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The modified number of constituent quark (NCQ) scaling vn/nn/2
q ∼ KET /nq for mesons and baryons and

the scaling relation vn ∼ v
n/2
2 for higher-order anisotropic flows, which were observed experimentally, have been

investigated at the top energy of Relativistic Heavy-Ion Collider. It has been found that the modified NCQ scaling
cannot be obtained from the naive coalescence even by taking into account event-by-event fluctuations but may
be due to hadronic afterburner or thermal freeze-out. In addition, we observed that the behavior of the vn/v

n/2
2

ratio is sensitive to the partonic interaction. Further insights about the relation between the two scalings are
discussed.

DOI: 10.1103/PhysRevC.93.024906

I. INTRODUCTION

Relativistic heavy-ion collisions provide a useful way of
studying the phase which may exist at extremely high energy
densities on earth. Collectivity is one of the main pieces of
evidence of the produced dense matter, named quark-gluon
plasma (QGP), produced in the Relativistic Heavy-Ion Collider
(RHIC) [1–4]. Due to the almond shape of the produced
QGP in noncentral collisions, there are more freeze-out
particles moving in plane than out of plane, leading to the
so-called elliptic flow (v2). Generally, the anisotropic flow
is believed to be mostly produced at the early stages of
the collision when the interaction is strongest. The number
of constituent quark (NCQ) scaling law v2/nq ∼ pT /nq or
v2/nq ∼ KET /nq [5–10], where pT and KET are respectively
the transverse momentum and transverse kinetic energy, shows
that the underlining mechanism for hadron elliptic flow is from
partons, as baryons and mesons are scaled by their number
of constituent quark numbers nq . The NCQ scaling can be
well explained by the coalescence model [11–15], typically
by assuming that hadrons are formed from the combination
of constituent quarks whose distance in momentum space is
small [16,17]. The coalescence or recombination mechanism
also automatically results in the relation v4 ∼ v2

2 from the
leading order [17], which originates actually from the partonic
level [18]. Although the above coalescence picture works well
at intermediate pT or KET , it has been observed that the
collective flows of light and heavy hadrons obey the mass
ordering at low pT , showing the thermalization of different
species of particles in the medium [6,8,9], and this can usually
be explained by a blast wave model [19] or the Cooper-Frye
freeze-out condition [20] in the hydrodynamic model.

Recently, it was realized that the initial spatial distribution
of QGP is not a smooth one but has density fluctuations [21,22].
The initial anisotropy in coordinate space can develop into
the final anisotropy in momentum space as a result of QGP
interaction. This leads to the redefinition of higher-order
harmonic flows with respect to their event plane or participant
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plane, especially the odd-order harmonic flows [21–27]. It was
further found that the scaling of the higher-order harmonic
flows is modified to vn/n

n/2
q ∼ KET /nq , mostly from least

square fit [28]. The above modified NCQ scaling for higher-
order flows might stem from the relation between flows
of different orders vn ∼ v

n/2
2 [29], although the relationship

between the two scalings has never been clarified. It was
further found that the coefficient is nearly a constant with
respect to transverse momentum but increases with decreasing
collision centrality [29,30]. Studying the scaling relation
between flows of different orders is helpful in understanding
the behavior of the initial eccentricities [31,32], the viscous
property of QGP [33], and the acoustic nature of anisotropic
flows [30], while it is known that the hadronization may affect
the scaling coefficient. Since in the previous recombination
model [17] the initial density fluctuation was not considered,
it is of great interest to include event plane corrections in
the quark coalescence model. In the present work we carry
out such a study to see whether the corrections can lead to the
modified scaling of the higher-order harmonic flows vn/n

n/2
q ∼

KET /nq . We also try to investigate the scaling vn ∼ v
n/2
2 and

understand the relation between the two scalings. We will
see that the modified scaling relation can originate from the
hadronic afterburner or thermalization in the freeze-out stage
instead of higher-order corrections in the coalescence picture.

This paper is organized as follows. In Sec. II we briefly
describe the models and formalism used in the present
study, i.e., a multiphase transport (AMPT) model, the quark
coalescence formalism with event-by-event fluctuations, and
the thermal blast wave model. In Sec. III we investigate the
scaling law of vn/n

n/2
q ∼ KET /nq and vn ∼ v

n/2
2 in detail

by using the theoretical tools presented in Sec. II. Finally, a
conclusion is given in Sec. IV.

II. MODELS AND FORMALISM

In the present study, the AMPT model is used to give a
reasonable final parton phase-space distribution and serves as
a useful tool to test the effect of hadronic afterburner. With the
collective flows of partons in the freeze-out stage, a naive
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quark coalescence model is used to generate the hadronic
flows analytically in the spirit of Ref. [17] by taking into
account event-by-event fluctuations. To study the scaling law
from thermal freeze-out other than the coalescence picture, a
generalized blast wave model with higher-order flows is also
described for the convenience of discussion.

