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Scission neutrons for U, Pu, Cm, and Cf isotopes: Relative multiplicities calculated
in the sudden limit
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The multiplicities of scission neutrons νsc are calculated for series of U, Pu, Cm, and Cf isotopes assuming
a sudden transition between two different nuclear configurations (αi → αf ): one just before the neck rupture
and one immediately after the disappearance of the neck. This calculation requires only the knowledge of the
corresponding two sets of neutron eigenstates. The nuclear shapes around the scission point are described in terms
of Cassinian ovals with only two parameters: α (that positions the shape with respect to the zero-neck shape) and
α1 (that defines the mass asymmetry). Based on these shapes, a neutron mean field of the Woods-Saxon type is
constructed using two prescriptions to calculate the distance to the nuclear surface. The accent in the present work
is put on the dependence of νsc on the neutron number Nf of the fissioning nucleus and on the mass asymmetry
AL/AH of the primary fission fragments. The relative dependence of these multiplicities, averaged over the mass
yields, 〈νsc〉, are finally compared with existing experimental data on prompt fission neutrons 〈νp〉.
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I. INTRODUCTION

The strong and rapid variation of the potential energy in
the region between the nascent fission fragments during the
scission process (neck rupture) was invoked, in the sixties,
as a possible cause for the emission of scission neutrons
(SN) [1] and light charged particles [2]. More recently, this
idea was developed quantitatively in a quantum-mechanical
microscopic frame. Two types of approaches have been
proposed: one stationary [3–5] and one time dependent [6,7].

The stationary approach is based on the sudden approxima-
tion that consists in assuming that scission occurs at finite neck
radius rmin and that the neck stubs are suddenly absorbed by
the fission fragments. The neutrons present in the fissioning
nucleus before scission (deformation αi) will suddenly find
themselves in a postscission potential (deformation αf ).
Consequently they will be described by wave packets with
some components in the continuum. The only thing we need
to know are the two sets of neutron eigenstates at the two
deformations involved.

In reality the scission time �T is short but not zero. This
means that the neutron wave functions are no more the same
at αf as they were at αi but have evolved instead. To simulate
their evolution one has to solve, for each neutron state, the two-
dimensional time-dependent Schrödinger equation (TDSE2D)
with a time-dependent potential (TDP). This is clearly a more
time-consuming endeavor.

In both models, all neutrons of the fissioning nucleus
are partially released during the neck rupture (each with
quite small probability). They leave the system immediately
thereafter, i.e., during the acceleration of the fission fragments.
The sum of these probabilities (properly weighted) gives the
number of neutrons per fission event that are left unbound
at the end of the scission process. This is what we call

scission-neutron multiplicities νsc in the present study. These
values represent only upper limits for the following reason: due
to the partial reabsorption of the neutrons by the fragments not
all initially unbound states lead to unbound asymptotic states;
the imaginary potential removes neutron flux from the elastic
channel. When the sudden approximation is used, there is an
extra reason: νsc is the largest for �T = 0 and increasing �T
decreases νsc [6].

Very recently the dynamical scission model [6] was applied
to the calculation of the angular distribution (with respect to
the fission axis) of the average energy distribution (in the
laboratory system) as well as of the multiplicity of the scission
neutrons emitted from 236U [8]. The surprising result was that,
contrary to the general belief, SN have similar properties with
the prompt fission neutrons (PFN) measured in the reaction
(nth +235 U).

At this point it is appropriate to mention that the hypothesis
that all PFN are evaporated from fully accelerated fragments
was quite successful. This hypothesis goes back to the early
days of fission studies as discussed in Refs. [9,10] and it is the
“Los Alamos”model [12] that has been employed in all PFN
evaluations for applied purposes. Recently refined, by includ-
ing the fission fragment deexcitation in the frame of a Monte
Carlo type of approach [13–15], the “evaporation”hypothesis
can account, with adjusted parameters, for a large amount of
experimental data. For instance 95% of the PFN spectrum
can be reproduced [16]. So far, the small percentage of PFN
that cannot be reproduced by the evaporation hypothesis are
considered to be SN (e.g., see Refs. [16–19] and references
therein).

New applications of the above mentioned scission models
to other observables and other fissioning systems are desirable.
The goal of the present paper is to estimate the SN multiplic-
ities for series of U, Pu, Cm, and Cf isotopes and to study in
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this way their dependence on the neutron number Nf of the
fissioning nucleus. Due to the large number of nuclei involved
this can be achieved only in the “sudden”limit; it is the only
tractable approach for a systematic study.

