NN̄
annihilation [20,27]. Instead of the obtained kinematical
phase-space factor f (φ,X), we use the phenomenological
form,

f (φ,X) = qexp{−1.2 GeV−1 (s − sφX)1/2}, (23)

where sφX = (mφ + mX)1/2 and
√

s = (m2
φ + q2)1/2 + (m2

X +
q2)1/2. The kinematical phase-space factor in Eq. (23) has been
fitted to the cross section of various annihilation channels
[28]. Other alternative correcting factors can be found in
the literature. For instance, one may use the phase-space
factor pF 2

L(q), where FL(q) is the so-called Blatt-Weisskopf
damping factor depending on the final state orbital angular
momentum L, to account more or less for the final-state
interaction in pp̄ annihilations into two mesons. The explicit
forms of FL(q) can be found in Table IV in Ref. [2]. For
the annihilation reactions in this work, however, FL(q) simply
take the value 1, as the final momentum is much higher than
the so-called cutoff momentum, 197 MeV. Both the phase-
space factor in Eq. (23) and the Blatt-Weisskopf damping
form have merits in the investigation of the low-energy pp̄
annihilations, but it is clear that the factor in Eq. (23) is more
suitable to the present work.

The obtained theoretical results for branching ratios of
Eq. (22) for each uudss̄ configuration of the S to P (L = 0,
�f = 1) and P to S (L = 1, �f = 0) transitions are compared
with the experimental data (BRexp) in Tables III and IV, re-
spectively. To eliminate the factor |AB|2λ2

A1
which is unknown

a priori, the model predictions of one entry (as indicated by �)
have been normalized to the experimental number. Therefore,
the obtained branching ratios cannot be used for estimating
the pentaquark content (the coefficient B) in the nucleon.
For the transition pp̄ → φη, the physical η meson is produced
by its nonstrange component ηud with η = ηud (

√
1/3 cos θ −√

2/3 sin θ ), with the pseudoscalar mixing angle θ varying
from −10.7◦ to −20◦. As shown in Tables III and IV, the
model predictions with flavor-spin mixed symmetry [4]FS are
in good agreement with the experimental data. Especially,
excellent agreement is found in the configuration with flavor-
spin symmetry [4]FS[22]F [22]s which gave branching ratios
consistent with the experimental data for both the S to P and
P to S transitions.
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TABLE III. Branching ratio BR (×104) for the transition pp̄ →
φX (X = π 0,η,ρ0,ω) in pp̄ s-wave state annihilations at rest, with
the initial state denoted by 2I+1,2S+1LJ . The results indicated by �

have been normalized to the experimental values.

11S0 → ωφ 33S1 → π 0φ 31S0 → ρ0φ 13S1 → ηφ

BRexp 6.3 ± 2.3 5.5 ± 0.7 3.4 ± 1.0 0.9 ± 0.3
[4][22][22] 6.3� 5.4 3.8 1.4–1.8
[4][31][31] 6.3� 5.4 3.8 1.4–1.8
[31][211][22] 6.3� 4.3 3.8 1.9–2.5
[31][211][31] 6.3� 3.8 2.7 1.2–1.5
[31][22][31] 6.3� 5.9 4.9 1.0–1.4
[31][31][22] 6.3� 7.3 3.9 0.90–1.0
[22][211][31] 6.3� 181.2 97.5 44.0–57.6
[31][31][31] 6.3� 10.0 6.3 2.7–3.6
[22][22][22] 6.3� 0.85 3.4 5.3–6.9
[211][211][22] 6.3� 0.85 3.5 5.3–6.7
[211][211][31] 6.3� 7.7 4.0 3.2–4.2
[22][31][31] 6.3� 4.5 2.3 2.2–2.9
[211][22][31] 6.3� 181.2 97.5 44.0–57.6
[211][31][22] 6.3� 0.85 3.5 5.3–6.9
[211][31][31] 6.3� 0.24 0.17 0.090–0.11

IV. SUMMARY

We have estimated the branching ratios of the annihilation
reactions at rest pp̄ → φX (X = π0,η,ρ0,ω) from atomic
pp̄ S- and P -wave states in the effective quark line diagrams
incorporating the 3P0 model. The proton wave functions are
assumed to include the intrinsic strangeness in the form of
qqqss̄ components. Considered in the work are 15 qqqss̄
configurations, where the subsystem uuds is in the P state but
the s̄ is in the S state relative to the uuds subsystem, since
these configurations lead to negative strangeness spin σs and
positive magnetic moment μs .

