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Nonlocality effect in the tunneling of one-proton radioactivity

N. Teruya
Departamento de Fı́sica, Universidade Federal da Paraı́ba - UFPB Campus de João Pessoa, 58051-970, João Pessoa - PB, Brazil

S. B. Duarte and M. M. N. Rodrigues
Centro Brasileiro de Pesquisas Fı́sicas-CBPF/MCTI Rua Dr. Xavier Sigaud, 150, 22290-180, Rio de Janeiro-RJ, Brazil

(Received 15 September 2015; published 3 February 2016)

A coordinate-dependent effective mass for the proton is considered to calculate half-lives of spontaneous
one-proton emission from exotic nuclei. This dynamical change to treat proton-nucleus interaction using this
type of effective mass was recently employed successfully for description of proton-nucleus quantum scattering,
by Jaghoub et al. [Phys. Rev. C 84, 034618 (2011)] and Zureikat and Jaghoub [Nucl. Phys. A 916, 183 (2013)]. The
introduced coordinate dependency of the effective mass incorporates nonlocality features of the proton-nucleus
interaction for the scattering problem. In the present work the treatment is extended to the proton emission of
neutron deficient nuclei. The WKB barrier penetrability factor is determined for proton decay and the half-life is
calculated. It is also shown that the tunneling approach is still applicable when a coordinate-dependent effective
mass is considered. The real part of the Becchetti and Greenlees [Phys. Rev. 182, 1190 (1969)] nuclear shell
model parametrization is taken to generate the barrier tunneled by the proton. This procedure leads practically
to only one free parameter in the effective mass for the entire calculation of the half-lives of the whole set of
existing almost spherical proton emitters. In the universe of 32 proton emitters studied we have obtained an
excellent agreement for 25 of them, while for the remaining seven emitters it was necessary to add an additional
fine tuning, realized by a small change in the nuclear radius parameter definition.
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I. INTRODUCTION

The proton radioactivity phenomenon has attracted atten-
tion as an important tool for the understanding of the nuclear
structure of nuclides far from the stability line. Different
theoretical approaches have been proposed to elucidate the
proton decay mechanism of neutron deficient nuclear systems
[1,2]. However, no conclusive decision on the appropriate
nuclear model to describe the decay process has been reached
yet. Phenomenological treatments in conjunction with the
experimental effort [2–4] (and references therein) have been
used to enlighten the theoretical treatment of proton emission
from exotic nuclei. In addition, systematic studies have been
accompanied by these studies which aim at predicting new
possibilities of emitters, in order to clarify the phenomenon
[5]. The currently proposed models treat the parent nucleus as
a single proton orbiting an inert core, and the decay half-life
is evaluated by considering it as a quasistationary state.

Besides the difficulties inherent to the determination of
the complete microscopic structure of these highly unstable
nuclei [6–9], on the theoretical side some essential aspects of
the decay process are still unexplored. Examples of this are
the role of Pauli blocking in the proton-nucleus interaction, as
well as the nonlocality feature of proton-nucleus interaction.
There is some room to include these aspects in a model for
half-lives calculation which is pointed out in the present work.

The discussion concerning the nonlocality of particle inter-
action with nuclei has been pursued since the pioneering work
by Feshbach [10] and by Frahn and Lemmer [11] in the context
of nucleon-nucleus scattering studies. This problem requires
a careful analysis both in relativistic [12] and nonrelativistic
contexts [10,11,13–15]. With the coordinate dependency of
the particle mass a new form of the kinetic energy operator

should be constructed in order to preserve the Hermitian
character of the operator. At first glance the uniqueness of
the operator is not guaranteed (see detailed discussion in
Refs. [14,16]). However, one must consider that the continuity
of the derivative of the proton wave function at boundaries with
abrupt interfaces enables a restricted choice for the kinetic
Hamiltonian form of the Schrödinger treatment [17]. Thus,
these works show that a coordinate dependence of the proton
effective mass consistently incorporates a non-locality effect
in the quantum description for the proton interaction with the
nucleus. This aspect was not taken into account in previous
determinations of half-lives of observed proton emitters.
More recently, a nonlocality effect was successfully used to
solve problems arising in the adjustment of proton-nucleus
scattering differential cross section by Zureikat and Jaghoub
[14]. At this point it is important to clarify that concurrently
nonlocality effect is characterized by the introduction of an
energy or velocity dependence in potential when dealing with
the proton-nucleus scattering problem [18–22]. As we will
see later, this velocity or energy dependence also arises when
consistently considering the coordinate dependence of the
effective mass.

