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Capture reactions into Borromean two-proton systems at rp waiting points
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We investigate even-even two-proton Borromean systems at prominent intermediate heavy waiting points for
the rapid proton capture process. The most likely single-particle levels are used to calculate three-body energy
and structure as a function of proton-core resonance energy. We establish a linear dependence between two- and
three-body energies with the same slope, but the absolute value slightly dependent on partial wave structure.
Using these relations we estimate low-lying excited states in the isotones following the critical waiting points.
The capture rate for producing a Borromean bound state is described based on a full three-body calculation for
temperatures about 0.1-10 GK. In addition, a simple rate expression, depending only on a single resonance state,
is found to comply with the three-body calculation for temperatures between 0.1 and 4 GK. The rate calculations
are valid for both direct and sequential capture paths. As a result the relevant path of the radiative capture reactions
can be determined. We present results for E1 and E2 photon emission, and discuss occurrence preferences in
general as well as relative sizes of these most likely processes. Finally, we present a method for estimating proton
capture rates in the region around the critical waiting points.
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I. INTRODUCTION

A number of proton dripline nuclei are of particular interest
as waiting points in the rapid-proton capture (rp) process
expected to be active in the accretion of a close binary system
containing a neutron star and resulting in an x-ray burst [1-5].
When the proton binding energy becomes negative at the
dripline another proton is needed to produce the Borromean
system (a bound system with unbound subsystems). The
effective lifetime of the critical waiting points in a stellar
environment is a central quantity in the understanding of this
astrophysical process. This depends crucially on both proton
binding of the waiting point plus one and two protons, as well
as the reaction rate forming these nuclei [6,7]. The current
estimates still result in an uncertainty in the effective lifetime
of several orders of magnitude [8,9]. The energy, capture time,
and capture mechanism can be explored through three-body
calculations. Relatively few full three-body results have been
published, although many capture rates have been estimated
using various approximations [6,7,10]. So far the three-body
results have been limited to nuclei lighter than *Ca [7,10].
However, three heavier critical waiting points exist, which have
as of yet not been treated from a few-body perspective. These
critical waiting points are %4Ge, %8Se, and 7*Kr [2,11]. Recent
efforts suggest %*Ge is of less importance than previously
thought, while 68Se, on the other hand, is thought to be of
prime importance [12,13].

Weakly bound nuclear states have been successfully de-
scribed as few-body structures in a number of cases for a long
time [14,15]. The most thorough and abundant theoretical
investigations exist along the neutron dripline [16,17], but
also excited states of ordinary nuclei have revealed this
structure [14], and recently a few medium-heavy «-dripline
nuclei were suggested to be of 2-« 4 core structure [18]. Few-
body formalism is most often applied to the very light nuclei,
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where the constituent particles have a less intricate structure.
For instance, few-body models have been applied successfully
in describing the bridging of the mass gaps at A =5 and
8 [19,20]. Likewise, three-body models have been applied
for two-neutron plus core systems to provide astrophysically
relevant production rates at the neutron dripline [17,21] again
for the very light systems. The next step to the proton dripline
nuclei and two-proton structure has been investigated for
special, relatively light nuclei [7,10,22,23], but much less for
heavier systems. For the heavier nuclei the increased Coulomb
interaction severely complicates at least the numerical calcu-
lations, if not the conceptual picture.

The location of the proton dripline—which is rather
irregular—is fairly well established at least up to around the
medium-heavy nuclei [6,24-26], but details of the nuclear
properties are often very scarce. The most important quantity
is of course the binding energy and the related stability which
provides the definition of the dripline. Near the neutron dripline
it is established that low-angular momentum single-particle
states produce spatially extended two-neutron halo nuclei [14].
This few-body picture is less effective at the proton dripline
since the unavoidable Coulomb interaction would produce
a confining barrier for bound nuclei. However, a cluster
structure of decoupled core and proton degrees of freedom
still constitutes a fair description provided the core is relatively
tightly bound, and the few-body binding energy is very small
or perhaps even negative.

Performing two and three-body calculations at the proton
dripline requires information about the single-proton orbits,
in particular their energy, as well as spin and parity relative
to the core nucleus. Measured values are in most cases not
available for these ground and low-lying excited states, which
should be occupied by the protons just before or after reaching
the dripline. Instead, trends from neighboring nuclei and
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especially the results from mean-field calculations are used.
The inherent uncertainties can be ascertained by variation of
these input parameters.

The purpose of this paper is first of all to provide
characterizing information about the rp process at waiting
points for intermediate heavy nuclei along the proton dripline.
The intent is to provide an initial method for approaching
nuclei around the critical waiting points from a three-body
perspective. The Borromean three-body structure is crucial
as an intermediate structure which therefore first must be
investigated. We shall determine structure and constraints for
the decisive two-body proton-core energies. This is used to
present a general method for estimating proton capture rates
given very sparse experimental information.

In Sec. I we briefly give the theoretical framework and
pertinent formulas for both the few-body formalism and the
three-body reaction rates, as well as the parametric choices
of the potentials. Section III contains a detailed description of
the ground state properties of the Borromean proton dripline
systems of interest. Both the relation between two- and
three-body energies and the structure of the ground state is
examined in detail. Section IV gives calculated results for
the radiative capture reaction rates, based on the most likely
two-body energies. This also includes a necessary examina-
tion of the most likely excited states. Section V discusses
limiting values of the basic physical parameters, and predicts
Borromean structure and the related reaction mechanism at
the astrophysical waiting points. This is combined to provide
a method for estimating proton capture rates around the critical
waiting points. Finally, we briefly summarize and conclude in
Sec. VL.

II. THEORETICAL FRAMEWORK

Our aim is to calculate proton dripline three-body structures
and capture rates from continuum two-proton states into the
corresponding Borromean ground state at medium heavy
waiting points. For this we need properties of ground and
continuum states as well as the derived rates and cross
sections. The general theoretical background can be found
in Refs. [27-30], but for completeness we shall here collect
the ingredients necessary to explain notation, calculations, and
results. We shall only discuss two-proton three-body systems.