It is shown in Table III that the theoretical results
with flavor-spin symmetries [4]FS[22]F [22]s , [4]FS[31]F [31]s ,
[31]FS[211]F [31]s , [31]FS[22]F [31]s , and [31]FS[31]F [22]s for
the pentaquark components are consistent with the experimen-
tal data for pp̄ annihilation in the S wave. Table IV shows
that for pp̄ annihilation in the P wave the pentaquark con-
figurations with flavor-spin symmetries [4]FS[22]F [22]s and
[31]FS[211]F [22]s lead to theoretical predictions consistent
with the experimental data. Therefore, one may conclude that
the best agreement of theoretical results with the experimental
data is found in the pentaquark configuration with flavor-spin
symmetry [4]FS[22]F [22]s .
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APPENDIX A: COLOR WAVE FUNCTIONS
OF q4 CLUSTERS

The q4 color wave functions can be derived by applying
the λ-type, ρ-type, and η-type projection operators of the
irreducible representation IR[211] of the permutation group
S4 in the Yamanouchi basis onto single-particle color states.
For the product state RRGB, for example, we have,

P[211]λ (RRGB) =⇒ χc
[211]λ (R),

P[211]ρ (RGRB) =⇒ χc
[211]ρ (R), (A1)

P[211]η (RGBR) =⇒ χc
[211]η (R),

TABLE IV. Branching ratio BR (×104) for the transition pp̄ → φX (X = π 0,η,ρ0,ω) in pp̄ p-wave state annihilations at rest.

33P0,1,2 → ρ0φ 31P1 → π 0φ 13P0,1,2 → ωφ 11P1 → ηφ

BRexp 3.7 ± 0.9 0 + 0.3 2.9 ± 1.4 0.4 ± 0.2

[4][22][22] 3.7� 0.31 1.6 0.10–0.14

[4][31][31] 3.7� 1.1 5.3 0.36–0.47

[31][211][22] 3.7� 0.48 1.3 0.17–0.22

[31][211][31] 3.7� 1.4 6.1 0.55–0.71

[31][22][31] 3.7� 0.65 5.1 0.18–0.23

[31][31][22] 3.7� 0.22 2.5 0.067–0.087

[22][211][31] 3.7� 0.012 0.23 (1.2–1.5)×10−5

[31][31][31] 3.7� 0.76 2.4 0.26–0.34

[22][22][22] 3.7� 0.0029 13 0.0061–0.0080

[211][211][22] 3.7� 0.0029 13 0.0061–0.0080

[211][211][31] 3.7� 0.0029 3.6 0.23–0.30

[22][31][31] 3.7� 5.1 × 10−4 2.2 0.16–0.20

[211][22][31] 3.7� 0.012 0.23 (1.2–1.5)×10−5

[211][31][22] 3.7� 0.0029 13 0.0061–0.0080

[211][31][31] 3.7� 7.4×10−4 0.63 0.0062–0.0081
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with

χc
[211]λ (R) = 1√

16
(2|RRGB〉 − 2|RRBG〉 − |GRRB〉

− |RGRB〉 − |BRGR〉 − |RBGR〉 + |BRRG〉
+ |GRBR〉 + |RBRG〉 + |RGBR〉),

χc
[211]ρ (R) = 1√

48
(3|RGRB〉 − 3|GRRB〉 + 3|BRRG〉

− 3|RBRG〉 + 2|GBRR〉 − 2|BGRR〉 − |BRGR〉
+ |RBGR〉 + |GRBR〉 − |RGBR〉),

χc
[211]η (R) = 1√

6
(|BRGR〉 + |RGBR〉 + |GBRR〉

− |RBGR〉 − |GRBR〉 − |BGRR〉). (A2)

APPENDIX B: WAVE FUNCTIONS OF MESONS, q3,
AND q4q̄ SYSTEMS

The wave functions of the mesons M (φ and X), p̄ (q̄3),
and q4q̄ systems, which are employed in this work, can be

expressed in terms of the quark momenta as

〈
qi ′ 
qj ′ |M〉 ≡ ϕM (
qi ′ ,
qj ′ )χM (qq̄)

= NMexp

{
−R2

M

8
(
qi ′ − 
qj ′ )2

}
χM (qq̄),

〈
q6 
q7 
q8|ūūd̄〉 ≡ ϕp̄(
q6,
q7,
q8)χp̄(q̄3)

= NBexp

{
−R2

B

4

[
(
q7 − 
q8)2

+ (
q7 + 
q8 − 2
q6)2

3

]}
χp̄(q̄3), (B1)

respectively, where NM = (R2
M/π )3/4 and NB = (3R2

B/π )3/2,
with R(M,B) being the meson (baryon) radial parameter.
Here, χM (qq̄) and χB(q̄3) denote the spin-flavor-color wave
function, [S] ⊗ [F ] ⊗ [C]. Note that the internal spatial wave
functions are approximated as the harmonic oscillator forms.