A. AMPT model

The AMPT model [34] has been widely used in theoretical
studies or experimental simulations. For Au+Au collisions
at

√
sNN = 200 GeV, which is the system in the present

study, the string melting version of AMPT is used. The
initial parton information is generated from the heavy-ion jet
interation generator (HIJING) model [35] by melting hadrons
into their valence quarks and antiquarks. The evolution of
the partonic phase is then modeled by Zhang’s parton cascade
(ZPC) [36], where the interaction between quarks or antiquarks
is effectively described by two-body scatterings. The freeze-
out time of a parton is given by its last scattering, after which
the distance between two quarks is out of their scattering cross
section. The phase-space information at this stage is used for
hadronization in AMPT and the analytical coalescence as given
in the next subsection. In the current version of AMPT, the
hadronization is described by a coalescence model in which
quarks or antiquarks that are close in coordinate space can form
hadrons, and the hadron species depends on the flavors of its
valence quarks and their invariant mass. In this way the space
anisotropy from the final partonic stage to the initial hadronic
stage is preserved, while the distance between valence quarks
in momentum space may not be small. We will return to
this point later. After hadronization, the hadronic evolution is
described by a relativistic transport (ART) model [37], where
elastic and inelastic scatterings as well as resonance decays
of hadrons are properly treated. We will use ART as a tool to
investigate the hadronic afterburner effect on the scaling law
of collective flows in the present work.

B. Analytical coalescence

The above described AMPT model is a dynamical transport
model. To have some insights into the quark coalescence
mechanism from a more easily handled way, here we give the
analytical coalescence formalism by extending the previous
work in Ref. [17] and taking into account event-by-event
fluctuations. We start from the following azimuthal distribution
of partons at freeze-out stage:

f (pT ,φ) ∝ 1 + 2
∞∑

n=1

vn(pT ) cos[n(φ − ψn)], (1)

where φ is the azimuthal angle, vn is the nth-order anisotropic
flow, and ψn is the corresponding event plane. In the present
study, the partonic flow vn can be obtained from the AMPT
model with ψn determined by the parton phase-space distribu-
tion at the freeze-out stage.

In the naive analytical coalescence picture, the momentum
distribution of quarks inside hadrons is neglected, and the
hadron yield is proportional to the quark density to the power
of its constituent quark number. This can be viewed as a

limit in the dynamical coalescence method [11,12] where the
momentum part of the Wigner function is a δ function instead
of a Gaussian form. In this limit the azimuthal distribution of
mesons and baryons can be expressed respectively as

F (2pT ,φ) ∝ f 2(pT ,φ) ∝ 1 + 2
∞∑

n=1

Vn(2pT ) cos[n(φ − ψn)],

F̃ (3pT ,φ) ∝ f 3(pT ,φ) ∝ 1 + 2
∞∑

n=1

Ṽn(3pT ) cos[n(φ − ψn)],

where the anisotropic flows of mesons and baryons can be
calculated respectively from

Vn(2pT ) =
∫ 2π

0 cos(nφ − nψn)F (2pT ,φ)dφ∫ 2π

0 F (2pT ,φ)dφ
(2)

and

Ṽn(3pT ) =
∫ 2π

0 cos(nφ − nψn)F̃ (3pT ,φ)dφ∫ 2π

0 F̃ (3pT ,φ)dφ
. (3)

We expand the value of n up to 4 in this work. The detailed
expressions of meson and baryon flows as well as their various
ratios in terms of the partonic flows and event planes are given
in Appendix A.

The original method proposed by Kolb et al. [17] can be
considered as a limit from a smooth initial condition with
ψn = 0, while in the present study the phase space distribution
of freeze-out partons is generated by AMPT model calculation
and thus the event-by-event fluctuation is included. Comparing
the flow expressions of mesons and baryons [Eqs. (A6)–(A8)
and (A13)–(A15)] with those in Ref. [17], one finds that the
main difference is the event plane angle correlation. Since the
cosine of the event plane angle correlation is always smaller
than 1, one expects that only the leading terms are important,
as in Ref. [17].

Despite of the success of the dynamical coalescence
model in explaining the scaling law of hadron flows [11–15]
in relativistic heavy-ion collisions as well as light cluster
production [38] in intermediate-energy heavy-ion collisions,
this model surfers from an energy conservation problem
at lower transverse momenta but works reasonably well at
intermediate transverse momenta. On the other hand, the naive
coalescence method provides us with an opportunity to study
the hadronization in a semianalytical way. The intuitive picture
of the naive coalescence method can serve as a baseline for the
comparison with results from other models to be discussed in
the following.

C. Blast wave model

In the present subsection, we briefly review the blast wave
model, which can be viewed as a simplified version of the
Cooper-Frye freeze-out condition used in the hydrodynamic
model. In this sense, the initial hadrons right after hadroniza-
tion are assumed to be in thermal and chemical equilibrium,
and the medium is undergoing a collective expansion. In
the standard version of the blast wave model [19], particles
are emitted perpendicularly from the surface of an elliptical
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medium in the transverse plane representing the azimuthal
distribution in the midrapidity region, and this model can be
used to fit the pT spectra and the v2 of different particle species
reasonably well, by neglecting the hadronic afterburner effect.
The standard version of the blast wave model can be easily
generalized to include the higher-order collective flows and
anisotropies of the system right after hadronization [28].