A. Three-body procedure

We outline briefly our method of hyperspheric adiabatic
expansion of the Faddeev equations in coordinate space [27].
The system of two protons and a core can be described by
three sets of the relative Jacobi coordinates, (x;,y;), defined as

X, =(r; —rp)

yi = (r; — 5 e\ Wk @)
1 1 mj +mk m ’

m;(m; + my) 3)
m; +mj;+my’

Mk
==, ey
m

_ m;my
Hjk = ———,

Hjk,i =
m; + my
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where m is a normalization mass chosen to be the nucleon mass
0f939 MeV /c?. The six hyperspherical relative coordinates are
the two pairs of directional angles, (£2,;,€2y;), for x; and y;,
and hyperangle «; and hyperradial p coordinates defined by

X; = psing;, y; = pcosa;. @

The Hamiltonian H can be written both in Jacobi and
hyperspheric relative coordinates. For later convenience we
focus here on the Jacobi set where x., connects core and
proton, that is we can define

H=H, +Hy,+V,, 5)
H:-h2 Vi o4V, ©)
= g Vet Ve
o,
Hy =~ 2kep.p Vo + Ve @

where i, and pip, , are the reduced masses of core-proton
and proton to core-proton systems, respectively. The three
two-body interactions are the proton-proton interaction V,,,
the core-proton interaction V,,, and the interaction between
the core and the second proton, V.. The coordinate depen-
dencies of the two-body interactions, V.,(Xc,), Vep (Xep,¥ep),
and V,,(X.,,ycp), between protons and core are given as
arguments. In hyperspheric coordinates we have

T = _277:2 %i.p B ; 7:[,2 %}2}(})‘]) — Tp + 27:[,2 2A29 (8)
Hep ep,p mp
POy (I Wiy (e AT S
8 2m<8pz+pap> 2m<p op" 8p>’ ©
A% = e 4cot(2oz-)i + L - i (10)
o2 “Oa;  sinfa;  costa;

i 1

where /,; and f yi are the angular momentum operators related
to x; and y;.

The method consists of an adiabatic expansion of the total
wave function W, that is

V=03 fu(0)Pu(p, ), (11)

where each of the angular wave functions &, is a sum of
Faddeev components, ®,, = ¢, + ¢,.2 + ¢,.3, related to the
three corresponding Jacobi sets, and obeying the Faddeev
equations

2
0= (A2 = A)s + h—’fpzv,-cbn. (12)

The angular eigenvalues, A,(p), and the related complete
set of eigenfunctions, ®,, are first computed for each p.
Subsequently the radial expansion coefficients, f,(p), are
found from the coupled set of radial equations

92 2mE  Au(p)+15/4
(‘ﬁ - P an>fn(p)
a
= Z <2Pnn’8_ + an’)fn/(p)v (13)
n'#n P
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Py =/‘I>I,(p,52)—a @, (p,S2)dS2, (14)
0

. 02
O = / O} (0,2~ (. Q) d. (15)
ap
The left hand side reveals the crucial effective adiabatic part
of the diagonal potential acting on the particles,
h? (Kn(p)—i- 15/4)

Vettn = z—
ell,n p2

o (16)

B. Potentials and properties

The result of the three-body calculations is dictated by the
two-body potentials employed. The proton-proton interaction
in free space is well known in many details and with high
accuracy. However, its influence on the three-body solutions is
only marginal provided; first of all, that the s-wave scattering
length is reproduced, and second that the low-energy properties
of the p and d partial waves are of reasonable (small) size
and in fair agreement with the experimental values. The
phenomenologically adjusted potentials described in Ref. [28]
were used for the proton-proton interaction.

The test case used throughout this paper is the three-body
system %Se + p + p ("’Kr). However, the results apply to
the region in general, as the small mass and charge variations
between the three critical waiting points are inconsequential
for our purposes.

The proton-core potential is on the other hand decisive and
a careful choice has to be made. For light-to-medium heavy
cores of mass numbers around 68 we use the Woods-Saxon
form with a spin-orbit interaction, that is

Vo 1d vl
_ 4+l
1+ e(r—R)/a rdrl+ e(r—Ris)/ais

(17)

Vr)=Vc(r) +

where r is the distance between the two bodies, V¢ is the
Coulomb potential, V, and Vés are the potential strengths of
the nuclear and spin-orbit potential, 1 and s are the angular
momentum and spin operators, and R and a are parameters
governing the radius and the thickness of the potentials. This
form is used for all partial waves, although the two strength
parameters vary strongly depending mainly on the angular
momentum.

A three-body potential will generally not be included.
This would eventually be needed to adjust the energy levels
according to a measured two- and three-body energy spec-
trum. However, the effect of such an addition is considered
throughout the paper.

For the mass region in question we choose the values of
the radial shape parameter to be R = 7.2 fm, R;; = 6.3 fm,
a = 0.65 fm, and a;; = 0.5 fm. These choices are motivated
by the knowledge of the average nuclear mean-field potentials
and densities [31]. Accurate values are not needed because
adjustments of the strengths in any case are necessary for
fine-tuning the two-body energies. This is also one reason for
omitting more complicated spin dependence like the tensor
or quadratic spin-orbit potentials. In addition, the Coulomb
potential is chosen from homogeneous charge distributions of
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radii, 5.6 fm, and 1.8 fm for core-proton system and proton-
proton systems, respectively.

The two-body strength parameters are usually adjusted
to reproduce the core-proton bound and resonance energies,
but unfortunately the energy spectrum of ®Br is not known
experimentally. Based on shell model calculations the region is
known to be near the midpoint of the fpg shell. The most likely
two-body orbitals are then f5/2, p3/2 (or possibly pi,;), and
g9/2. However, recent experiments show that the gg,, orbital
is not important for nuclei around A = 70 with N ~ Z [32].
Instead f and p orbitals are assumed to dominate the low-lying
spectrum. This is also confirmed by the known spectrum of
the mirror nuclei [33]. To get opposite parity single-particle
orbitals, necessary to form negative parity three-body states, a
ds» orbital can be included instead. To allow occupancy only
of these selected two-body core-proton states in the three-body
calculation is tricky because both lower- and higher-lying
levels must be excluded. The Pauli forbidden two-body bound
states are excluded for each partial wave by use of shallow
potentials without bound states. The large-distance properties
are then precisely correct but the unimportant nodes at small
distances are then not present for these excited states.

To locate one and only one partial wave at a given small
energy we must provide an accurately adjusted attractive
potential, while all other partial waves must have sufficiently
strongly repulsive potentials to prevent occupancy. A given
two-body energy then provides one constraint correlating the
two strengths. To select one and only one of two spin-orbit
partners we choose a relatively high, positive or negative, value
of VO”. This may result in an abnormal order of spin-orbit
partners, but the goal is achieved. The different partial waves
are completely independent of each other on the two-body
level, and we can therefore place all of them as we choose.

C. Radiative capture rate

We want to calculate the waiting time before two pro-
tons from the astrophysical environment are captured by a
proton-dripline nuclear bound core. The reaction rate R for
the corresponding one-step y, three-body transition process,
p+p-+c— A+ y,is given in general in Ref. [29]. For the
special system of two protons plus an even-even core the rate
becomes

Rppc(E) =

3
8 I <Ey (18)

2
—— | =) oy (E,)),
(Hephtep p)/? 2\ E ) e

where E, = E 4+ B is the photon energy, E is the total
three-body energy, and B is the three-body (positive) binding
energy of the even-even nucleus A with the wave function
Wo. The photodissociation cross section o, (E,) for the
inverse process A + y — a + b + cisasum over contributing
electric multipole transitions of different orders, £. That is

QuY+1) (E,NY d
oo (52)  agEeto— 0. a9

where the strength function for the £ transition,

oy (Ey) =

d -
TEBEL0— 0 = Z (W) 101W0)|*8(E — E),  (20)
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is given through the reduced matrix elements, <m(i) 11O Wo),
where @, is the electric multipole operator, wél) is the wave
function of energy E; for all bound and (discretized) three-
body continuum states in the summation.