In the present work we report on results obtained from a
half-lives calculation of proton emitters, using the coordinate-
dependent effective mass in a typical nuclear shell model
potential barrier, tunneled by the proton. The next section
details the used potential barrier construction. Section III
details the effective mass expression and the extension of
the WKB method to calculate barrier penetrability for the
case of coordinate-dependent effective mass. Our results and
discussions are presented in Sec. IV. Conclusions and final
remarks are in the last section.

2469-9985/2016/93(2)/024606(5) 024606-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.84.034618
http://dx.doi.org/10.1103/PhysRevC.84.034618
http://dx.doi.org/10.1103/PhysRevC.84.034618
http://dx.doi.org/10.1103/PhysRevC.84.034618
http://dx.doi.org/10.1016/j.nuclphysa.2013.08.007
http://dx.doi.org/10.1016/j.nuclphysa.2013.08.007
http://dx.doi.org/10.1016/j.nuclphysa.2013.08.007
http://dx.doi.org/10.1016/j.nuclphysa.2013.08.007
http://dx.doi.org/10.1103/PhysRev.182.1190
http://dx.doi.org/10.1103/PhysRev.182.1190
http://dx.doi.org/10.1103/PhysRev.182.1190
http://dx.doi.org/10.1103/PhysRev.182.1190
http://dx.doi.org/10.1103/PhysRevC.93.024606


N. TERUYA, S. B. DUARTE, AND M. M. N. RODRIGUES PHYSICAL REVIEW C 93, 024606 (2016)

II. THE HALF-LIFE DETERMINATION AND POTENTIAL
BARRIER CONSTRUCTION

Half-lives of one proton emission from the ground state
and metastable isomeric nuclear state of neutron deficient
nuclei with A � 144 are determined by using the WKB
approximation to calculate the barrier penetrability factor.
Within this approximation we have for the half-life T and
the decay constant λ,

T = ln(2)

λ
; λ = λ0e

−G , (1)

where G is the Gamow’s factor through the barrier and λ0 is
the ratio for proton assault to the potential barrier. For a proton
decay with angular momentum � we have [23]

λ0 =
√

(Qp − Vmin)(1 + δl0)

4μ(R2 − R1)2
, (2)

where the symbol δl0 is the Kronecker’s delta and Vmin

corresponds to the minimum value of the potential well in
Fig. 1(b). The distances R1 and R2 locate the classical turning
points adjacent to the potential well, and R3 is the external
one in the descendent region of the barrier. The reduced mass
of the system p + core is μ and the Qp value is the decay
energy. The Gamow’s factor of the penetrability in Eq. (1) is
calculated as

G = 2

�

∫ R3

R2

√
2μ [V (r) − Qp]dr, (3)

where V (r) is the total shell model potential, accounting for the
sum of the nuclear Woods-Saxon potential VWS with the spin-
orbit VLS , Coulomb VC , and the centrifugal potential energies
VL,

V (r) = VWS(r) + VLS(r) + VC(r) + VL(r) , (4)

with

VWS(r) = − V0

1 + exp[(r − R)/a]
, (5)

in which V0 is the nuclear potential depth, R is the nuclear ra-
dius calculated as R = r0A

1/3 and a is the potential diffusivity
parameter.

The spin-orbit potential is taken as

VLS(r) = Vsoλ
2
π (�l · �σ )

1

r

d

dr
[f (r,Rso,aso)], (6)

where f (r,Rso,aso) = {1 + exp[(r − Rso)/aso]}−1. The scalar
product of the intrinsic and orbital angular momentum opera-
tor, �l · �σ , is calculated as

�l · �σ =
{−(� + 1); for j = � − 1/2 > 0
�; for j = � + 1/2 , (7)

where j and � are the total and orbital angular momentum
quantum numbers for the emitted proton. The depth of spin-
orbit potential is fixed at Vso = 6.2 MeV; the value for the
diffusivity parameters als is set equal to 0.75 fm. The pion
Compton wavelength squared which appears in the spin-orbit
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FIG. 1. Illustrated in (a) is the different terms of the nuclear
potential for the case of 156Ta proton emitter. (b) displays the total
potential and illustrates the behavior of the dimensionless function
ρ(r) of Eq. (11). This latter is multiplied by a factor ten to display
both plots in the same graphic scale.