In the generalized blast wave model, the Lorentz-invariant
thermal distribution can be expressed as

f (�r, �p) ∝ exp(−pμuμ/Tf ), (4)

where Tf is the freeze-out temperature, pμ = {E,px,py,pz} is
the four-momentum, uμ = γ {1,ρx,ρy,ρz} is the four-velocity

field with γ = 1/
√

1 − ρ2
x − ρ2

y − ρ2
z , and the nth-order az-

imuthal velocity as well as the spatial density anisotropies are
respectively expressed as

ρ(φ,r) = ρ0

{
1 +

∞∑
n=1

ρn cos[n(φ − ψn)]

}
r

R
, (5)

S(φ) = 1 +
∞∑

n=1

sn cos[n(φ − ψn)]. (6)

In the above, ρ0 is the radial flow, R is the size of the emission
source, and ψn is the event plane but is set to 0 in the blast wave
study. In the hydrodynamical calculation, both the velocity and
spatial anisotropy coefficients ρn and sn can be consistently
obtained. Since in the present study we will only consider the
modified NCQ scaling vn/n

n/2
q ∼ KET /nq for mesons and

baryons using the generalized blast wave model, we simply
set ρn = 0.43 and sn = −0.05 fm to be the same for different
orders n. The values of the other parameters are taken from
Ref. [39] used to describe the initial hadron distribution before
hadronic evolution in Au+Au collisions at

√
sNN = 200 GeV,

and they are Tf = 175 MeV, R = 5.0 fm, and ρ0 = 0.55.

III. RESULTS AND DISCUSSIONS

We now investigate the scaling of higher-order anisotropic
flows vn in detail. The standard event-plane method in calcu-
lating vn is detailed in Appendix B, where the autocorrelation
between the particle and the event plane is removed, and
it is found that the resolution correction is very small. In
our previous work [26], a partonic scattering cross section
of 1.5 mb in the AMPT model is used to describe the
experimental anisotropic flows from two-particle cumulant
method in Au+Au collisions at

√
sNN = 200 GeV. Since the

purpose of this study is not to fit the experimental data but
to understand the origin of the scaling law of higher-order
harmonic flows, we will compare the results from partonic
scattering cross sections of 1.5 and 10 mb, and will mainly
focus on the results from the cross section of 10 mb with a
larger collectivity effect.

A. The modified NCQ scaling vn/nn/2
q ∼ K ET /nq

First of all, we investigate numerically whether the higher-
order corrections from event-by-event fluctuations in the
analytical coalescence scenario can be responsible for the

FIG. 1. Scaling relations of hadrons vn ∼ KET in minibias
Au+Au collisions at

√
sNN = 200 GeV from the analytical coales-

cence scenario.

modified NCQ scaling vn/n
n/2
q ∼ KET /nq . In this case events

of Au+Au collisions at
√

sNN = 200 GeV with a partonic
scattering cross section of 10 mb have been generated from
the AMPT model to get the information of partonic flows
at freeze-out. The hadronic flow is then calculated through
the analytical coalescence scenario. The mass of the hadron
used in calculating the transverse kinetic energy KET =√

p2
T + m2 − m is set to be two or three times the bare quark

mass in ZPC but ideally it should approach the constituent mass
at hadronization, with the latter realized in a more realistic
Nambu-Jona-Lasinio transport model [40,41]. According to
Fig. 1, it is seen that the analytical coalescence scenario leads
to the original NCQ scaling vn/nq ∼ KET /nq instead of the
modified one vn/n

n/2
q ∼ KET /nq . This is consistent with the

discussions in Sec. II B.
To understand the relation between the modified NCQ

scaling vn/n
n/2
q ∼ KET /nq and the scaling relation vn ∼ v

n/2
2 ,

we can go into further details of the results in Fig. 1 in a
semianalytical way. Suppose for mesons and baryons we have
the scaling relation

vn = Cm
n v

n/2
2 (for mesons),

vn = Cb
nv

n/2
2 (for baryons), (7)

for n > 2 with the scaling coefficients Cm
n and Cb

n for mesons
and baryons, respectively. Then, if the NCQ scaling for v2 is
satisfied, i.e., v2/nq = g(KET /nq), we automatically get the
modified NCQ scaling relation for higher-order flows (n > 2):

vm
n

/
nn/2

q = Cm
n gn/2(KET /nq) (for mesons),

vb
n

/
nn/2

q = Cb
ng

n/2(KET /nq) (for baryons). (8)

The modified NCQ scaling relation is satisfied only if Cm
n =

Cb
n , which is not the case from the analytical coalescence

scenario. If the value of F0/F̃0 is approximated to be 1, Cm
n /Cb

n

is about
√

3/2 for n = 3 and 3/2 for n = 4, from the leading
terms in Eqs. (A16), (A17), (A18), and (A19).
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FIG. 2. Histogram of the momentum distance �p between va-
lence quarks in the hadronization process from the original (a) and the
modified AMPT model (b) in Au+Au collisions at

√
sNN = 200 GeV.