The astrophysical processes most often occur in a gas of
given temperature 7', which means we have to average the
rate in Eq. (18) over the corresponding Maxwell-Boltzmann
distribution, B(E,T) = 3 E*>exp(—E/T)/T?,

1
(Rppc(E)) = 33 Eszpc(E) eXP(_E/T) dE, (21)

273
where the temperature is in units of energy. Combining
Eqgs. (18)—(20) with Eq. (21) results in a full three-body
calculation of the energy-averaged reaction rate, as the wave
functions in Eq. (20) are proper three-body wave functions.

In the special case where the resonances are very narrow
and well separated the expression can be simplified greatly. If
é” is abound state, or a very narrow resonance state described
accurately as a bound state, we can assign a photon emission
width I',, to the transition from this state, that is given by [31]

1 8x(t+1) <Ey

2041 o
r, = Tol1O .
V2T 4 1420 + DIP? hc) |< ol z||1/fl )

2

s

(22)

where J is the angular momentum of the three-body resonance
with energy Eg.

If furthermore the three-body resonance is approximated
by a Breit-Wigner shape, the photodissociation cross section
in Eq. (19) can be written as

Ter(E)(E)
(E — Eg)*+ iT(E)’

2

oy (Ey) =7(J + 1/2)(3) 23)
£y

where [Feff(E)]_l = [Fppc(E)]_l + [FV(E)]_I, Iﬂppc is the

strong decay width, and the total (in principle energy depen-

dent) width I'(E) =T'pc + T,

With the dominating contributions arising from well sepa-
rated, narrow resonances of Breit-Wigner shapes as in Eq. (22),
the integral in Eq. (21) can be solved analytically, and we arrive
at a very simple expression for the average rate:

47'[3(2£ + 1)h5 Feff(ER)
(Ucpﬂcp,p)yz T3

The only assumption in this expression is that the photodissoci-
ation cross section is accurately expressed by the Breit-Wigner
form in Eq. (22) with three-body resonance energy, Eg > T
and width I’ < T'. Other contributing narrow well-separated
resonances can simply be added. Thus Eq. (24) is valid for one
or more contributing narrow resonance irrespective of capture
mechanism.

The three-body (two proton plus an even-even core) calcu-
lation leads to a 0™ ground state independent of the number
and character of the contributing core-proton single-particle
states. The lowest excited three-body bound or resonance state
would almost definitely be a 2" state. This is confirmed by the
mirror nuclei [34], where the two lowest excited states are 2+
states. Furthermore, the lowest possibly negative parity state
is 2.5 MeV above the ground state, and there isno 1~ at all in

(Rppe(E)) = exp(—Eg/T). (24)
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the known spectrum. The dominating transition can therefore
be assumed to be an £2 transition. To examine the remote
possibility of a 1~ state two opposite parity single-particle
states must be allowed. The relative energies of the 2% and 1~
states depend on the attractions of the two-body potentials for
the corresponding partial waves. The energies of these excited
states are, through Eq. (24), all-decisive for the capture rates.
Besides the three-body resonance energy also the effective
width e is important for the capture rate. The realistic
assumption that 'z ~ I, allows an estimate of the relative
sizes of the 2% to 1~ effective widths, that is from Ref. [31],

2
LEE+ Dl ( E,R ) ’ 25)
r, (&0 he(2€ + 3)

where R is the radius of the nucleus. For £ = 1 we get with
E, = 1MeV and R = 10 fm that ", (€1) ~ 10* T, (£2). This
estimate is from a single-particle model, but within the three-
body model effects from the other proton can at most contribute
by a factor of 2. The implication is that £1 would dominate
unless forbidden by rather strict conservation laws.

III. THREE-BODY GROUND STATE PROPERTIES

The nuclear properties of the waiting points are related
to the Borromean structure reached after two-proton capture.
We therefore first investigate the Borromean ground state
depending on the two-body potentials varying along the proton
dripline. In the following subsections we discuss three-body
energies and structure of the corresponding wave functions.

A. Energies

The most tightly bound Borromean nucleus is most likely a
closed (sub)shell for the core while the additional two protons
occupy empty valence orbits. An extra stability is present
for N = Z nuclei which conveniently also includes waiting
point nuclei for N = Z = 32,34,36. The ground states for
both core and Borromean nuclei have zero angular momentum
and positive parity as always for even-even nuclei. The first
excited states of these nuclei are 0.9 MeV [35], 0.9 MeV [36],
and 0.7 MeV [37], respectively. These rather high values
demonstrate the stability required for a Borromean three-body
structure built on these inert cores.

Given the significant Coulomb barrier the three-body
system does in principle not need to be strictly bound. The only
requirement is that the proton-decay branch is small compared
to the B-decay branch. Small positive three-body energies are
then possible, which in principle extends our energy region
of interest. However, the 8 decay half life of 0Kt has been
measured to be 57(21) ms [38], so the possible extension is
exceedingly small.

The two-body bound or resonance energies for the different
partial waves are now the only pieces of information missing
before the three-body properties can be calculated. We choose
to use p32 and f5/, and allow them both simultaneously with
the same energy as well as one at a time. All other partial
waves are either not present or shifted to high energies.

In Fig. 1 we show the lowest effective adiabatic potentials
defined in Eq. (16) for the three cases with the same
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FIG. 1. The potentials based on the spectra of the lowest three
A’s for p3, (dashed red line) and fs/, (dotted blue line) in isolation,
along with the combination of both p3,, and f5/, (solid black line).
All two-body potentials have been adjusted to produce the energy
Ey = 0.1 MeV. It is seen how the spectrum of the combined case
always follows the lowest available potential.

two-body energy, Ey, = 0.1 MeV, in all cases. We first notice
an attractive potential for each contributing partial wave. When
both p3/> and f5, are allowed we find two attractive low-lying
adiabatic potentials. Both contributions are present in the
combined case where the deepest potential always follows the
lowest potential from either p3,, or fs/, for different p values.
Constructive (or destructive) interference can only marginally
occur through nonadiabatic terms since p and f waves cannot
couple to form a 0" state. However, this results in avoided
crossings for the combined case which therefore must produce
lower three-body energies than the individual cases. In general,
the combined case can then never be less attractive than any
of its components.

The coupled set of adiabatic radial potentials is solved
and energies and wave functions calculated. The two-body
input parameters are not known although limits from the
required Borromean character can be found. We must therefore
investigate the three-body properties as a function of the
unknown two-body energies. The three-body energies E3p
are presented in Fig. 2 as functions of two-body energies
E,, for a various selection of contributing partial waves.
The most spectacular observation is that all curves are
linear. In the figure we only exhibit results for the most
interesting energy interval but the same observed linear depen-
dence is accurately followed within the investigated interval,
—2.0MeV < Ey, < 2.0 MeV.

