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Systematic study of α decay using various versions of the proximity formalism
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Finding the best model to describe the α-decay process is an old and ongoing challenge in nuclear physics. The
present paper systematically studied α-decay half-lives for the favored ground-state-to-ground-state transitions
of 344 isotopes of nuclei with 52 � Z � 107 using 28 versions of the proximity potential model in the framework
of the Wentzel-Kramers-Brillouin approximation. The present paper introduces the best proximity versions with
the fewest deviations with respect to experimental values. The models for Proximity 1977 (Prox. 77)-set 4, Prox.
77-set 5, and Dutt 2011 with the root-mean-square deviations (RMSDs) of <1 were found to predict α-decay
half-lives better than the other models. Comparison with fusion studies shows that Dutt 2011 is an appropriate
model both for α-decay studies and for the prediction of the barrier characteristic in heavy-ion fusion reactions.
The calculation of α-decay half-lives was repeated for even-even, even-odd, odd-even, and odd-odd nuclei. This
detailed comparative study reveals that for these versions the half-lives of the even-even nuclei with RMSDs of
<0.6 show less deviation than the even-odd, odd-even, and odd-odd nuclei.
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I. INTRODUCTION

Phenomenological proximity potential was first proposed
by Blocki et al. [1] for heavy-ion reactions. This well-known
applicable model with a simple and accurate formalism has
the advantage of adjustable parameters. This model requires
the shape and the geometry of the participant nuclei and the
universal function related to the surface separation distance
for formulation. Modifications to parameters in the original
proximity potential have been made over time to generalize this
model for fusion reactions and to overcome its shortcomings;
these include the surface energy coefficient, surface thickness
parameter, nuclei radius, and the universal function. Various
versions of the original model now exist [2–8], although in
some cases the modifications are minor [9–24].

It is known that α decay proceeds in the opposite direction
of fusion between an α particle and a daughter nucleus; thus,
the same interaction potential can be used to describe both
processes. Of the various versions of the proximity model
formulated for fusion studies, a few have been applied to
α-decay studies [25–31]. Reviews of the performance of
proximity models for predicting fusion cross sections exist
[18,20,32], but thus far there has been no similar study for
α-decay half-lives. The α-decay studies are usually limited to
a few proximity model versions or to a restricted range of α
emitters. Finding the best model or models for prediction of
both fusion and decay properties would be beneficial and time
saving.

The present study extends the calculations to a wide range
of proximity versions and more α emitters. The main objective
is to investigate the best proximity model for proper prediction
of α-decay half-lives. A detailed comparative systematic study
of 28 different versions of the proximity model has been
carried out to achieve this goal. The half-lives of α decay
from ground-state-to-ground-state transitions of 344 nuclei
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with 52 � Z � 107 have been calculated in the framework of
the Wentzel-Kramers-Brillouin (WKB) [33] approximation.
The best versions of the proximity potential for prediction
of α-decay half-lives were chosen through comparison with
experimental results and with the results of other approaches.
Comparison with fusion studies has been used to find the most
appropriate model for both fusion and for α-decay studies.

The formalism employed to calculate the α-decay half-lives
and a detailed description of the total interaction potential
between an α particle and a daughter nucleus is given in
Sec. II with a focus on the nuclear proximity potential and its
versions. The results and a discussion are presented in Sec. III.
That section also makes comparisons with other models. The
conclusions and direction of future study are discussed in
Sec. IV.

II. THEORETICAL FRAMEWORK

A. Description of α-decay half-life formalism

The half-life of the parent nucleus opposed to fission to an
α particle and a daughter nucleus can be determined as

T1/2 = ln 2

λ
= ln 2

νPα

, (1)

where λ is the decay constant and ν represents the assault
frequency related to zero-point vibration energy Eν as

ν = ω

2π
= 2Eν

h
. (2)

Empirical zero-point vibration energy Eν , in proportion to
the released energy of emitted α-particle Qα , can be calculated
as [34]

Eν=

⎧⎪⎨
⎪⎩

0.1045Qα for even-Z-even-N -parent nuclei,
0.0962Qα for odd-Z-even-N -parent nuclei,
0.0907Qα for even-Z-odd-N -parent nuclei,
0.0767Qα for odd-Z-odd-N -parent nuclei.