It has been shown that the flows of mesons and baryons
from the AMPT model show a reasonable modified NCQ
scaling relation in Ref. [42], although the reason has never been
clarified. As we have mentioned, in the original AMPT model
partons which are closer in coordinate space can coalesce
into hadrons to preserve the geometry distribution, while the
momentum distance �p between valence quarks may not be
small. This is displayed in the upper panel of Fig. 2, which
shows that although �p peaks around 0.2 GeV/c, it can be
relatively large in some of the quark combinations. This is
different from the naive analytical coalescence scenario. Using
the original AMPT model, we display the scaling relation
vn ∼ KET for initial hadrons right after hadronization and
final hadrons after hadronic rescatterings with a 10-mb parton
scattering cross section in Fig. 3. One sees that the flows of
initial hadrons do not deviate from the NCQ scaling relation

FIG. 3. Scaling relation of vn ∼ KET for initial hadrons right
after hadronization (left) and final hadrons after hadronic evolution
(right) in minibias Au+Au collisions at

√
sNN = 200 GeV from the

original AMPT model.

FIG. 4. Same as Fig. 3 but from the modified AMPT model.

vn/nq ∼ KET /nq by much, although �p between valence
quark is not small. On the other hand, the flows of final
hadrons follow reasonably well the modified NCQ scaling
vn/n

n/2
q ∼ KET /nq after hadronic evolution, consistent with

the results in Ref. [42].
The results from the original AMPT model did not tell us

whether the modified NCQ scaling of final hadrons comes from
the imperfect coalescence or the hadronic afterburner effect.
To effectively study the hadronic afterburner effect with a
coalescence scenario similar to the analytical one, we modified
the AMPT model by abandoning the hadrons with �p larger
than 0.2 GeV/c, as displayed in the lower panel of Fig. 2.
The rescatterings and decays of these hadrons in the hadronic
phase are turned off, and they will not enter the flow analysis
by special labeling. In this case the effective density in the
hadronic phase is lower and the hadronic rescattering effect is
weaker. It is seen from Fig. 4 that the flows of initial hadrons
are closer to the NCQ scaling relation vn/nq ∼ KET /nq

compared with that from the original AMPT model shown
in Fig. 3, consistent with the results from the analytical
coalescence scenario except that the magnitude of the flows
is slightly different, as a result of different hadron masses
used in the two approaches. Despite the weaker hadronic
afterburner effect compared with that from the original AMPT
calculation, the flows of final hadrons again follow the relation
vn/n

n/2
q ∼ KET /nq , after hadronic evolution including elastic

and inelastic scatterings as well as resonance decays. It is
thus more believable that the hadronic afterburner can be
responsible for the modified NCQ scaling.

Since the hadronic rescatterings, which further thermalize
the system, can lead to the modified NCQ scaling relation, one
would expect that the latter might be due to the thermalization
mechanism rather than the coalescence picture. This idea can
be tested with Cooper-Frye freeze-out in the hydrodynamic
model or the thermal blast wave model. Similar analysis has
been done in Ref. [43], and in this study we apply a generalized
blast wave model including higher-order flows. The scaling
relation of vn ∼ KET is compared in Fig. 5 for pions, kaons,
and protons, and the similar magnitude of vn for different
orders is due to the same flow parameter used in the generalized

024906-4



INVESTIGATING THE SCALING OF HIGHER-ORDER . . . PHYSICAL REVIEW C 93, 024906 (2016)

FIG. 5. Scaling relation of vn ∼ KET for pions, kaons, and
protons from a generalized blast wave model.

blast wave model as mentioned in Sec. II C. We observed the
mass ordering that the flow of heavy particles is below that
of lighter particles if vn is plotted as a function of transverse
momentum pT . However, it is seen that flows of pions, kaons,
and protons do not deviate from the NCQ scaling relation
vn/nq ∼ KET /nq by much even from a thermal blast wave
model where the only difference between different particle
species is their masses. On the other hand, it is observed that
the modified NCQ scaling vn/n

n/2
q ∼ KET /nq is well satisfied

for higher-order anisotropic flows at smaller transverse kinetic
energies. It is of great interest to see whether this is the case in
a more consistent hydrodynamic model and with the hadronic
afterburner effect.

B. The scaling ratio vn/v
n/2
2

The scaling relation of v4 ∼ v2
2 has been observed exper-

imentally [44–46] for many years, and it has been studied
theoretically in both transport models [18,47] and hydrody-
namic models [33,48,49]. The general relation of vn ∼ v

n/2
2

from consistent event plane analysis was realized only re-
cently [29]. This scaling relation is important in understanding
the initial condition [31,32] and the properties of the produced
QGP [30,33]. From the analytical coalescence scenario in the
present study, we will see that the scaling coefficient depends
not only on the viscosity of QGP but on the hadron species as
well.

With the partonic phase-space distribution at freeze-out
from the AMPT model, we have obtained the anisotropic
flows for hadrons via the analytical coalescence scenario and
display the scaling relation of vn ∼ v

n/2
2 in Figs. 6 and 7.