‘When more than one partial wave is allowed, the two-body
potentials are adjusted to produce the same energy. Fixing the
energy of one two-body partial wave, while increasing another
one from the same value, the E3, must increase and approach
the higher-lying curve corresponding to the one contributing
wave. If more than two degenerate core-proton single-particle
levels contribute we would find even lower-lying E3;, curves.

PHYSICAL REVIEW C 93, 024601 (2016)

5| -—--Eg(Pyptfy,) =1.99(2) E,+0.18(2) (no V. )
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E,, (c-p) [MeV]

FIG. 2. The three-body energies as a function of two-body
energies for py/», p3/», and f5; in isolation, and for p;/; and f5/, as
well as p3; and f5/, in combination, the latter both with and without
p-p interaction, and with and without a three-body potential. The
linear fits are in accordance with Eq. (29). All two-body potentials
were adjusted to produce the same energy, when more that one wave
is allowed. Only a 07 state is considered here. The horizontal and
vertical line indicates our Borromean region of interest.

However, this is highly unlikely since this requires nuclear
potentials of unprecedented high symmetry. Omission of the
proton-proton interaction in the case of two contributing partial
waves, p3;» and fs),, increase the curve even above (0,0),
which apart from center-of-mass effects should correspond
to three noninteracting systems. Thus, we claim to have
established limits for the Ej5;, variation between the lowest
curve in Fig. 2 and a parallel curve roughly passing through
(0,0).

So far, the results shown in Fig. 2 have been obtained
using just the two-body interactions contained in Egs. (5)—
(7). However, it is a well known fact that using only two-
body potentials will usually lead to an underbound three-
body structure, as shown for instance for ""Ne and '’C in
Refs. [23,39], respectively. This problem is typically overtaken
by addition of an effective three-body force, V3,(p), to the
adiabatic potential given in Eq. (16). Nevertheless, inclusion
of such three-body force does not change the linear dependence
shown in the figure. This is illustrated by the dashed (yellow)
line in Fig. 2, which corresponds to the dot-dashed (black)
case, but where a modest Gaussian three-body force V3, (p) =
S3p exp[—(p/ 00)?] has been included. In particular, the values
S3, = —5.8 MeV and py = 6 fm have been used. As seen in
the figure, inclusion of the three-body force only shifts the
three-body energy, but keeps the energy relation intact.

B. Structure

The simple linear dependency in Fig. 2 is due to the special
structure of the wave function and the Hamiltonian in Eq. (5).
The core is much heavier than the proton, and the reduced
masses are to a very good approximation both equal to the
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proton mass. Then x., ~ y., and the Hamiltonians in Egs. (6)
and (7) are also approximately equal, H, >~ H,. If |W3,)
denotes the three-body wave function, the three-body energy
is determined as the expectation value of the Hamiltonian in
Eq. (5), that is

E3p = (Wap| Hy [W3p) + (Wap| Hy [W3p) + (W3p] Vpp [W35)
~2E, +E,,, (26)

where the approximate equality arises due to the assumption
Xep A yep. This approximation is consistent with [W3;,) as
a product of corresponding two-body wave functions. For
instance, when two single-particle states are allowed, for
example p3/; and f5/, we have |W3,) = A|p3p), |p3j), +
B fsp), 1 fs /2)y, where the angular momentum coupling to
0% of both terms implicitly is assumed. Product terms of ps,,
and f5,, are not allowed because the total angular momentum
0" cannot be reached.

The above product structure of |\Ws;) is rather general, since
the x., distribution necessarily is described by the allowed
single-particle wave functions whereas the same overwhelm-
ingly dominating single-particle y., part for completeness
should be extended to include other angular momentum
components. We then get

E, = (W3 |H|W3p) = A*Enp(p) + B Exp(f),  (27)
where the two-body energies are defined by

Exw(p) = (p32| Hxlp3p), »
Exw(f) = (fspalHel f5)2)

and the cross terms vanish both due to orthogonality of the
eigenfunctions of H, and angular momentum conservation of
the Hamiltonian. We then arrive at the estimate of the three-
body energy

E3p, >~ 2[A*Esp(p) + B2 Exp(f)] + (W33 V,p | W35) . (29)

(28)

where A% + B? = 1. The occupation probabilities A?> and B>
are given by the relative weights of the partial waves. If
only p3, or f5/ are allowed we have A =1 and B =0 or
A =0 and B =1, and consequently the linear dependence
seen in Fig. 2. If E»,(p) = E»(f) the linear dependence still
results, and in both extremes the slopes of the curves are 2.
Variation between limits must produce a curve connecting the
corresponding two lines. For example, the lower limit, when
allowing both p3,, and f5,,, is given by the black, dash-dotted
line, and the upper limit is given by the curve corresponding
to the wave with lowest energy. We emphasize the remarkable
equality of the slopes of the lines in Fig. 2.

The structure of the solutions is quantified by decompo-
sition into contributing partial waves. We collect the results
in Table I for the same seven cases as seen in Fig. 2 with
both sets of Jacobi coordinates. We have chosen two rather
different values, —2.0 and 2.0 MeV, for the two-body energies
used to adjust the strength parameters. The distributions are
very similar for the two energies, and the transition from one
distribution to the other is slow and monotonous. Adding a
three-body potential has no significant effect on the structure
of the wave function.
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TABLE I. The weights of each partial wave for the same cases as
shown in Fig. 2. The state in question is a 0" state. Here [, denotes
the relative angular momentum between the two particles specified
by the second column, /, denotes the angular momentum of the third
particle relative to the center of mass of the first two particles, and /; is
the total angular momentum they combine to. The sixth column gives
the order K.« of the Jacobi polynomium used for the corresponding
partial wave. The last two columns shows the weight (in percent) of
the states for different two-body c-p energies. Components where all
states have a weight less than 10% are generally not included.

Waves Jacobi I, I, L K Ey (MeV)
-2.0 2.0

P pp 0O 0O 0O 98 78 76
1 1 1 80 20 22

p-c 1 1 0 80 79 77

1 1 1 80 20 23

piy2 pp 0O 0O 0 98 48 45
1 1 1 80 49 52

p-c 1 1 0 80 49 46

1 1 1 80 51 54

o2 pp 0 0 0 98 48 47
1 1 1 80 37 38

2 2 0 52 11 11

p-c 3 3 0 74 60 59

3 3 1 74 40 41

P+ fsp p-p 0 0 0 98 8 75
1 1 1 80 19 22

p-c 1 1 0 80 56 52

1 1 1 80 12 13

3 3 0 74 23 24

3 3 1 74 9 11

pp+fsn  pp O O 0O 98 80 77
(Vi # 0) 11 1 8 18 20
p-c 1 1 0 80 62 57

1 1 1 80 13 13

3 3 0 74 19 21

3 3 1 74 6 9

P+ fsp p-p 0 0 0 98 65 64
(V,p = 0) 11 1 8 33 32
p-c 1 1 0 80 66 65

1 1 1 80 34 33

3 3 0 74 0 0

3 3 1 74 0 0

P2+ fsp2 p-p 0 0 0 98 66 61
1 1 1 80 31 35

p-c 1 1 0 80 38 34

1 1 1 80 20 21

3 3 0 74 30 31

3 3 1 74 11 14

The decomposition is rather trivial, when only one single-
particle orbit is allowed. In the second set of Jacobi coordi-
nates, the proton-core set, only this state is allowed. However,
two couplings to total orbital angular momentum, /, = 0 and
1, share the weights, which is equally distributed in the first
Jacobi set since /; is conserved in this rotation.