(3)
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This simple formula for Eν includes the pairing and shell
effects of α decay.

The α-decay penetration probability Pα through the poten-
tial barrier can be calculated using the WKB semiclassical
approximation as

Pα = exp

(−2

�

∫ Rb

Ra

√
2μ(VT (r) − Qα)dr

)
, (4)

where Ra and Rb are the inner and outer turning points,
respectively, determined as

VT (Ra) = Qα = VT (Rb). (5)

B. Description of potential formalism

Total interaction potential VT (r) between the emitted α
particle and the daughter nucleus is taken to be the sum of the
nuclear potential, Coulomb potential, and centrifugal potential
as

VT (r) = VN (r) + VC(r) + Vl(r). (6)

Assuming homogeneous spherical charge distribution for
the daughter nucleus, the Coulomb potential VC(r) between
the α particle and a daughter nucleus using the pointlike plus
uniform model is as follows:

VC(r) = ZαZde
2

{
1
r

for r � Rc,
1

2Rc

[
3 − (

r
Rc

)2]
for r � Rc,

(7)

where Zα = 2 and Zd are the atomic numbers of the α particle
and daughter nucleus, respectively, r is the distance between
the fragment centers, and Rc denotes the touching radial
separation between the α particle and the daughter nucleus.
The rotational effects for the α-particle-daughter nucleus
system can be calculated by the l-dependent centrifugal
potential Vl(r) as

Vl(r) = �
2 l(l + 1)

2μr2
. (8)

The reduced mass of the α-daughter system μ is as follows:

μ = m
Aα Ad

Aα + Ad

, (9)

where m is the nucleon mass, Aα = 4 and Ad are the
mass numbers of the α particle and the daughter nucleus,
respectively, and l is the orbital angular momentum carried
away by the emitted α particle which is dictated by the
spin-parity selection rule for α transition.

The nuclear part of the interacting potential is obtained by
proximity formalism. The original version of the proximity
potential for two spherical interacting nuclei was described by
Blocki et al. [1] as

VN (r) = 4πγ bR̄�(ξ ). (10)

The first factors (γ bR̄) refer to the geometry and shape of
the participant nuclei, and the remaining factor [�(ξ )] is the
universal function for separation distance s. Surface energy
coefficient γ is based on the Myers and Świątecki formula [9]
and has the following form:

γ = γ0
[
1 − ksA

2
s

]
. (11)

Here, As = N−Z
N+Z

is the asymmetry parameter and refers
to neutron-proton excess, where N and Z are the neutron and
proton numbers of the parent nucleus, respectively, and γ0 and
ks are the surface energy constant and the surface asymmetry
constant, respectively. The first set of constants was introduced
by Myers and Świątecki [10] as γ0 = 1.01734 MeV/fm2 and
ks = 1.79 through the fitting of experimental binding energies.
They then refined these constants to γ0 = 0.9517 MeV/fm2

and ks = 1.7826 [9]. Blocki et al. used the more recent set of
these constants in their formalism. This set is denoted herein
as γ -MS 1967.

The width (diffuseness) of nuclear surface b is considered
close to unity (b ≈ 1 fm). The mean curvature radius or
reduced radius R̄ in terms of matter radius Ci , the Süssmann’s
central radius, is as follows:

R̄ = C1C2

C1 + C2
, (12)

where

Ci = Ri

[
1 −

(
b

Ri

)2

+ · · ·
]

(i = 1,2). (13)

The effective sharp radius Ri is defined as

Ri = 1.28A
1/3
i − 0.76 + 0.8A

−1/3
i fm (i = 1,2). (14)

Here, index i refers to the α particle and daughter nuclei.
From this formula, the effective sharp radius of α-particle R1

is estimated to be 1.776 fm. The model succeeds provided that
the diffuseness of the nuclei is much smaller than their radii.

The dimensionless universal function �(ξ = s/b), which
only depends on separation distance s between the half-density
surfaces of the fragments, was obtained using the nuclear
Thomas-Fermi model with Seyler-Blanchard phenomenolog-
ical nucleon-nucleon interactions. The parametrization of the
universal function is as follows:

�(ξ )=
{−1

2 (ξ−2.54)2−0.0852(ξ−2.54)3 for ξ � 1.2511,

−3.437 exp
(− ξ

0.75

)
for ξ � 1.2511,

(15)

where ξ is the minimum separation distance in units of the
surface width and

s = r − C1 − C2 fm. (16)

The universal function is independent of the shapes of two
nuclei and geometry of the nuclear system. The proximity
model was labeled as Proximity 1977 (Prox. 77).