Figure 6 shows the centrality dependence of the vn/v
n/2
2 ratio

for n = 3 and 4 for partons, mesons, and baryons, and the
results from partonic cross sections of 10 and 1.5 mb are
compared. Compared with the ratios for partons, v3/v

3/2
2 is

about 1/
√

2 that for mesons and about 1/
√

3 that for baryons,
and v4/v

2
2 is about 1/2 that for mesons and about 1/3 that for

baryons, according to Eqs. (A16), (A17), (A18), and (A19).
Interestingly, from a parton scattering cross section of 10 mb,
the vn/v

n/2
2 ratio decreases with increasing centrality, as a

FIG. 6. Centrality dependence of vn/v
n/2
2 for partons, mesons,

and baryons in Au+Au collisions at
√

sNN = 200 GeV from the
analytical coalescence scenario with partonic flows from the parton
scattering cross section of 10 mb (left) and 1.5 mb (right).

result of similar centrality dependence of the initial anisotropy
ratio εn/ε

n/2
2 pointed out in Refs. [30,32]. On the other hand,

from a parton scattering cross section of 1.5 mb, the correlation
between the initial anisotropies εn and the final collective
flows vn is not that strong and the ratio vn/v

n/2
2 shows a

nonmonotonical dependence on the centrality. The latter case
is similar to that observed from the STAR Collaboration [50]
(also Figs. 4 and 5 in Ref. [49]). Figure 7 shows that the vn/v

n/2
2

ratios for partons, mesons, and baryons are mostly independent
of the transverse momentum. This is an interesting phenomena
showing that the QGP interaction generates the anisotropic
flows simultaneously in a pT -independent way according
to the relation vn/εn ∼ (v2/ε2)n/2 from initial anisotropies

FIG. 7. Transverse momentum (pT ) dependence of vn(pT )/
[v2(pT )]n/2 in minibias Au+Au collisions at

√
sNN = 200 GeV from

the analytical coalescence scenario with partonic flows from the
parton scattering cross section of 10 mb (left) and 1.5 mb (right).
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εn [30]. It is also interesting to see that the vn/v
n/2
2 ratio

is smaller from a parton scattering cross section of 1.5 mb
compared with that of 10 mb, and the effect is larger for
n = 3 than for n = 4. The insensitivity of v4/v

2
2 to the parton

scattering cross section can be due to the strong correlation
between v2 and v4. The vn/v

n/2
2 ratio for partons is generated

by the initial condition and the interaction of QGP, while
from the analytical coalescence scenario it is guaranteed
that the behavior of mesons and baryons follow the same
centrality and transverse momentum dependence of that for
partons. According to the previous discussion, the vn/v

n/2
2

ratios for mesons and baryons are expected to be almost
the same experimentally, since the modified NCQ scaling
vn/n

n/2
q ∼ KET /nq is satisfied. To study the initial condition

and the properties of QGP through the vn/v
n/2
2 ratio, the

coalescence correction is non-negligible.
In the present work, we have further investigated the

effect of the hadronic afterburner on the vn/v
n/2
2 ratio by

using the original and modified AMPT model. We found
that the effect of hadronic rescattering on vn/v

n/2
2 ratio is

much smaller compared with that of the partonic interaction.
On the other hand, the ratios are similar for mesons and
baryons after hadronic evolution from the AMPT model. This
supports our previous discussion on the validity of the modified
NCQ scaling law vn/n

n/2
q ∼ KET /nq , which is approximately

satisfied from the AMPT model calculations.

IV. CONCLUSIONS

In this work, we have investigated the modified number-
of-constituent-quark (NCQ) scaling vn/n

n/2
q ∼ KET /nq and

the scaling relation vn ∼ v
n/2
2 . We found that the modified

NCQ scaling cannot be obtained from the naive analytical
coalescence scenario, which allows the coalescence of quarks
only if they have the same momentum, even if event-by-event

fluctuations are taken into account. This is related to the
different scaling coefficients for mesons and baryons in the
scaling relation vn ∼ v

n/2
2 , while experimentally they are

expected to be almost the same. On the other hand, the modified
NCQ scaling may stem from the hadronic afterburner effect
or thermal freeze-out rather than the coalescence mechanism.
The centrality dependence of the vn/v

n/2
2 ratio has been shown

to be sensitive to the parton scattering cross section, while the
pT independency of the ratio seems to be a robust phenomena.
The v3/v

3/2
2 ratio is found to be more sensitive to the partonic

interaction compared with v4/v
2
2. Our investigation can be

important in understanding the hadronization mechanism as
well as the correlation between the anisotropic flows and the
initial anisotropies of QGP in relativistic heavy-ion collisions.
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APPENDIX A: HADRONIC ANISOTROPIC FLOWS FROM
ANALYTICAL COALESCENCE

In this appendix, we give the expressions of the higher-order
harmonic flows of hadrons based on an ideal quark coalescence
scenario by considering the event-by-event initial density
fluctuations. From the azimuthal distribution of partons in
terms of their anisotropic flows up to the fourth order

f (pT ,φ) ∝ f0 +
4∑

n=1

fn cos[n(φ − ψn)] (A1)

with f0 = 1 and fn = 2vn, the azimuthal distribution of mesons in the limit that their valence quarks should have the same
momentum can be expressed as

F (2pT ,φ) ∝ f 2(pT ,φ) = F0 + 2f0f1 cos(φ − ψ1) + f1f2 cos(φ + ψ1 − 2ψ2) + f2f3 cos(φ + 2ψ2 − 3ψ3)