When two single-particle orbits are allowed the decompo-
sition includes both structures with different relative weights.
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FIG. 3. The probability distribution for the 0™ ground state with
equal two-body binding of 0.641 MeV for both f5,, and p3/, partial
waves. Projected contour curves are shown at the bottom of each
figure. The distance variables correspond to the two different Jacobi
sets, where panels (a) and (b) are for the first and second Jacobi sets,
respectively.

The /, = 0 components are always far larger than those of [, =
1. The distribution is strongly depending on the proton-proton
interaction as seen by the complete separation for V,, =0,
where the three-body ground state is degenerate corresponding
to either [p32), |p3s2), or [fsp2), | f5/2) -

As seen from Eq. (29) the displacement of the lines in
Fig. 2 not only depends on the proton-proton interaction, but
also on the wave function. The spin-orbit difference between
P12 and p3j> causes a slightly different wave function, which
is why the two curves differ. This is also demonstrated by
the fact that displacement changes from —1.54 to 0.18 MeV,
when a very shallow nuclear potential and neither spin-spin,
spin-orbit, tensor, or Coulomb potentials are used in the proton-
proton interaction. In fact, by completely eliminating the
proton-proton interaction, the result is almost two independent
two-body systems. The slight positive displacement is in that
case due to the fact that all three coordinates r;, r,, and rj3
are still coupled in the y coordinate as long as the core is not
infinitely heavy.

The actual size of the displacement, caused by the proton-
proton interaction, can in principle be estimated from the ma-
trix element (W|V,,,|W). We show the probability distribution
of the three-body wave function in Fig. 3 where the distance of
about 5 fm between proton and core [Fig. 3(b)] is a prominent
feature. The proton-proton distance distribution [Fig. 3(a)] is
much more complicated with three peaks at distances of about
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2.5, 8, and 11 fm, respectively. The Coulomb repulsion would
correspondingly be about 0.6, 0.18, and 0.13 MeV.

The strong nucleon-nucleon interaction has strength of
around 40 MeV and range of 2 fm. To arrive at a total
displacement of around —1.7 MeV there must be only a few
percent of the proton-proton distance-probability within the
range of 2 fm. To make a reliable estimate of the displacement
is therefore very delicate as it depends strongly on the solution
to the three-body problem. A much better computation would
be to evaluate E,, directly. However, this would still be only
an estimate since W changes with the interaction, and at best
we can only reproduce the already known actual curves in
Fig. 2.

IV. RADIATIVE CAPTURE

The critical waiting points in the rp process are defined by
the long time it takes to capture an additional two protons in the
nucleus. The Borromean nature requires a three-body reaction
producing the strong interaction bound two-proton plus core
system. In this section we shall focus on corresponding
reaction rates and the structure of crucial intermediate states.
The total processisc + p + p — A + y, which as well can be
understood through the reverse process, A +y — ¢+ p + p.
It is often very accurate to divide part of this process into
two steps, A* <> A + y, where A* is one (and sometimes a
few) intermediate excited state. We shall first investigate the
properties of such intermediate excited states and subsequently
calculate the reaction rates. Unless otherwise stated a two-body
energy of 0.641 MeV is used, as this is the measured proton
separation energy of ®Br [40]. The results are not restricted to
such a specific energy, but apply rather generally to the region
of the nuclear chart around the critical waiting points.

A. Excited continuum states

The reactions proceed from continuum three-body states,
that is from two free protons and an (almost) ordinary nucleus.
This problem can be handled by two conceptually different
methods [39,41], where the first is to specify the boundary
conditions directly and solve the Schrodinger equation. The
second method is to discretize the continuum in a large
hyperradial box which in the present case is limited by
hyperradii less than the box radius pp;yx.

We shall here use the discretization method with the great
advantage of using the already defined adiabatic potentials. As
discussed in Sec. I C the most likely dominating intermediate
angular momenta is 2*. Also, as discussed in Sec. II B, states
with the necessary opposite parity to forma 1~ state is also very
unlikely. However, to later study the scale of the £1 transition,
P32 and ds, waves are allowed to form a 1™ state. We show the
lowest corresponding adiabatic potentials in Fig. 4 for three
such cases, where two partial waves for each total angular
momentum are allowed. The parameters are chosen to be the
same as already used in the study of ground state properties.

The potentials in Figs. 4(a) and 4(b) are qualitatively similar
to those of Fig. 1 with attractive pockets around p = 8 fm,
infinite repulsion at smaller distances, and barriers at larger
p separating regions of interacting and fully separated three
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FIG. 4. (a) The potentials based on the spectra of the lowest five
A’s for the 2% state allowing both ps,; and f5,, waves. The dashed,
horizontal line is at the lowest three-body resonance energy. The
dotted curve is the sum of Coulomb potential and two-body energy.
(b) The same for the 1~ state with p3,, and ds;, waves. (c) The same
as for (b) with the ds/» two-body energy equal to 1.5 MeV.

particles. The attractive region and the substantial barrier
suggest that there are narrow, low-lying resonances or perhaps
even bound states. The energies of the radial solutions in the
box are at first glance also similar to the ground state 0% so-
lutions, that is one prominent bound, separate, low-lying state
and a number of higher-lying solutions. However, the bound
solutions have positive energy and would therefore correspond
to resonances or continuum states. The 1~ potentials shown in
Fig. 4(c) are much more repulsive at short distances since the
necessary ds; state is chosen to be at 1.50 MeV. The resonance
is at a higher energy, where also more continuum background
states have a nonvanishing contribution at short distances.
The three-body energy for the 1~ case with E,,(p) #
E»,(d) can be explained using an argument similar to that
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FIG. 5. The three-body energy as a function of two-body energy
for the 0% and 2% state with ps,» and f5,, waves, as well as for the 0F
and 1~ state with p3,, and ds/, waves. The horizontal line is included
to guide the eye.

in Sec. III B. The three-body wave function can be writ-
tenas |W3y) = A|p3p), 1dsp2), + Bldsp2)  |p32),, where the
angular momentum coupling is to 17. As m. > m, the
likely weight of the two configurations must be the same,
and since these are the only possibilities we have A? =
B? =1/2.Then E, = 1/2[Ex(p3)2) + Exp(ds)2)], and Ezp =
E2b(p3/2) + E2b(d5/2) + Epp. It was found that if Egb(p3/2) =
Ey,(ds)2) = 0.641 MeV then E3, = 0.61 MeV, which means
Epp ~ —Ey(p3,) for that specific energy. However, the
three-body wave function is almost unchanged when changing
E»(ds)2) because both the p and d wave is needed to form
the 17 state, and £, is therefore also almost unchanged. The
result is E3p, >~ EZb(dS/Z) for E2b(p3/2) = 0.641 MeV.