As compared with previous publications [3–5] a different
extremely deformed nuclear potential, a different method to
solve the eigenvalue problem, and a more precise way to
calculate the overlap integrals are used.

The eigenvalue problem for a neutron in the deformed
mean field of its interaction with the other nucleons is solved
in a cylindrical (ρ,z)-coordinate system by diagonalizing the
corresponding Hamiltonian in a deformed oscillator basis (as
in the Nilsson model [20] or in the deformed Woods-Saxon
generalizations that followed [21–24]). More details are given
in Sec. II. The two nuclear configurations that define the
scission process are discussed in Section III. The formulas used
to calculate the scission neutron multiplicities are described in
Sec. IV. The neutron multiplicities calculated as a function
of the mass asymmetry (defined by the light fragment mass
AL) are presented in Sec. V for all studied fissioning nuclei.
The values averaged over the mass yields are compared, in
Sec. VI, with the existing data on PFN for each series of
isotopes. Since one does not know at present the percentage of
scission neutrons in the total number of PFN, the comparison
made here concerns only trends and not absolute values. A
summary and conclusions can be found in Sec. VII.

II. EIGENVALUE PROBLEM

In the following section we will see that the main input
in the calculation of the scission-neutron multiplicity νsc are
the single-particle wave functions |�i(αi)〉 and |�f (αf )〉 that
correspond to the eigenvalues ei(αi) and ef (αf ) for the two
nuclear configurations αi and αf , between which the sudden
transition occurs.

Realistic wave functions are obtained by solving the
eigenvalue problem:

H� = e�, (1)

with a Hamiltonian H that includes the Laplacian, the nuclear
potential, the spin-orbit coupling, and, for charged particles,
the Coulomb potential [25]. The parameters are fitted to
experimental single-particle and single-hole energies in the
208Pb region [26]. An isospin dependence of the depth V0 of
the potential well [27] is assumed:

V0 = Vmean

[
1 − Ciso

(
N − Z

A

)]
(2)

with the constants Vmean = 49.65 MeV and Ciso = 0.862.
The main quantity in the Hamiltonian is the average

potential in which the neutrons move. We choose it to be
of Woods-Saxon type:

V (ρ,z) = −V0[1 + exp (�(ρ,z)/a0)]−1 (3)

where a0 is the diffuseness.
We therefore need to estimate the distance � between each

point in space (ρ,z) and the nuclear surface defined by the
equation �(ρ,z,α) = 0. Axial symmetry is assumed. Close
to scission, when the nuclear shape has a pronounced neck

(connecting the nascent fission fragments), this distance is no
more uniquely defined. For this reason the procedure used
to calculate � has been carefully checked to ensure that the
results are correct and without discontinuities.

We have used two methods:

(1) An exact numerical minimization of the distance
between the given point (ρ,z) and any point on the
nuclear surface.

(2) An approximate formula based on a gradient approxi-
mation �(ρ,z) = �(ρ,z)/|∇�(ρ,z)| [21].

The numerical results for the distance for 236U at a large
deformation α = 0.900 are presented in Fig. 1. The upper and
lower panels correspond to the methods 1 and 2, respectively.
One can see that the numerical minimization gives correct
smooth curves while the gradient approximation overestimates
the distance � in the neck region. Consequently the two
methods yield to different behaviors of the diffuseness along
the surface of an extremely deformed nucleus: constant or
variable. A third potential minimum in the neck region is pre-
dicted by some time dependent Hartree-Fock calculations [28]
so a variable diffuseness is not excluded. The effect of these
two types of diffuseness on the SN multiplicities is studied in
Sec. V.

Consequently we have included in the code “CASSINI”[23]
(and in the related code “BARRIER” [24]) also a subroutine
based on the exact evaluation by numerical minimization of
the distance to the nuclear surface. The modified code has been
tested at all deformations. We use this code to generate neutron
wave functions in extremely deformed (i.e., just-before and
immediately-after scission) fissioning nuclei and estimate
scission-neutron multiplicities. The code BARRIER is used to
consider nuclear pairing by a BCS method [24].

Due to the spin-orbit coupling the wave functions have two
components, corresponding to spin “up”and spin “down”as
follows:

|�〉 = f1(ρ,z)ei	1φ|↑〉 + f2(ρ,z)ei	2φ|↓〉. (4)

The values 	1 and 	2 are defined by

	1 = � − 1
2 , 	2 = � + 1

2 .

� is the projection of the total angular momentum along the
symmetry axis, and it is the only good quantum number in the
case of asymmetric fission. For symmetric fission the parity π
is also conserved.