In case of uuds quarks in their ground state with the spatial
state symmetry [4]O , the full 5q component wave function is
given by

〈
q1...
q5|uudss̄〉 = ϕuudss̄(
q1, . . . ,
q5)Y1μ

( 
q2 + 
q3 + 
q4 + 
q5 − 4
q1√
20

)
ψuudss̄ , (B2)

with

ϕuudss̄(
q1,..,
q5) = Nuudss̄ exp

{
−R2

uudss̄

4

[
(
q2 − 
q3)2 + (
q2 + 
q3 − 2
q4)2

3

+ (
q2 + 
q3 + 
q4 − 3
q5)2

6
+ (
q2 + 
q3 + 
q4 + 
q5 − 4
q1)2

10

]}
, (B3)

where ψuudss̄ is the spin-flavor-color wave function as defined in Eq. (8).
The 5q wave function for the uuds subsystem with orbital angular momentum � = 1 can be constructed systematically in the

group theory approach mentioned in Sec. II. For instance, for the simplest case where the spin-flavor part of the q4 subsystem
takes the [4]FS symmetry, the wave function takes the form

〈uudss̄|
q1 · · · 
q5〉 = ϕuudss̄(
q1, . . . ,
q5)ψuudss̄ , (B4)

where ϕuudss̄(
q1, . . . ,
q5) has the same form as that shown in Eq. (B3). Here, ψuudss̄ representing the spatial-spin-flavor-color wave
function of the 5q component is derived as

ψuudss̄ =
∑
J4q

[∣∣∣∣1

2
,ms̄

〉
⊗ [

s̄ χFS
[4]S4q ,m4q

(uuds) ⊗ χOC
�,μ

]
J4q ,m4q

]
1
2 ,m5q

, (B5)

where

χOC
1,μ = 1√

3

[
χC

[222]λY1μ

( 
q2 − 
q3√
2

)
− χC

[222]ρ Y1μ

( 
q2 + 
q3 − 2
q4√
6

)
+ χC

[222]ηY1μ

( 
q2 + 
q3 + 
q4 − 3
q5√
12

)]
(B6)

for � = 1, and J4q = � ⊕ S4q is the total angular momentum for the uuds subsystem.
There are three configurations for the q4 spin-flavor symmetry [4]FS, that is, [22]F [22]S , [31]F [31]S , and [4]F [4]S as shown

in Table II, and hence three q4 spin-flavor wave functions χFS
[4] as follows:

χFS
[4]S4q =0

=
∑
i,j

aijχ
F
[22]i χ

S
[22]j , χFS

[4]S4q =1
=

∑
i,j

aijχ
F
[31]i χ

S
[31]j ,

χFS
[4]S4q =2

=
∑
i,j

aijχ
F
[4]i χ

S
[4]j . (B7)

It is an easy task to determine the coefficients by applying the S4 representations in Yamanouchi basis onto the above equations.
The explicit forms of the spin and flavor wave functions can be work out in the approach of projection operators as shown in
Sec. II for the color wave functions.
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APPENDIX C: THE SPIN-ANGULAR MOMENTUM
FUNCTIONS AND THE GEOMETRICAL CONSTANTS

The spin-angular momentum functions f SP(PS)
m,n (ν,μ,

λ,L,M,lf ,mf ) in Eq.(13) are given by

f SP
1,1 = f SP

1,2 = f SP
1,3 = (−1)νδλ,−νδμ,mf

,

f SP
2,1 = f SP

2,2 = f SP
2,3 = (−1)μδμ,−νδλ,mf

,

f SP
3,1 = f SP

3,2 = f SP
3,3 = (−1)μδμ,−λδν,mf

,
(C1)

f PS
1,1 = f PS

1,2 = f PS
1,3 = (−1)λ+μδλ,−νδμ,−M,

f PS
2,1 = f PS

2,2 = f PS
2,3 = (−1)λ+μδμ,−νδλ,−M,

f PS
3,1 = f PS

3,2 = f PS
3,3 = (−1)ν+μδμ,−λδν,−M.