The three-body large-distance configuration is also revealed
by close inspection of Fig. 4. A region around p = 40-50 fm
is seen where one potential tends to be more flat than dictated
by a general Coulomb decreasing potential. The size and slow
decrease is precisely consistent with the Coulomb potential
between one proton and a proton-core two-body system in
a spatially small resonance at 0.641 MeV. This is reflected
in the good agreement between the lowest potential and the
corresponding Coulomb potential plus two-body energy seen
in Fig. 4. In Fig. 4(c) the same V¢ + Ey;, barrier is indicated by
the red, dotted curve. This implies that the close-lying proton
is in a p orbital.

The three-body (bound) resonance energies are not neces-
sarily the lowest discretized states. It depends strongly on
the size of the box since an infinite box must produce a
continuum of states from the threshold and upwards. We detect
the resonance state by requiring that the density distribution is
localized at small distances. The resonance energies are shown
in Fig. 5 as function of two-body energies for the choices used
for the ground state calculations. It is perhaps less surprising
to find the same simple and accurate linear dependence as we
observed for the ground states. The criteria for linearity are the
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TABLE II. The weights of each partial wave for the 2% case,
where only p3,, and fs5;, waves are allowed, and for the 17 case,
where only p3,, and ds/, waves are allowed. The notation is the same
as in Table I. The last three columns shows the weight (in percent) of
the lowest resonances. The resonances correspond to the first peaks
in Fig. 6. Components where all states have a weight less than 10%
are not included.

Waves Jacobi [, I, I K nax Weight
2F p-p 0 2 2 199 27 8 15
P32+ fsp2 1 1 1 199 40 11 11
1 1 2 199 3 19 2
1 3 3 202 1 17 12
2 0o 2 60 23 8 13
3 1 3 22 1 17 12
p-c 1 1 1 160 41 12 10
1 1 2 160 38 4 1
1 3 2 162 3 15 15
1 3 3 162 1 20 23
3 1 2 162 3 15 15
3 1 3 162 1 20 23
2F p-p 0 2 2 199 23 25
P32 1 1 1 199 53 41
2 0o 2 60 21 24
p-c 1 1 1 200 55 42
1 1 2 200 45 52
1-® p-p 0 1 1 199 66
D32 +dsp 1 0 1 199 13
p-c 1 2 1 161 38
2 1 1 161 38
1-* p-p 0O 1 1 199 66
D32 +dsp 1 0 1 199 14
p-c 1 2 1 161 38
2 1 1 161 38

AEa(p32) = Eop(dsn) = 0.641 MeV.
bEZb(p3/2) =0.641 MCV, Ezb(d5/2) = 1.50 MeV.

same. Also the effect of a three-body potential would be similar
to the effect seen in Fig. 2 only it would be more difficult to
justify the exact size of the potential as the excitation spectrum
is less well known.

We can then conclude that the excitation energy is a
constant independent of the chosen variation in Figs. 5 and 2.
Specifically we get excitation energies 1.38 and 1.06 MeV for
the 2" and the 1~ states, respectively. However, the derived
limits of variation are completely different. The 2% excitation
energy is strongly limited, since the ground state only can
move between finite limits as shown in Fig. 2, and the lowest
2" resonance is entirely determined by the p3,, component
even when also f5; is allowed with the same energy as seen
in Table II.

The reason for this behavior is that any partial wave (except
angular momentum 1/2) of proton and 0™ -core states can be
occupied by two protons coupled to both 01 and 2. The
excitation energy can then vary at most by about 1.5 MeV.
In contrast, the 1~ state requires both positive and negative
parity proton-core single-particle states. Thus, a well defined
finite 0% ground state energy always appears whereas the 1~
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excitation energy can vary from zero to infinity by increasing
one of the necessary proton-core states towards infinity.

The discretization allows normalization of all the states in
the box. Specifically, as mentioned above the density distribu-
tions of the resonance states are localized at small distances.
The probability distributions are almost indistinguishable from
that of Fig. 3 each with a peak at a proton-core distance of about
6 fm. Only one 1~ resonance is found whereas three rather
pronounced low-lying 2" resonances appear when both ps,
and f5/, are allowed with the same energies. By definition all
these states have the overwhelmingly large probability located
at small distances. The spatial overlaps with corresponding
ground states are therefore very large in all theses cases. Thus,
only appropriate angular momentum dependent operators
and resonance energies are required to initiate highly likely
transitions, as seen in Eq. (19).

It is then important to know the angular momentum
composition of the excited states. The choices of allowed
partial waves are strongly limiting for these distributions as
seen in Table II. The simplest are the lowest 27 state and the 1~
resonance. They consist of only proton-core p3,, components,
and equal measures of proton-core and p3,-ds;» components,
respectively. The two excited 27" states are mixtures of p3/»
and f5/, proton-core partial wave components.

All discretized continuum states, beside the resonances
discussed above, are much more dilute and spread out at
large distances of the box. The spatial overlaps with the
ground state are therefore very small and any transitions would
correspondingly be reduced in size. This does not necessarily
mean that their contributions can be ignored, because the
number of these states also increase both with box size and
with energy. At some point they overlap and contribute as a
genuine continuum.

B. Cross section and reaction rates

The three particles in the continuum are not characterized by
one complete set of quantum numbers. The plane wave states
for free particles contain all angular momenta in a partial wave
expansion. In contrast the final nuclear state has given angular
momentum and parity, and the transition itself is conveniently
specified by a given one-body multipole operator. The tran-
sitions between well defined states are independent of each
other, and the prescription is therefore to calculate and add the
different contributions. The transition probabilities decrease
strongly with multipolarity, which therefore is decided by
nature through the structure of the Borromean final state.

The 0" quantum numbers are achieved by coupling of the
two proton-core angular momenta, which must be unoccupied
by core nucleons. The available low-lying single-particle orbits
therefore depends entirely on the region of interest in the
nuclear chart. We focus on the proton dripline region around
A =68, and as discussed f5;, and p3;, are from the mirror
nuclei expected to be the dominating single-particle orbitals,
with £2 being the dominating transition. For completeness
we shall nevertheless investigate the heavily suppressed £1
transition.