In accordance with the different modifications on the
adjustable parameters of Prox. 77, we have classified the
proximity versions into eight major categories. These clas-
sifications are based on adjustments or changes in the surface
energy coefficient, nuclei radius, and universal function. The
subcategories are presented in accordance with the smooth
refinements on a special version. A total of 28 versions of
the proximity formalism are included in this study: (i) Prox.
77 family (including Prox. 77 [1] and its modified versions
based on adjustment of the surface energy coefficient [9–17]),
(ii) Prox. 1981 (Prox. 81) [2], (iii) Prox. 00 family (including
Prox. 00 [3] and its modified forms Prox. 00DP [18], Prox.
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TABLE I. The different sets of the surface energy coefficient. γ0

and ks are the surface energy constant and the surface asymmetry
constant, respectively.

γ set γ0(MeV/fm2) ks References

Set 1 (γ -MS 1967) 0.9517 1.7826 [9]
Set 2 (γ -MS 1966) 1.01734 1.79 [10]
Set 3 (γ -MN 1976) 1.460734 4.0 [11]
Set 4 (γ -KNS 1979) 1.2402 3.0 [12]
Set 5 (γ -MN-I 1981) 1.1756 2.2 [13]
Set 6 (γ -MN-II 1981) 1.27326 2.5 [13]
Set 7 (γ -MN-III 1981) 1.2502 2.4 [13]
Set 8 (γ -RR 1984) 0.9517 2.6 [14]
Set 9 (γ -MN 1988) 1.2496 2.3 [15]
Set 10 (γ -MN 1995) 1.25284 2.345 [16]
Set 11 (γ -PD-LDM 2003) 1.08948 1.9830 [17]
Set 12 (γ -PD-NLD 2003) 0.9180 0.7546 [17]
Set 13 (γ -PD-LSD 2003) 0.911445 2.2938 [17]

2010 [19], and Dutt 2011 [20]), (iv) Bass family (including
Bass 73 [4] and its modified forms Bass 77 [21] and Bass
80 [22]), (v) Winther family (including CW 76 [5] and its
modified forms BW 91 [23] and AW 95 [24]), (vi) Ngô 80 [6],
(vii) Denisov family (including Denisov [7] and its modified
form Denisov DP [18]), and (viii) Guo 2013 [8]. Table I
represents 13 different sets of the surface energy coefficient
γ (γ0,ks) which are applied on Prox. 77.

III. RESULTS AND DISCUSSION

A. Systematic study of α-decay half-lives

A systematic comparative study was carried out on different
versions of proximity formalism. The half-lives of α-decay
ground-state-to-ground-state transitions of 344 nuclei with
52 � Z � 107 were calculated within the framework of the
WKB approximation. The selected α emitters were those with
known values for their experimental α-decay half-lives for
which the experimental value of energy released is available
and considerable. A total of 136 even-even, 84 even-odd, 76
odd-even, and 48 odd-odd nuclei were considered. This nuclei
set was the same as those used by Denisov and Khudenko [35]
and Royer [36].

The total interaction potential between the α particle and
the daughter nucleus was calculated as the sum of the nuclear
proximity potential, Coulomb potential, and the centrifugal
potential. Because of the spin-parity selection rule, the value of
the orbital angular momentum for the ground-state-to-ground-
state transitions was assumed equal to the minimum amount
(l = lmin) that leads to the minimum centrifugal potential. The
parent and daughter nuclei spin parities and the lmin for the
emitted α particle were taken from Denisov and Khudenko
[35] and Audi et al. [37], which were chosen from experimental
data or data evaluation compilation analysis collections.

Twenty-eight versions of the proximity model were used
to calculate the nuclear part of the total interaction po-
tential between the α particle and the daughter nucleus.
These versions result from modifications in different ad-
justable parameters in the proximity formalism (Sec. II B).