III. CHOICE OF THE TWO SCISSION CONFIGURATIONS

To describe the nuclear shapes just before and immedi-
ately after scission we use, as a zeroth-order approximation,
Cassinian ovals [29] with only one deformation parameter:
αi = 0.985 (i.e., rmin = 0.179R0) and αf = 1.001 (i.e., dmin =
0.047R0), respectively. dmin is the distance between the inner
surfaces of the two fragments along the z axes. R0 is the radius
of the fissioning nucleus. In the case of 236U these values are
1.5 and 0.8 fm, respectively. Note that α = 1.0 describes a zero
neck scission shape. It is known that these ovals are very close
to the conditional equilibrium shapes, obtained by minimiza-
tion of the deformation energy at a fixed value of the distance
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FIG. 1. Comparison between two methods used to calculate the distance from a given point (ρ,z) to the nuclear surface for a configuration
with pronounced neck in 236U.

between the centers of mass of the future fragments [30,31].
To include the asymmetric fission it is necessary to introduce
a deviation from these ovals defined by a second parameter
α1 [21]. It turns out that rmin and dmin are almost independent
of α1. The chosen value of the minimum neck radius is lower
than predicted by dynamical calculations of the fission path
with one-body dissipation [32] or by the optimal scission
shapes [33] which is about 2 fm. If there are some indications
on the value of rmin, dmin is, on the contrary, unknown.

Our choice (1.5 fm) goes back to the first calculation of SN
multiplicity νsc in 236U using the sudden approximation [3].
We found that using rmin = 1.9 and dmin = 2.0 fm leads to a
too large value of νsc, equal to the total number of PFN detected
in the reaction 235U(nth,f ). This result was in contradiction
with the general point of view (that we shared at that time)
that SN represent a small fraction of PFN. We therefore took
a lower value and kept it. This historical note shows that νsc is
extremely sensitive to the choice of these two parameters that
characterize the initial and final configurations involved in the
diabatic process of neck rupture.

It is easy but not convincing to reproduce the total prompt
neutron multiplicity 〈νp〉 with an ad hoc set (rmin,dmin) before a
more precise knowledge of these quantities is obtained from an
adequate study. Moreover, if we accept the usual explanation of
the existence of a minimum neck radius (at which the Coulomb
repulsion can no more withstand the nuclear attraction), rmin

should slightly depend on (Nf ,Zf ). For the moment, the values
used (0.179, 0.047 in units of R0) are just working hypotheses.
No attempt to tackle the problem of absolute νsc values is made
here. Only relative behaviors are discussed.

IV. NEUTRON MULTIPLICITY: FORMALISM

The method of calculation is described in Ref. [3]. For
completeness the relevant formulas are recapitulated below.

As mentioned in the Introduction the emission of scission
neutrons is calculated in the sudden approximation of the
scission process: the transition from two fragments connected
by a thin neck (αi = 0.985) to two separated fragments (αf

= 1.001) is supposed to happen infinitely fast. In this case the
neutron wave functions of the αi configuration experience a
sudden change of the potential and become wave packets. The
distribution of these neutron wave packets over the complete
set of eigenstates of the αf configuration,

|�i〉 =
∑
f

aif |�f 〉, (5)

is essential in the calculation of the multiplicity of the neutrons
released at scission;

aif = 〈�i |�f 〉 = 2π

∫ (
f i

1 f
f
1 + f i

2 f
f
2

)
ρdρdz. (6)

aif �= 0 only if |�i〉 and |�f 〉 have the same projection � of
the total angular momentum along the symmetry axis.

The scission neutron multiplicity is given by the sum of the
probabilities that a neutron occupying a given bound-state i
is emitted, weighted by the occupation probability v2

i of the
respective state i:

νsc = 2
∑

i

v2
i

⎛
⎝∑

f

|aif |2
⎞
⎠. (7)
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FIG. 2. Scission-neutron multiplicity as a function of mass
asymmetry for two potentials (with the distance calculated exactly or
using the gradient approximation) and for two occupation-probability
functions (step or BCS). Although the mass asymmetry is defined
by the mass of the light fragment, νsc corresponds to the whole
scissioning system.

The i sum is over bound states while the f sum is over unbound
states. In practice the sum over unbound states is replaced by
1 minus the sum over bound states. The factor 2 accounts for
the fact that each of the two neutrons occupying a given state
can be emitted.