term was taken as λ2
π = 2.14 fm2 and Rso is calculated as

Rso = r0s0A
1/3 with r0so

= 1.01 fm.
The Coulomb potential is calculated as

VC(r) =
{
Zde

2/r; r > R

Zde
2[3 − (r/R)2]/2R; r � R

, (8)

where Zd is the atomic number of the daughter nucleus and e2

is the electron charge squared.
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For the centrifugal term we have

VL(r) = �(� + 1)�2

2μ r2
(9)

The parameters of the potential V (r) have standard values
taken from Becchetti’s parametrization in Ref. [24]. The
nuclear radius in the calculation is given by R = r0A

1/3, with
μ being the reduced mass of the decaying system, which is
calculated using the coordinate-dependent effective mass m(r)
for the proton mass as described in next section.

III. THE COORDINATE-DEPENDENT EFFECTIVE MASS
AND TUNNELING CALCULATION

The coordinate-dependent proton effective mass was re-
cently employed to solve problems in the study of elastic
nucleon-nucleus scattering process in Refs. [13,14]. For a
spherically symmetric proton-nucleus interaction the effective
mass is properly described by

m = m0

1 − ρ(r)
, (10)

with

ρ(r) = ρsas

d

dr

[
1 + exp

(
r − Rs

as

)]−1

, (11)

where Rs and as are parameters associated to the centroid
location and width of effective mass function, respectively,
illustrated in Fig. 1(b). In our calculation we take Rs = R +
2 fm and as = a; these values are in accordance with those in
Refs. [13,14].

Our purpose here is to apply the WKB approximation to
determine the proton emission half-lives. At this point, since
the proton effective mass is now a function of the distance r it
is necessary to show that the expression of the Gamow’s factor
in Eq. (3) can be maintained. For this the above effective mass
expression can be substituted in the Schrödinger equation for
the proton emission problem,

− �
2

2m

{
d2

dr2
− 1

m

dm

dr

[
d

dr
− 1

r

]
− �(�+ 1)

r2

}
�

= (E − Vint)�, (12)

where Vint is the central potential of the interaction.
We put the centrifugal term in the other side of equality,

defining the new potential term, Ṽ , given by

Ṽ = Vint + �(� + 1)�2

2m r2
. (13)

Also we replace Eqs. (13) and (10) in Eq. (12),

− �
2

2m0
(1 − ρ)

{
d2�

dr2
− 1

1 − ρ

dρ

dr

[
d�

dr
− �

r

]}
= (E − Ṽ )�.

(14)

Now by taking the standard semiclassical solution of
stationary phase as the usual WKB approximation,

� = Neiφ(r)/� . (15)

After some algebra Eq. (12) becomes

− 1

2m0

{
(1 − ρ)i�

d2φ

dr2
− (1 − ρ)

(
dφ

dr

)2
}

+ 1

2m0

{
dρ

dr

(
i�

dφ

dr
+ �

2

r

)}
= (E − Ṽ ). (16)

Considering the terms that have first power of � we obtain

1 − ρ

2m0

(
dφ

dr

)2

= (E − Ṽ ). (17)

Finally, we get

dφ

dr
=

√
2m(r)(E − Ṽ ) (18)

and

φ(r) =
∫ √

2m(r)(E − Ṽ )dr . (19)

This is the same form of the Gamow penetrability factor
for the constant mass problem, only changing m −→ m(r).
We call attention to the fact that in Eq. (12) the term with the
first-order derivative can be viewed as a velocity-dependent
potential term in the Schrödinger equation of the decay
process. This term comes from the procedure to redefine
the proton kinetic energy as a Hermitian operator when the
effective mass is dependent on the proton position [13,14].

IV. RESULTS AND CONCLUDING REMARKS

To illustrate the contribution of the potential terms to the
barrier formation see part (a) of Fig. 1 which displays a plot of
these terms to the case of 156Ta proton emitter. The behavior
of the barrier and of the function ρ(r) in Eq. (11) are shown in
part (b). Note that variations in the function ρ(r) are relevant
only at the nuclear surface region.