The energies released by the α transition from the ground state
of the parent nucleus to the ground state of daughter nucleus
Qα were taken from Wang et al. [38]. The turning points
of the penetrability integral are the points at which the total
interaction potential crosses the Qα line and are determined
using Eq. (5). The WKB barrier penetration probability is
obtained by numerical solution of integral (4) between the
inner and the outer turning points.

The half-lives for α decay from the parent ground state to
the daughter ground state were calculated using Eq. (1). The
root-mean-square deviation (RMSD) was used to choose the
best version of the proximity formalism that leads to acceptable
half-lives for α decay as

RMSD =
√√√√1

n

n∑
i=1

[
log10

(
T cal

1/2i

T
exp
1/2i

)]2

, (17)

where T cal
1/2 and T

exp
1/2 are the calculated and experimental α-

decay half-lives, respectively, and parameter n denotes the
number of nuclei included in the summation that have definite
theoretical half-lives. The experimental data for the α-decay
half-lives are the same as those used by Denisov and Khudenko
[35]. The RMSDs of the decimal logarithmic half-lives versus
the various versions of the proximity potential are presented
in Table II. The numbers in parentheses refer to the number of
nuclei under consideration.

The total potential barrier for some models is where line
Qα is located under the touching configuration, and there is no
inner turning point; hence, the penetration probability and the
α half-life cannot be determined. For some models, this means
that calculations are limited to fewer isotopes, especially in
the Prox. 77-set 1, Prox. 77-set 8, Prox. 77-set 12, Prox. 77-
set 13, and Prox. 00 models. These models were discarded
because their number of nuclei under calculation was �282.
The calculated half-lives for most other versions cover all
344 nuclei. Most models give deviations of <1.1. The best
results were obtained by the Prox. 77-set 4, Prox. 77-set 5,
and Dutt 2011 models with RMSDs of 0.99, 0.96, and 0.96,
respectively. The RMSDs derived by potentials affected by
Prox. 00DP, Prox. 2010, Denisov, and Denisov DP were high;
therefore, these models are not appropriate in their original
forms for α-decay calculations.

The RMSDs for all proximity models were recalculated
with respect to the even-even, even-odd, odd-even, and odd-
odd α emitters. The results are presented in Table II along with
the total data. Table II indicates that the RMSDs evaluated
using most proximity versions decreased strongly for even-
even nuclei in comparison with odd-even, even-odd, and odd-
odd nuclei. For even-even nuclei, the α half-lives predicted by
the Prox. 77-set 3, Prox. 77-set 4, Prox. 77-set 5, Prox. 77-set
6, Prox. 77-set 7, Prox. 77-set 9, Prox. 77-set 10, Dutt 2011,
Bass 73, Bass 80, and BW 91 models were very close to the
experimental results. The RMSDs related to these cases were
0.54-0.60. Although, most versions were not very efficient
for the even-odd, odd-even, and odd-odd nuclei, the results
were within acceptable range. It appears that the theoretical
proximity model worked much better for even-even isotopes
than for the others.
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TABLE II. RMSDs of the decimal logarithm of α-decay half-lives for different versions of the proximity potential. The data set consists of
344 total, 136 even-even, 84 even-odd, 76 odd-even, and 48 odd-odd parent nuclei. The numbers in parentheses are the number of nuclei under
consideration.