We proceed by calculating the discretized three-body
continuum states for given total angular momentum and parity
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FIG. 6. The cross sections for 2 — 0 with both ps3,, and fs)»
waves (solid, black curve), and only with p3,, waves (dashed, blue
curve). Also included are the cross section for 1~ — 0" with p3),
and ds». For the red dotted curve Eg4q N = 0.641 Mev, and E,, N =
1.50 MeV for the green dash-dotted curve. In both cases the £1
transition has been scaled down by 10° to make the figure readable.
The photodissociation energy is related to the total energy E and the
binding energy B by E,, = E + |B].

with selected two-body input energies. The cross sections and
reaction rates can then be obtained by summation over these
discrete “continuum” states. The method does not assume any
specific reaction mechanism, that is two-step via a photon
emitting resonance and/or continuum state, and both sequential
and direct reactions are included in the numerically obtained
results.

The discretization implies that the low-energy spectrum can
be too sparse when the box size is comparable to the extension
of the potential barriers. The space outside the barriers is then
too small to provide box bound states. On the other hand,
an attractive short-distance pocket would produce an isolated
bound-state like resonance which then would mediate all
the low-energy transition probability. The missing continuum
states in its energy neighborhood would have vanishing spatial
overlap with the ground state, and consequently also vanishing
transition probability. In the high-energy limit the level density
increases and the contributions are distributed over many
levels. At some point the included Hilbert space in the basis
becomes insufficient. Fortunately, we are able to cover an
energy region sufficient for the astrophysical reactions of
interest.

In Fig. 6 we show the cross section from Eq. (19) as
function of energy above threshold for two cases of 2% and 1~
excitations each. All the peaks are at the resonance energies
where the spatial overlaps to the ground state allow finite
cross sections. Two clear differences are seen between the
two 27 cases. First of all, the two lowest P3j2 + f5,2 peaks
are pushed a little bit further apart as for a two-level system
with an additional interaction. Second, the peaks are notably
smaller when only p3/, is allowed. The reason is the partial
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wave composition of the peaks and the number of contributing
potentials.

All peaks are in the p3/, case composed entirely of (/,,/,) =
(1,1), as seen in Table II, where only one potential contributes
significantly to the lowest peak. In the p3,» + f5,, case the
same structure is found in the lowest peak where two potentials
now contribute evenly. The next two peaks are in contrast
composed of an almost even mixture of (/,,/,) = (1,3) and
(3,1), which clearly is not allowed with only the contribution
from the p3/; state. In between the resonance peaks are the part
of the cross section which makes the nonresonant contribution
to the reaction rate. This contribution is completely negligible
compared to the resonant contribution for low energies while
increasingly appearing at higher energies. As the lowest peak
consists almost exclusively of p waves, adding higher angular
momentum orbitals would not change the cross section nor the
resulting reaction rates.

The cross section for the 1~ excitation is also shown in
Fig. 6. When the ds;, and p3/, two-body states have the same
energy we find only one huge contribution at very low energy
corresponding to one and only one resonance. When the ds ),
energy is increased this cross section peak (resonance energy)
moves up in energy, gets broader, and decreases in size. It
is found that increasing the ds;, energy to 3.00 MeV makes
the £1 contributions insignificantly small compared to the £2
contributions in Fig. 6. We can conclude that £1 transitions are
large even for relatively high-lying two-body states which are
necessary for the composition of the 1~ continuum or possible
17 resonances.

The capture process takes place in an environment where
temperature is an important parameter. The three-body energy
is therefore not a priori given, but occurs with a certain
probability distribution and with the capture rate specified in
Eq. (21). The resulting rates are given by the full lines in Fig. 7.
The lowest resonance peaks in Fig. 6 suggest narrow states,
which can be approximated by a Breit-Wigner shape. It is then
possible to use the much simpler expression in Eq. (24) to find
the contribution from each resonance to the overall reaction
rate.

Figure 7 shows that the lowest resonance clearly dominates
for both cases even at temperatures well above 3 GK. Summing
the contribution from the isolated lowest resonances results
in a better agreement with the full calculation to a higher
temperature, but large deviations appear above around 5 GK.
It is very remarkable that such a simple expression, based
on a single resonance, is able to estimate the reaction rate
so accurately over several GK. It is even more impressive
that a simple sum over the resonances can further increase
the temperature range of its applicability while maintaining
the accuracy. Increasing the ds;, energy increases the reso-
nance energy, which in turn increases the temperature with
the highest rate, while simultaneously reducing this rate. The
characteristic peak in the reaction curve is also smeared out by
the effects of higher energy continuum contributions.

There are a number of possible corrections, which should
be considered. First of all, the rates in Fig. 7 are based on the
full three-body 2% (17) spectrum in the energy region seen in
Fig. 6. If, as in the mirror nuclei [34], several of the lowest
states are 2% states, they are all included. Contributions from
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FIG. 7. The reaction rates corresponding to the cross sections
from Fig. 6. The result of the full calculations is given by the solid
curves. The dashed curves in the same color are the result of applying
Eq. (24) to the lowest peak in Fig. 6. The dotted curves are the
sum of contributions for the three (two) lowest resonances for p3,, +
fs2 (p3y2) using Eq. (24). The £1 rates have been scaled down by
10 to make the figure readable. The various resonance widths for the
lowest resonances can be found in Table III.

other possible states, such as 4 or 3~ states, could conceivably
contribute, but they would be suppressed by several orders of
magnitude because of the higher order transition necessary.
All transitions are to the same 0" ground state. Excited,
bound three-body states are not accounted for as they are very
unlikely at the edge of the dripline, in particular considering
the lowest excited state in the mirror nuclei is 0.94 MeV above
ground [34].

Due to the high temperatures involved core excitations
could also be a contributing factor. The first excited state in
%8Se is E.; = 0.854 MeV above the ground state [36]. The
probability of occupation at a temperature of 4 GK would then
be exp[—E.1/(kpT)] = 0.09. To get the reaction rate from
Eq. (21) we must multiply by R.,, which is proportional
to the photodissociation cross section as parametrized in
Eq. (23) for a resonance. The peak structure suggested by
the parametrization is used to derive Eq. (24) which assumes
that the barrier penetration factor contained in I' and e
has a relatively smooth energy dependence. The numerical
calculations of o, shown in Fig. 6 reveal the expected peak
structure for small E, confirming the sufficient smoothness
of I' and I'er. With everything being the same for ground
and excited states we conclude that the contribution from
low-lying excited states are reduced by their Boltzmann factor
which then would be only a minor contribution. The second
excited core state is 1.20 MeV above ground, and is even less
significant. To include contributions from core excitations or
other bound three-body states one would have to include the
partition functions of both the initial target and final three-body
nucleus [5,42], to account for the thermal equilibrium between
the ground and the excited states. This would in this case be
minor corrections.
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The discretized three-body states are limited to energies
less than 10 MeV, so the rates must decrease for sufficiently
high temperatures. Going to higher temperatures the computed
&2 transition rate has a maximum value of about 6.5 and
3.5 x 107"'NZ cmS 57! mol 2 at just above 25 GK for the
black and the blue curve respectively, and then decreases
similarly to the £1 transition. The maximum value for the
&1 transition occurs at much lower temperatures as there is, as
seen from Fig. 6, no significant contribution to the cross section
at higher energies. In both cases, the restriction imposed by
the limit in discretized energies is only relevant far outside our
region of interest.