+ f3f4 cos(φ + 3ψ3 − 4ψ4) + 2f0f2 cos(2φ − 2ψ2) + 1
2f 2

1 cos(2φ − 2ψ1) + f1f3 cos(2φ + ψ1 − 3ψ3)

+ f2f4 cos(2φ + 2ψ2 − 4ψ4) + 2f0f3 cos(3φ − 3ψ3) + f1f2 cos(3φ − ψ1 − 2ψ2) + f1f4 cos(3φ + ψ1 − 4ψ4)

+ 2f0f4 cos(4φ − 4ψ4) + 1
2f 2

2 cos(4φ − 4ψ2) + f1f3 cos(4φ − ψ1 − 3ψ3) + · · · (A2)

with

F0 = f 2
0 + 1

2f 2
1 + 1

2f 2
2 + 1

2f 2
3 + 1

2f 2
4 . (A3)

The anisotropy flows of mesons can be calculated from

Vn =
∫ 2π

0 cos(nφ − nψn)F (2pT ,φ)dφ∫ 2π

0 F (2pT ,φ)dφ
, (A4)
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and their expressions for different orders are

V1 = 1

F0

[
f0f1 + 1

2
f1f2 cos(2ψ1 − 2ψ2) + 1

2
f2f3 cos(ψ1 + 2ψ2 − 3ψ3) + 1

2
f3f4 cos(ψ1 + 3ψ3 − 4ψ4)

]
, (A5)

V2 = 1

F0

[
f0f2 + 1

4
f 2

1 cos(2ψ1 − 2ψ2) + 1

2
f1f3 cos(ψ1 + 2ψ2 − 3ψ3) + 1

2
f2f4 cos(4ψ2 − 4ψ4)

]
, (A6)

V3 = 1

F0

[
f0f3 + 1

2
f1f2 cos(ψ1 + 2ψ2 − 3ψ3) + 1

2
f1f4 cos(ψ1 + 3ψ3 − 4ψ4)

]
, (A7)

and

V4 = 1

F0

[
f0f4 + 1

4
f 2

2 cos(4ψ2 − 4ψ4) + 1

2
f1f3 cos(ψ1 + 3ψ3 − 4ψ4)

]
. (A8)

Similarly, the azimuthal distribution of baryons in the same scenario can be expressed as

F̃ (3pT ,φ) ∝ f 3(pT ,φ)

= F̃0 + (
3
4f 3

1 + 3f 2
0 f1 + 3

2f1f
2
2 + 3

2f1f
2
3 + 3

2f1f
2
4

)
cos(φ − ψ1) + 3f1f2 cos(φ + ψ1 − 2ψ2)

+ 3
4f 2

1 f3 cos(φ + 2ψ1 − 3ψ3) + 3
4f 2

2 f3 cos(φ + 3ψ3 − 4ψ2) + 3f0f2f3 cos(φ + 2ψ2 − 3ψ3)

+ 3f0f3f4 cos(φ + 3ψ3 − 4ψ4) + 3
2f1f2f4 cos(φ + ψ1 + 2ψ2 − 4ψ4) + 3

2f2f3f4 cos(φ − 2ψ1 − 3ψ3 + 4ψ4)

+ (
3
4f 3

2 + 3f 2
0 f2 + 3

2f2f
2
1 + 3

2f2f
2
3 + 3

2f2f
2
4

)
cos(2φ − 2ψ2) + 3

2f0f
2
1 cos(2φ − 2ψ1)

+ 3
4f 2

1 f4 cos(2φ + 2ψ1 − 4ψ4) + 3
4f 2

3 f4 cos(2φ − 6ψ3 + 4ψ4) + 3f0f1f3 cos(2φ + ψ1 − 3ψ3)

+ 3f0f2f4 cos(2φ + 2ψ2 − 4ψ4) + 3
2f1f2f3 cos(2φ − ψ1 + 2ψ2 − 3ψ3) + 3

2f1f3f4 cos(2φ − ψ1 + 3ψ3 − 4ψ4)

+ (
3
4f 3

3 + 3f 2
0 f3 + 3

2f3f
2
1 + 3

2f3f
2
2 + 3

2f3f
2
4

)
cos(3φ − 3ψ3) + 1

4f 3
1 cos(3φ − 3ψ1)

+ 3
4f1f

2
2 cos(3φ + ψ1 − 4ψ2) + 3f1f2 cos(3φ − ψ1 − 2ψ2) + 3f0f1f4 cos(3φ + ψ1 − 4ψ4)

+ 3
2f1f2f4 cos(3φ − ψ1 + 2ψ2 − 4ψ4) + 3

2f2f3f4 cos(3φ − ψ2 + 3ψ3 − 4ψ4)

+ (
3
4f 3

4 + 3f 2
0 f4 + 3

2f4f
2
1 + 3

2f4f
2
2 + 3

2f4f
2
3

)
cos(4φ − 4ψ4) + 3

2f0f
2
2 cos(4φ − 4ψ2)