Here we assume that the fissioning system is in its lowest
energy state at αi which means a superfluid descent from
saddle to just-before scission. This is very probably the case in
spontaneous and sub-barrier fission [34–37]. For independent
neutrons v2

i is therefore a step function: it is 1 for states below
the Fermi level and it is 0 above. If the neutrons are pairing
correlated, v2

i is the BCS ground state occupation probability
given by

v2
i = 1

2

[
1 − ei − λ√

(ei − λ)2 + �2

]
. (8)

If there is a nonzero temperature at αi a similar smoothing of
the step function takes place.

After the diagonalization of the Hamiltonian (see Sec. II),
the neutron wave functions are obtained as an expansion in

(a) U isotopes. (b) Pu isotopes.

(c) Cm isotopes. (d) Cf isotopes.

FIG. 3. Scission-neutron multiplicity as a function of mass asymmetry defined by the mass of the light fragment AL. The distance is
calculated exactly and BCS occupation probabilities are used.
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the complete set of eigenstates of the deformed harmonic
oscillators |K↑〉 and |K↓〉:

f
i(f )
1 =

∑
k

c
i(f )
k (1)|K↑〉,

f
i(f )
2 =

∑
k

c
i(f )
k (2)|K↓〉.

To avoid the numerical integration in Eq. (5) we choose the
same basis of states for both diagonalizations (i.e., at αi and at
αf ). In this way the calculation of aif is greatly simplified:

aif =
∑

k

ci
k(1)cf

k (1) +
∑

k

ci
k(2)cf

k (2). (9)

V. NEUTRON MULTIPLICITY: NUMERICAL RESULTS

We start by showing the effect of the different calculational
hypotheses mentioned in Secs. II and IV on the scission-
neutron multiplicities. The low-energy fission of 236U [that
simulates the reaction 235U(nth,f )] is taken as an example.

We present in Fig. 2 the variation of the scission-neutron
multiplicity νsc as a function of the light-fragment mass AL

obtained with two different Woods-Saxon potentials: one using
the numerical minimization of the distance �(ρ,z) and the
other using the gradient approximation (see Sec. II). For very
deformed nuclei the two potentials are different as can be
inferred from Fig. 1: in one the diffuseness is constant along
the nuclear surface while in the other the diffuseness is smaller
in the neck region. That is why the “exact”potential, which
doesn’t exhibit a third well in the neck, produces less scission
neutrons: there are less neutrons present in the neck region
(where the diabatic coupling is most efficient [4]).

To show also the influence of the occupation probability
v2

i (ei) of the neutron states as a function of their energies
(see Sec. IV), we added on Fig. 2 the results obtained with
a step function (independent neutrons) and with Eq. (7)
(pairing correlated neutrons). If we take pairing correlations
into account we include in the sum over bound states in
Eq. (6) states above the Fermi level that have higher emission
probabilities [3] than the states below the Fermi level. For
this reason the BCS curves are above the “independent
particles”curves.

In the following figures we will present results obtained
only with the BCS occupation probabilities and exactly
estimated distances.

Figure 3(a) shows the dependence of the scission neutron
multiplicity on the mass asymmetry of the fission fragments
for even-even U isotopes from A = 232 to A = 240. The main
trends that come out of this figure are

(a) the almost constant value of νsc for a given fissioning
nucleus and

(b) the overall increase of νsc with the neutron number of
the fissioning system Nf . This is because the number
of neutrons available for emission is larger and not
because the occupied states are less bound in neutron
rich isotopes. In fact the values of the Fermi energy λ
in these nuclei are not so different due to the isospin

dependence of V0 (see Sec. II). The increase of R0 with
A is less than 1%, hence insignificant.

The observed small oscillations of νsc as a function of AL

are nuclear structure effects; at different mass asymmetries
the sequence of states around the Fermi level is different. In
236U the average value is 0.6 and the deviation from it is 0.06.
Looking at different isotopes, these oscillations are in phase for
two windows of mass asymmetry: around the most probable
value and in the very asymmetric region.

Figures 3(b)– 3(d) show similar results but for Pu, Cm,
and Cf isotopes, respectively. As before, for the same element
Z, the neutron multiplicity increases with the neutron number
Nf . There is no visible increase of νsc when we move from
U (Zf = 92) to Cf (Zf = 98). If we look at the Nf = 150
isotones, one notices the opposite: a slight decrease from 244Pu
to 246Cm and to 248Cf.