Proximity model Total even-even even-odd odd-even odd-odd

Prox. 77-set 1 0.7515 (262) 0.8458 (100) 0.6780 (68) 0.6525 (53) 0.7427 (41)
Prox. 77-set 2 0.8193 (324) 0.7396 (128) 0.9014 (77) 0.8755 (72) 0.7951 (47)
Prox. 77-set 3 1.1463 (344) 0.5900 (136) 1.4891 (84) 1.3595 (76) 1.2742 (48)
Prox. 77-set 4 0.9861 (344) 0.5605 (136) 1.2797 (84) 1.1522 (76) 1.0543 (48)
Prox. 77-set 5 0.9625 (344) 0.5684 (136) 1.2457 (84) 1.1185 (76) 1.0136 (48)
Prox. 77-set 6 1.0432 (344) 0.5452 (136) 1.3640 (84) 1.2341 (76) 1.1353 (48)
Prox. 77-set 7 1.0252 (344) 0.5451 (136) 1.3397 (84) 1.2100 (76) 1.1099 (48)
Prox. 77-set 8 0.7622 (229) 0.8464 (89) 0.7119 (58) 0.6547 (48) 0.7540 (34)
Prox. 77-set 9 1.0295 (344) 0.5440 (136) 1.3461 (84) 1.2162 (76) 1.1156 (48)
Prox. 77-set 10 1.0305 (344) 0.5443 (136) 1.3473 (84) 1.2174 (76) 1.1171 (48)
Prox. 77-set 11 0.8955 (341) 0.6550 (136) 1.1060 (82) 1.0103 (75) 0.8924 (48)
Prox. 77-set 12 0.7797 (266) 0.8721 (102) 0.7283 (70) 0.6693 (53) 0.7533 (41)
Prox. 77-set 13 0.8634 (183) 0.9320 (70) 0.8387 (47) 0.8016 (40) 0.8048 (26)
Prox. 81 0.9293 (341) 1.0058 (136) 0.9421 (82) 0.8845 (75) 0.7281 (48)
Prox. 00 0.7349 (282) 0.5442 (109) 0.8184 (73) 0.7780 (58) 0.9260 (42)
Prox. 00DP 2.2758 (344) 1.6712 (136) 2.6742 (84) 2.5660 (76) 2.5032 (48)
Prox. 2010 2.3885 (344) 1.7907 (136) 2.7857 (84) 2.6767 (76) 2.6220 (48)
Dutt 2011 0.9639 (344) 0.5517 (136) 1.2528 (84) 1.1238 (76) 1.0246 (48)
Bass 73 1.1744 (344) 0.5978 (136) 1.5189 (84) 1.3871 (76) 1.3371 (48)
Bass 77 2.0314 (344) 2.3842 (136) 1.7457 (84) 1.8312 (76) 1.6811 (48)
Bass 80 1.0765 (344) 0.5425 (136) 1.4095 (84) 1.2790 (76) 1.1849 (48)
CW 76 1.6206 (344) 0.9771 (136) 2.0213 (84) 1.9045 (76) 1.7956 (48)
BW 91 1.0464 (344) 0.5351 (136) 1.3704 (84) 1.2405 (76) 1.1462 (48)
AW 95 1.4027 (344) 0.7684 (136) 1.7862 (84) 1.6610 (76) 1.5736 (48)
Ngô 80 1.0750 (342) 1.2003 (136) 1.0505 (83) 0.9977 (75) 0.8296 (48)
Denisov 2.8956 (344) 2.2984 (136) 3.2986 (84) 3.2230 (76) 3.1040 (48)
Denisov DP 3.9536 (344) 3.3830 (136) 4.3466 (84) 4.2925 (76) 4.1665 (48)
Guo 2013 1.9040 (344) 1.2693 (136) 2.3040 (84) 2.1957 (76) 2.1196 (48)

It should be pointed out that the results were very sensitive
to the value of released energy. Möller et al. [39] stated that
an uncertainty of 1 MeV in the Qα value corresponds to an
uncertainty of the α-decay half-life of 103 to 105 times in the
heavy-element region. The choice of different experimental
masses and Qα values from different references or application
of different formulas to calculate Qα will affect the results.
Moreover, the values for the experimental α-decay half-lives
differ in different studies according to the methods applied. It
is noteworthy that the experimental values update continually
and the number of known α emitters is expanding with
advancements in instruments and methods.

B. Comparison with other investigations

To measure the acceptability of the proximity models for
α-decay studies, the results were compared with those from
other approaches. Denisov and Khudenko [35] evaluated the
ground-state-to-ground-state α-decay half-lives for a nuclei
set as was performed in the present paper. They calculated
the α-decay half-lives in the framework of the unified model
for α decay and α capture (UMADAC) by considering the
spin-parity effect and deformation of the parent and daughter
nuclei. The total potential was a function of (r,θ,l,Qα). They

tabulated their results with the results from various empir-
ical relationships [39,40,41] in which, based on the fitting
parameters and special analytical parameters, log10(T1/2) was
expressed as a simple function of α-particle energy, charge,
and mass of the parent nuclei. The relationships were based on
a pure Coulomb potential and neglected the nuclear potential,
deformation, and spin-parity effects. The α half-lives taken
from Denisov’s UMADAC were in good agreement with the
experimental values.