By using Eqs. (1)–(9) we have calculated half-lives of 32
proton emitters with A � 144. Firstly, we did the calculation
without the use of the nonlocality effect, taking the proton free
mass value, as it is currently done in the literature. The purpose
of this is to verify if the chosen potential barrier model is able to
offer reasonable half-life values for the set of almost spherical
emitters (|β2| � 0.258, where β2 is the deformation parameter
used in Ref. [1]). The results are shown as T cal

FM values in Ta-
bles I and II. To verify if the these results are reasonable enough
the standard deviation in respect to data was calculated by

σs =
√√√√ 1

n − 2

n∑
i=1

[
log

(
T calc

FM (i)

T exp(i)

)]2

(20)

with T calc
FM (i) and T exp(i) being the calculated and experimental

half-lives of ith emitter, respectively. This standard deviation
of half-lives calculated for the 32 emitters is σs

∼= 0.66 with
values in Tables I and II. The same calculation restricted to
the set of 25 emitters in Table I is reduced to σs

∼= 0.48. The
reached degree of data accordance is comparable with the
best results of calculations in the literature.

The significant disagreement between the model prediction
and data occurs for the seven emitters separated in Table II. In
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TABLE I. This table shows the proton emitters nuclei (first
column), the nuclear potential depth [in Eq. (5)] using Becchetti’s
parametrization for the proton-nucleus interaction [24] is shown in
the second column. In the third column are the calculated half-lives
without effective correction, that means by using free mass (FM).
The fourth column is for the half-lives with the proton effective mass
(EM) correction. In the last column is shown the best values of the
effective mass parameter in Eq. (11). The value of r0 = 1.17 fm was
maintained for the half-life calculation of all emitters in this table.
The values of experimental half-lives and other data inputs for the
calculation, such as angular moment, total angular moment, and decay
energy Q, were taken from the compilation in Ref. [1].

Nucleus V Bech
0 (MeV) T calc

FM (s) T calc
EM (s) ρS

144
69 Tm 59.824 2.463 × 10−6 2.724 × 10−6 −0.52

145
69 Tm 59.961 1.546 × 10−6 3.486 × 10−6 −2.42

146
69 Tm 60.280 5.490 × 10−2 1.186 × 10−1 −2.26

147
69 Tm 60.466 2.425 × 100 3.796 × 100 −1.60

147m
69 Tm 60.447 1.806 × 10−4 3.596 × 10−4 −1.59

150
71 Lu 60.321 3.068 × 10−2 6.431 × 10−2 −2.17

150m
71 Lu 60.313 9.155 × 10−6 4.301 × 10−5 −2.64

151
71 Lu 60.469 6.131 × 10−2 1.272 × 10−1 −2.15

151m
71 Lu 60.444 4.916 × 10−6 1.609 × 10−5 −2.28

155
73 Ta 60.462 1.562 × 10−3 2.912 × 10−3 −1.94

156
73 Ta 60.734 6.410 × 10−2 1.494 × 10−1 −1.80

156m
73 Ta 60.704 6.710 × 100 8.512 × 100 −0.93

157
73 Ta 60.893 1.516 × 10−1 3.009 × 10−1 −1.42

159
75 Re 60.408 7.792 × 10−6 2.030 × 10−5 −2.48

160
75 Re 60.712 1.633 × 10−4 6.895 × 10−4 −2.51

161
75 Re 60.864 1.269 × 10−4 4.429 × 10−4 −2.18

161m
75 Re 60.824 7.792 × 10−2 2.238 × 10−1 −2.50

164
77 Ir 60.598 4.171 × 10−5 1.135 × 10−4 −2.44

165
77 Ir 60.758 1.015 × 10−4 3.395 × 10−4 −2.71

166m
77 Ir 61.005 2.427 × 10−1 8.465 × 10−1 −2.70

167
77 Ir 61.207 2.117 × 10−2 1.104 × 10−1 −2.54

167m
77 Ir 61.154 2.132 × 100 7.507 × 100 −2.70

171
79 Au 61.140 4.105 × 10−6 2.446 × 10−5 −2.66

176
81 Tl 61.368 1.215 × 10−3 5.196 × 10−3 −2.33

177
81 Tl 61.514 2.242 × 10−2 6.677 × 10−2 −1.93

TABLE II. This table is similar to the previous one for the
remaining seven emitters by presenting the used values of the nuclear
radius parameter in the last column.