The geometrical constants Q2
k,Q

2
q and �SP(PS)

m,n , in Eq.(13),
depending on the meson and baryon size parameters, are given
as follows:

Q2
k =− R4

M

9
(
3
(
R2

B + R2
uudss̄

) + 2R2
M

) + R2
M

18
+ R2

uudss̄

15

Q2
p = 12R2

B

(
R2

M+6R2
uudss̄

)+R2
uudss̄

(
28R2

M+15R2+25R2
uudss̄

)
32

(
3R2

B + 2R2
M + 3R2

uudss̄

) ,

�SP
1,1 =−

√
3(β2 + 4β3 + 4β4 + 3)(2Q3 − Q4)(2Q3 + Q4)

8Q3
2Q

5
3Q

5
4

,

�SP
2,1 =−

√
3(β3 + β4 + 1)(2Q3 − Q4)(2Q3 + Q4)

2Q3
2Q

5
3Q

5
4

,

�SP
3,1 =−

√
3β4

(
4Q2

3 + Q2
4

)
2Q3

2Q
5
3Q

5
4

,

�SP
1,2 =−

√
3
2 (β2 + β3 − 2β4)

(
4Q2

3 − Q2
4

)
4Q3

2Q
5
3Q

5
4

,

�SP
2,2 =

√
3
2 (β3 + β4 + 1)

(
2Q2

3 + Q2
4

)
Q3

2Q
5
3Q

5
4

,

�SP
3,2 =

√
3
2β4

(
2Q2

3 − Q2
4

)
Q3

2Q
5
3Q

5
4

,

�SP
1,3 =−3(β2 − β3)

(
4Q2

3 − Q2
4

)
4
√

2Q3
2Q

5
3Q

5
4

,

�SP
2,3 =−3(β3 + β4 + 1)

2
√

2Q3
2Q

5
3Q

3
4

,

�SP
3,3 = 3β4

2
√

2Q3
2Q

5
3Q

3
4

,

�PS
1,1 = −

√
3(α2 + 4α3 + 4α4 − 3)

(
4Q2

3 − Q2
4

)
8Q3

2Q
5
3Q

5
4

,

�PS
2,1 = −

√
3(α3 + α4 − 1)

(
4Q2

3 − Q2
4

)
2Q3

2Q
5
3Q

5
4

,

�PS
3,1 = −

√
3α4

(
4Q2

3 + Q2
4

)
2Q3

2Q
5
3Q

5
4

,

�PS
1,2 = −

√
3
2 (α2 + α3 − 2α4)

(
4Q2

3 − Q2
4

)
4Q3

2Q
5
3Q

5
4

,

�PS
2,2 =

√
3
2 (α3 + α4 − 1)

(
2Q2

3 + Q2
4

)
Q3

2Q
5
3Q

5
4

,

�PS
3,2 =

√
3
2α4

(
2Q2

3 − Q2
4

)
Q3

2Q
5
3Q

5
4

,

�PS
1,3 = −3(α2 − α3)

(
4Q2

3 − Q2
4

)
4
√

2Q3
2Q

5
3Q

5
4

,

�PS
2,3 = −3(α3 + α4 − 1)

2
√

2Q3
2Q

5
3Q

3
4

,

�PS
3,3 = 3α4

2
√

2Q3
2Q

5
3Q

3
4

, (C2)

where

Q2
2 = R2

M

2
+ R2

uudss̄ ,

Q2
3 = 1

4

[
2R2

M + 3
(
R2

B + R2
uudss̄

)]
,

Q2
4 = R2

B + R2
uudss̄ ,

α2 = 0,

α3 = − −R2
B − R2

uudss̄

2R2
M + 3R2

B + 3R2
uudss̄

,

α4 = − −R2
M − R2

B − R2
uudss̄

2R2
M + 3R2

B + 3R2
uudss̄

,

β2 = 1/2,

β3 = − R2
M + 3R2

B + R2
uudss̄

2R2
M + 3R2

B + 3R2
uudss̄

,

β4 = − R2
M + 2R2

uudss̄

2
(
2R2

M + 3R2
B + 3R2

uudss̄

) . (C3)
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