Royer [36] applied the generalized liquid-drop model,
including the proximity effects on the same data set. He
proposed analytical formulas for log10(T1/2) that either depend
or do not depend on angular momentum [i.e., log10(T1/2) =
f (Qα,A,Z) or log10(T1/2) = f (Qα,l,A,Z)]. Royer stated that
entering l dependence in log10(T1/2) formulas improved the
results. The RMSDs for α half-lives, except for nuclei, such
as 113

53 I, 149
64 Gd, 206

85 At, 218
91 Pa, and 235

95 Am were relatively small.
He concluded that, in the case of these exceptions, the related
experimental half-lives can be disputed.

Zhang et al. [31] applied the proximity formalism derived
from Guo et al. [8] using modified parameters to study α-
decay half-lives of 145 heavy nuclei with 52 � Z � 92. Their
universal function was formulated by a systematic study using
the double folding model with density-dependent nucleon-
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TABLE III. Comparison of RMSDs of the decimal logarithm of α-decay half-lives for a full set of nuclei derived using different approaches.
All investigations employ 344 total, 136 even-even, 84 even-odd, 76 odd-even, and 48 odd-odd α emitters.

Model Total even-even even-odd odd-even odd-odd References

Prox. 77-set 4 0.9861 0.5605 1.2797 1.1522 1.0543 Present
Prox. 77-set 5 0.9625 0.5684 1.2457 1.1185 1.0136 Present
Dutt 2011 0.9639 0.5517 1.2528 1.1238 1.0246 Present
Denisov: UMADAC 0.6199 0.2980 0.7805 0.7613 0.7405 [35]
Dasgupta-Schubert 1.0245 0.5205 1.1661 1.3453 1.2617 [40]
Medeiros 1.1344 0.3652 1.5510 1.3635 1.3390 [41]
Möller 1.3926 1.3067 1.4389 1.5728 1.2828 [39]
Royer: l- independent 0.7452 0.3280 0.9559 0.8891 0.9080 [36]
Royer: l-dependent 0.5296 0.3280 0.5552 0.6661 0.6807 [36]
Zhang 2013 1.3764 0.7373 1.7578 1.6348 1.5483 [31]

nucleon interaction (CDM3Y6). This model is referred to as
Zhang 2013. The present paper extended their calculations to
344 nuclei.

Table III lists the RMSDs of the decimal logarithm of
the α-decay half-lives calculated using three versions of the
proximity model (Prox. 77-set 4, Prox.77-set 5, and Dutt
2011) for comparison with the UMADAC, other empirical
approaches, and the Zhang proximity formula. The table
reveals that, although effects, such as deformations are not
included in proximity versions, the results are comparable
with the results of Denisov and Royer and are better than other
approaches. It is notable that the values of Qα differed at times
in these investigations.

IV. CONCLUSION

The α-decay half-lives of nuclei with atomic numbers
in the range of 52 � Z � 107 were estimated from the
WKB penetration probability through potential barriers. A
systematic comparative study was performed on 28 versions
of the proximity potential used to calculate the nuclear part
of the potential. The theoretical results were compared with
the experimental data using the RMSD. The RMSD of the

decimal logarithm of the half-lives had the lowest value
for the proximity model with versions Prox. 77-set 4, Prox.
77-set 5, and Dutt 2011. For the same data set, the RMSDs
were recalculated for the even-even, even-odd, odd-even, and
odd-odd nuclei. The results revealed that, for most models, the
RMSDs decreased strongly for the even-even parent nuclei.
It appears that the proximity model is more applicable to
even-even nuclei.

The results evaluated using proximity models were com-
pared with those obtained using the UMADAC derived from
Denisov, other empirical approaches, and the Zhang proximity
formula. The results were comparable to or better than the other
approaches. It appears that of 28 proximity models studied,
Dutt 2011 was able to perfectly predict both α-decay half-lives
and fusion cross sections.

It should be noted that the challenge to discovery of
the best proximity model has not been fully met. It is
possible to improve upon the best versions of the proximity
potential for α decay by incorporating new modifications,
such as deformation and orientation effects to the nuclear and
Coulomb potentials, defining an appropriate potential for the
overlapping region, considering fine structure and incorporat-
ing the preformation factor into the half-life formula.
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[15] P. Möller and J. R. Nix, At. Data Nucl. Data Tables 39, 213

(1988).
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