Nucleus V Bech
0 T calc

FM (s) T calc
EM (s) ρS r0

(MeV)

146m
69 Tm 60.301 3.830 × 10−1 2.029 × 10−1 −2.58 1.291

166
77 Ir 61.062 6.310 × 10−2 1.521 × 10−1 −2.65 1.147

170
79 Au 61.017 1.530 × 10−6 3.221 × 10−4 −2.60 1.074

170m
79 Au 60.925 9.910 × 10−4 1.052 × 10−3 −1.77 1.070

171m
79 Au 61.060 2.180 × 10−3 2.225 × 10−3 −2.65 1.112

177
81 Tl 61.260 1.370 × 10−4 3.988 × 10−4 −2.60 1.010

185
83 Bi 61.861 3.310 × 10−5 5.837 × 10−5 −2.60 1.017
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FIG. 2. This figure shows the ratio between calculated and
experimental half-lives of proton emitters determined by using the
free proton mass (small open circle) and including the effective mass
correction (small full circle). Both calculations are carried out with
no change in the parametrization of the shell potential [24]. These are
results for the 25 emitters displayed in Table I.

Figs. 2 and 3 plots of the half-lives ratios values are shown.
Here all values of T calc

FM are determined with no change in
the potential parametrization [24]. All deviations of calculated
results with respect to the experimental data are practically
eliminated with the model improvement incorporating the
effective mass correction, as shown in Figs. 2 and 3.

To reach the final half-lives values we have included in
the calculation the effective mass correction for nuclei, the
T calc

EF values in Tables I and II. In the first table (with 25
nuclei) are the emitters which permit half-life adjustments
of T calc

EF values by changing only the effective mass parameter
ρs without any change in the Becchetti parametrization of
nuclear potential [24]. The ratio T calc

EF /T exp obtained for these
nuclei are plotted in Fig. 2, with a very strict adjustment. An
error less than one percent of the mean experimental value of
the half-lives was required, maintaining a variation in the ρs

parameter (compatible with the one in Refs. [13,14]). We draw
attention to the fact that even with this very rigorous criterion
it is possible to adjust 25 emitters in a universe of 32 data,
preserving the original potential parametrization.

The seven remaining emitters in Table II require additional
small changes in the nuclear radius parameter r0 in order
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FIG. 3. These are results similar to the previous figure for the
seven nuclei in Table II. The adjustments are done with the additional
small change in nuclear radius parameter of the shell model potential,
as it is shown in the last column of the table.
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to maintain variations in the ρs compatible with those in
Refs. [13,14]. In Fig. 3 the results of the ratio between
calculated and experimental half-lives for these nuclei are
shown. In the last column of Table II the values of the nuclear
radius parameter used to achieve a better fit with the data are
shown. Note that by considering the error bar of the half-life
measurements, and also the error bar of the decay energy (Q
values), the adjustment of the whole set with the change only
in the ρs parameter is possible.

As it is shown in Table I, the calculation is able to adjust the
half-lives for the majority of the studied nuclei with only one
parameter, the ρs . A small number of almost spherical nuclei
requires the change in nuclear radius systematic with a little
variation of the nuclear radius parameter r0.

Here it is important to recognize that the introduction
of a coordinate dependency in the proton effective-mass is
a phenomenological manner to describe the proton-nucleus
interaction inside the nucleus. The lack of an explicit treatment
to the Pauli-exclusion principle in the proton evolution, as
well as the absence of dynamical change of the mean field
potential, generates the nonlocality feature of the potential. In
general, to make the quantum many-body calculation viable,

the problem is reduced to an equivalent two-body problem
using a time-independent effective mean field potential. The
drastic reduction in the degree of freedom of the system with
this mapping may introduce the necessity of a compensatory
nonlocality feature in the interaction. In our case this charac-
teristic of the nucleon-nucleus interaction is manifested with
the velocity (or momentum) dependent term which is added
to the coordinate dependent potential, when the form of the
effective mass is incorporated into the Schrödinger equation,
as demonstrated in Ref. [14].

Among many alternative approaches developed to deter-
mine half-lives of proton, α, and cluster emissions, some of
them are based in the relativistic formulation of the nucleon-
nucleus interaction. The main goal is to construct a mean field
potential from a microscopic and more fundamental descrip-
tion of the nucleon interaction in the nuclear medium [25,26].

Finally we conclude that in spite of iat being introduced in a
phenomenological way, the nonlocality feature of the proton-
nucleus interaction is able to correct discrepancies observed in
the model calculation and half-life data of the proton emitters,
with a desirable level of accuracy, by using an effective mass
with a single parameter.
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