+ 3
4f 2

1 f1 cos(4φ − 2ψ1 − 2ψ2) + 3f0f1f3 cos(4φ − ψ1 − 3ψ3)

+ 3
2f1f2f3 cos(4φ + ψ1 − 2ψ2 − 3ψ3) + 3

4f 2
3 f2 cos(4φ + 2ψ2 − 6ψ3) + · · · (A9)

with

F̃0 = f 3
0 + 3

2f0f
2
1 + 3

2f0f
2
2 + 3

2f0f
2
3 + 3

2f0f
2
4 + 3

4f 2
1 f2 cos(2ψ1 − 2ψ2) + 3

2f1f2f3 cos(ψ1 + 2ψ2 − 3ψ3)

+ 3
4f 2

2 f4 cos(4ψ2 − 4ψ4) + 3
2f1f3f4 cos(ψ1 + 3ψ3 − 4ψ4). (A10)

The anisotropic flows of baryons can be calculated from

Ṽn =
∫ 2π

0 cos(nφ − nψn)F̃ (3pT ,φ)dφ∫ 2π

0 F̃ (3pT ,φ)dφ
, (A11)

and their detailed expressions are

Ṽ1 = 1

F̃0

[
3

2
f1f

2
0 + 3

8
f 3

1 + 3

4
f1f

2
2 + 3

4
f1f

2
3 + 3

4
f1f

2
4 + 3

2
f1f2 cos(2ψ1 − 2ψ2) + 3

8
f 2

1 f3 cos(3ψ1 − 3ψ3)

+ 3

8
f 2

1 f3 cos(3ψ1 − 3ψ3) + 3

8
f 2

2 f3 cos(ψ1 + 3ψ3 − 4ψ2) + 3

2
f0f2f3 cos(ψ1 + 2ψ2 − 3ψ3)

+ 3

4
f1f2f4 cos(2ψ1 + 2ψ2 − 4ψ4) + 3

2
f0f3f4 cos(ψ1 + 3ψ3 − 4ψ4) + 3

4
f2f3f4 cos(ψ1 − 2ψ2 − 3ψ3 + 4ψ4)

]
, (A12)
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Ṽ2 = 1

F̃0

[
3

2
f2f

2
0 + 3

8
f 3

2 + 3

4
f2f

2
1 + 3

4
f2f

2
3 + 3

4
f2f

2
4 + 3

4
f0f

2
1 cos(2ψ1 − 2ψ2) + 3

8
f 2

1 f4 cos(2ψ1 + 2ψ2 − 4ψ4)

+ 3

4
f 2

3 f4 cos(2ψ2 + 4ψ4 − 6ψ3) + 3

2
f0f1f3 cos(ψ1 + 2ψ2 − 3ψ3) + 3

4
f1f2f3 cos(ψ1 + 3ψ3 − 4ψ2)

+ 3

2
f0f2f4 cos(4ψ2 − 4ψ4) + 3

4
f1f3f4 cos(ψ1 − 2ψ2 − 3ψ3 + 4ψ4)

]
, (A13)

Ṽ3 = 1

F̃0

[
3

2
f3f

2
0 + 3

8
f 3

3 + 3

4
f3f

2
1 + 3

4
f3f

2
2 + 3

4
f3f

2
4 + 3

8
f 3

1 cos(3ψ1 − 3ψ3) + 3

8
f 2

2 f1 cos(ψ1 + 3ψ3 − 4ψ2)

+ 3

2
f1f2 cos(ψ1 + 2ψ2 − 3ψ3) + 3

2
f0f1f4 cos(ψ1 + 3ψ3 − 4ψ4) + 3

4
f2f3f4 cos(2ψ2 + 4ψ4 − 6ψ3)

+ 3

4
f1f2f4 cos(ψ − 2ψ2 − 3ψ3 + 4ψ4)

]
, (A14)

and

Ṽ4 = 1

F̃0

[
3

2
f4f

2
0 + 3

8
f 3

4 + 3

4
f4f

2
1 + 3

4
f4f

2
2 + 3

4
f4f

2
3 + 3

4
f0f

2
2 cos(4ψ2 − 4ψ4) + 3

8
f 2

1 f2 cos(2ψ1 + 2ψ2 − 4ψ4)

+ 3

2
f0f1f3 cos(ψ1 + 3ψ3 − 4ψ4) + 3

4
f1f2f3 cos(ψ1 − 2ψ2 − 3ψ3 + 4ψ4) + 3

8
f2f

2
3 cos(2ψ2 + 4ψ4 − 6ψ3)

]
. (A15)

Here we only consider the flows up to the fourth order; thus the even higher-order terms in Eqs. (A2) and (A9) do not contribute.
To investigate the scaling relation between flows of different orders vn ∼ v

n/2
2 , we also give the expressions of the corresponding

ratios in the analytical coalescence scenario. The ratios of Vn/V
n/2

2 for mesons with n = 3 and 4 by neglecting the higher-order
terms can be written as

V3

V
3/2

2

≈ F
1/2
0

[
1√
2

v3

v
3/2
2

+ 1√
2

v1

v
1/2
2

cos(ψ1 + 2ψ2 − 3ψ3) + 1√
2

v1v4

v
3/2
2

cos(ψ1 + 3ψ3 − 4ψ4)