VI. AVERAGE MULTIPLICITY: COMPARISON WITH
EXISTING DATA

The average multiplicity 〈νsc〉 can be obtained us-
ing νsc(AL) from the previous section and the calculated
primary-fragment fission mass yields Ypre(AL) from the GEF
model [38] or, when possible, from the experimental data
themselves [39,40]:

〈νsc〉 =
∑
AL

Ypre(AL)νsc(AL). (10)

The latter choice is used in Fig. 4 where an example of input
and output of Eq. (9) is plotted for the best experimentally
studied systems: 235U(nth,f ) and 252Cf(sf ). One notices that

70 80 90 100 110 120
0.4

0.5

0.6

0.7

0.8

ν s
c

235U(nth,f)
〈νsc(BCS) 〉= 0.587

0.00

0.05

0.10

0.15

Y
pr

e

70 80 90 100 110 120
0.4

0.5

0.6

0.7

0.8

AL

ν s
c

〈νsc(no corr.) 〉
〈νsc(BCS) 〉

252Cf(sf) 〈νsc(BCS) 〉= 0.726

0.00

0.05

0.10

0.15

Y
pr

e

Ypre (right scale)

FIG. 4. Calculated scission-neutron multiplicity (left-hand scale)
and experimental [39,40] preneutron mass yield (right-hand scale) as
a function of light-fragment mass for 235U(nth,f ) and 252Cf(sf ).
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FIG. 5. Average SN multiplicity as a function of the neutron number Nf of the fissioning nucleus for U, Pu, Cm, and Cf isotopes. Calculated
with the GEF model [38] and experimental [41] PFN multiplicities for spontaneous fission (or extrapolated to SF) are also plotted using a
five-times larger right-hand scale to be able to directly compare the slopes.

the peak of Ypre coincides better with a maximum of νsc in 252Cf
than in 236U, and this is the second reason why calculated
〈νsc〉 in 252Cf(0.73) is 25% larger than the value calculated
for 236U (0.58). The first reason was the general increase
of νsc with the neutron number Nf noticed in the previous
section: 236U has 144 neutrons while 252Cf has 154. It is
worth mentioning that the measured average PFN multiplicity
〈νp〉 is 55% larger in 252Cf(sf ) (3.76) than in 235U(nth,f )
(2.43).

For the other fissioning nuclei we use fission yields
calculated by GEF code. The resulting variation of 〈νsc〉 as
a function of the neutron number Nf is presented in Fig. 5
for the four series of isotopes studied. A clear increase is
observed in all cases. It is mainly a consequence of the overall
upwards shift of the νsc curves in Figs. 3(a)– 3(d). Prompt
neutron multiplicities 〈νsf 〉 for spontaneous fission calculated
with GEF [38] and measured [41] are also included using
a right-hand scale. The choice of the scales allows a direct
comparison of the relative variation of 〈νsc〉 and 〈νsf 〉 with Nf .
One can see that in Cm and Cf isotopes the rate of increase
is comparable with the calculated slope, in U isotopes it is
less pronounced, and in Pu isotopes there is no increase at
all. This exceptional experimental behavior of Pu isotopes is
intriguing.

VII. SUMMARY AND CONCLUSIONS

The effect of a sudden nuclear-shape transition at scission
on the emission of neutrons during low-energy fission is
studied for four isotopic series corresponding to the elements
U, Pu, Cm, and Cf. In each case the calculated variation of the
SN multiplicity νsc with the mass ratio of the fission fragments
AL/AH shows small oscillations around an almost constant
average value that increases with the neutron number Nf of
the respective isotope.

Due to the sudden approximation employed and to the
neglected partial reabsorbtion of the unbound neutrons by
the fragments, our approach gives only upper limits. With
the present choice of scission configurations, SN represent at
most 25% of the total number of PFN. It is however worth
remembering that these estimates are very dependent on the
minimum neck radius assumed just before scission and on
the corresponding inner distance between the barely separated
fragments. The value used here for rmin (0.179R0) is less
than our best knowledge of this quantity (2.0 fm) suggesting
that this percentage may in reality be higher. However, as
mentioned in the Introduction and at the end of Sec. III, only
relative behaviors are discussed here. The problem of absolute
values is left for a future study.
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Finally, scission-neutron multiplicities averaged over all
mass ratios, 〈νsc〉, are calculated. An almost linear increase
with the mass of the fissioning nucleus is found for all isotopes
studied here. It reproduces the experimental trend in Cf and
Cm, to a less extent in U, but not in Pu. An increase of 〈νsc〉

from 236U to 252Cf is also obtained, which is similar to the
PFN increase observed experimentally.

In conclusion, new properties of the scission neutrons are
calculated and new similitudes with the measured prompt
fission neutrons are observed.
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