]
, (A16)

V4

V 2
2

≈ F0

[
1

2

v4

v2
2

+ 1

4
cos(4ψ2 − 4ψ4) + 1

2

v1v3

v2
2

cos(ψ1 + 3ψ3 − 4ψ4)

]
. (A17)

The ratios of Ṽn/Ṽ
n/2

2 for baryons with n = 3 and 4 by neglecting the higher-order terms can be written as

Ṽ3

Ṽ
3/2

2

≈ F̃
1/2
0

[
1√
3

v3

v
3/2
2

+ 1√
3

v3
3

v
3/2
2

+ 2√
3

v3v
2
1

v
3/2
2

+ 2√
3
v3v

1/2
2 + 2√

3

v3v
2
4

v
3/2
2

+ 1√
3

v3
1

v
3/2
2

cos(3ψ1 − 3ψ3)

+ 1√
3
v

1/2
2 v1 cos(ψ1 + 3ψ3 − 4ψ2) + 2√

3

v1

v
1/2
2

cos(ψ1 + 2ψ2 − 3ψ3) + 2√
3

v1v4

v
3/2
2

cos(ψ1 + 3ψ3 − 4ψ4)

+ 2√
3

v3v4

v
1/2
2

cos(2ψ2 + 4ψ4 − 6ψ3) + 2√
3

v1v4

v
1/2
2

cos(ψ1 − 2ψ2 − 3ψ3 + 4ψ4)

]
, (A18)

Ṽ4

Ṽ 2
2

≈ F̃0

[
1

3

v4

v2
2

+ 1

3

v3
4

v2
2

+ 2

3

v4v
2
1

v2
2

+ 2

3
v4 + 2

3

v4v
2
3

v2
2

+ 1

3
cos(4ψ2 − 4ψ4) + 1

3

v2
1

v2
cos(2ψ1 + 2ψ2 − 4ψ4)

+ 2

3

v1v3

v2
2

cos(ψ1 + 3ψ3 − 4ψ4) + 1

3

v2
3

v2
cos(2ψ2 + 4ψ4 − 6ψ3) + 2

3

v1v3

v2
cos(ψ1 − 2ψ2 − 3ψ3 + 4ψ4)

]
. (A19)

APPENDIX B: ANISOTROPIC FLOWS FROM EVENT
PLANE METHOD

Here we briefly review the standard method of calculating
the anisotropic flows as well as the event plane from particle
freeze-out distribution in the present work. We refer the readers
to Refs. [51,52] for more details.

We start from the momentum distribution of emitted
particles as follows:

E
d3N

d3p
= 1

2π

d2N

pT dpT dy

{
1 +

∞∑
n=1

2vn cos[n(φ − ψn)]

}
,

(B1)
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where φ is the azimuthal angle of emitted particles, y and pT

are respectively the rapidity and transverse momentum, vn is
the nth-order anisotropic flows, and ψn is the corresponding
event plane angle. The relation between the event flow vector
Qn and the event plane angle ψn can be expressed as

Qn,x = Qn cos(nψn) =
∑

i

ωi cos(nφi), (B2)

Qn,y = Qn sin(nψn) =
∑

i

ωi sin(nφi), (B3)

where the summation goes over all particles i used in the event
plane calculation, and φi and ωi are respectively the azimuthal
angle and the weight factor for particle i, with the latter set
as the transverse momentum of the particle. The event plane
angle can thus be calculated from

ψn =
[

atan2

∑
i ωi sin(nφi)∑
i ωi cos(nφi)

]
/n. (B4)

The nth-order flow magnitude vobs
n with respect to this event

plane is

vobs
n (pT ,y) = 〈cos[n(φi − ψn)]〉, (B5)

where 〈· · · 〉 denotes an average over all particles in all events
with their azimuthal angle φi for a given rapidity y and
transverse momentum pT . To remove autocorrelations, one
has to subtract the contribution of the particle of interest from
the total Qn vector, obtaining a ψn uncorrelated with that
particle. Since finite multiplicity limits the estimation of the

event plane angle, vn has to be corrected by the event plane
resolution for each n given by


n(χ ) =
√

π

2
χ exp(−χ2/2)[I(k−1)/2(χ2/2)

+ I(k+1)/2(χ2/2)], (B6)

where we have χ = vn

√
M with M being the particle multi-

plicity, and Ik is the modified Bessel function. To calculate
the event plane resolution, the full events are divided up
into two independent subevents of equal multiplicity. Thus
the resolution for subevents is just the square root of this
correlation defined as


sub
n =

√〈
cos

[
n
(
ψA

n − ψB
n

)]〉
, (B7)

where A and B denote the two subgroups of particles. In our
calculation we divided particles within pseudorapidity window
|η| < 1 into two groups of forward and backward spheres with
a gap of |�η| < 0.1. The full event plane resolution is obtained
by


f ull
n = 
(

√
2χsub), (B8)

where χsub is inversely obtained from the subevent resolution

sub

n via Eq. (B6). The final anisotropic flow is

vn = vobs
n (pT ,y)


f ull
n

. (B9)
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