As the single peak approximation fails at higher temper-
atures it would also fall short at lower temperatures. At low
temperatures even the lowest resonance state would not have a
significant probability of being populated, and the rate would
be dominated by off-resonance contributions. Fortunately, this
is well below our region of interest.

If both a 2% and a 1~ state was present simultaneously
transitions like 2% — 17 — 0% or 1~ — 2% — 0% could be
imagined, which would affect the final reaction rate. This effect
could be computed by establishing the relations between the
relevant two- and three-body energies, and then calculating
the reaction rate in the same way as before. As before, the
effect of any higher-lying resonances would only be significant
if the temperature was sufficiently high, as demonstrated by
the accuracy of the lowest peak in isolation in Fig. 7. For
our purposes it is therefore unnecessary to consider such
corrections.

If a three-body force is added and the energy levels shifted,
the effect on the cross section and reaction rate is only an
energy scaling determined by Egs. (19) and (24) respectively.
The overlap matrix element would not change, as the energy
shift does not change the structure of the wave function as seen
from Table I.

V. PRACTICAL IMPLICATIONS

The formulations and calculations presented in the previous
sections are schematic or quantitatively accurate depending
on the point of view. The schematic impression arises from
the relatively strong assumptions of the few contributing
proton-core partial waves. This is, however, not unrealistic
within the field of few-body cluster models, which has also
been able to provide an appropriate description of two weakly
bound nucleons surrounding an ordinary nuclear core. The
quantitative accuracy emerges as soon as the few-body model
approximations are shown to be correct, because then the
reliability and completeness of the results are unavoidable.

The final purpose of this paper is to provide a method for
estimating proton capture reaction rates for the region around
A ~70and N ~ Z in general, and the critical waiting points in
particular. To that end we first discuss the reaction mechanism
resulting from the sets of input parameters. Second, we
present estimates of the crucial two-and three-body ground
and first excited state energies, and finally, we combine these
considerations to present a general method for estimating
radiative capture rates around the critical waiting points.
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A. Reaction mechanism

The calculations are carried out without need for specifica-
tion of the reaction mechanism. In contrast, from the calculated
results we can deduce how the process proceeds between
the Borromean bound state and the three free constituents in
the continuum. Due to the principle of detailed balance both
reaction directions are equally well suited for both qualitative
and quantitative descriptions. In words the process starts
with bombarding the Borromean bound state with photons
of energy larger than the three-body binding energy, where
the populated continuum states somehow end up as three
independent infinitely separated three particles, that is two
protons and a core.

The process A +y — p + ¢ + p could proceed in several
possible steps. It could include an excited continuum state
of the Borromean nucleus, A*, or a quasistable two-body
proton-core (pc) configuration, although either or both of these
steps might be skipped. In this way the process is divided in
distinct, and possibly, independent steps. Whether they are
followed or not in a sequential progression is defining the
reaction mechanism, and is used to categorize it.

The traditionally denoted sequential path [43,44] is with
the proton-core state, but with or without A*,

A+y > A" > (po)+p— p+c+p,
A+y = (po)+p—>p+c+p.

Likewise, the route usually called direct [10,44], again with or
without A*, is

A+y > A*—> p+c+p,
A4+y > p+c+p.

The path chosen by nature depends on the characteristics of
the system. However, substantial numerical simplifications
as well as insight can be gained with a dominating narrow
resonance. Approximating the cross section by a peaked
function like a Breit-Wigner shape we arrive at the extremely
simple temperature dependent rate expression in Eq. (24). This
is exactly the same expression as in Eq. (15) of Ref. [30], with
I", replaced by I'cr. However, in Ref. [30] this reaction rate
is derived in the “extreme sequential limit,” under the much
stronger conditions that I'), is much smaller than I'j,,., and
the direct decay is disallowed. If I'), <« '}, then I'ep = T,
and the expressions become identical. On the other hand, if
[ppe K T, then egr 2~ I ¢, and photon emission dominates
over the strong decay channel.

Independent of validity of the simplified rate expression in
Eq. (24), the process can still be either direct or sequential, or
for that matter any mixture. This is perhaps better appreciated
by explicitly explaining that I',, is determined entirely by the
excited and ground state short-distance properties, while the
strong decay is entirely determined by the structure underlying
the barriers which has to be overcome before the reaction is
completed. The effective thickness of the barrier is determined
by the three-body resonance energy level.

The intermediate structure can be directly investigated
by the density distribution of the corresponding angular
wave function from Eq. (11). The angular wave function
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FIG. 8. The square of the angular wave function & from Eq. (12),
multiplied by the phase factor cos>(c) sin?(cr) and integrated over Q.
and €,, as a function of p and « for the lowest A of the 2" state in
the second set of Jacobi coordinates.

corresponding to the lowest A, is shown in Fig. 8 as a function
of p and « .. The structure is abundantly clear for p values
larger than about 20 fm. The probability distribution is only
finite at large and small &, which through Eq. (4) implies
that the distance is small between either the core and the
first proton, or the second proton and the center of mass
of the core-proton system. This is precisely the proton-core
resonance configuration properly antisymmetrized. As this
is the configuration for the lowest A,, the energetically
most advantageous escape route is apparently through this
configuration corresponding to sequential decay. However, this
conclusion may change with relative sizes of the two- and
three-body resonance energies, and as a function of the total
three-body energy. The angular wave functions corresponding
to higher-lying A, eigenvalues have different configurations.
By including all the relevant, relatively low-lying A spectrum,
all the relevant angular configurations, and thereby all the
relevant reaction mechanisms, are included, and not just the
extreme sequential or direct paths.

The decay width from resonance to three particles can be
estimated by use of the WKB tunneling probability through the
lowest potential barrier. This is most accurately done using nu-
merical integration between the classical turning points where
the effective potential equals the three-body resonance energy,
Vett(00) = Vest(p:) = Eg.Based on the energy difference from
the potential minima to the resonance energy, the harmonic
oscillator frequency wq can be determined. The knocking rate
from Ref. [31] is about w/m which must be multiplied by the
second order WKB tunneling probability, 1/[1 + exp(25)],
that is

ha)() 1
Cppe = T[l + exp(28)] 7,

g |
~h

(30)

Pt
\/2Mp,cp[veff(p) - ER] d,O

Lo
The I', width can be calculated using Eq. (22). The effective
width et can be calculated from I', and I ... The values of
these key quantities for the three-body decay, relating to the
cases of practical interest studied in the previous sections, are
presented in Table III. We find in almost all our Borromean
cases that A* is a well defined resonance with a very narrow
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TABLE III. The three-body resonance energy along with both
photon decay width calculated using Eq. (22) and proton decay width
based on a WKB calcualtion. The effective width I'.s is calculated
from these values. The cases of interest correspond to the peaks in
Fig. 6. All energies and widths are in MeV.

State Er Fpp(‘ FV Cefr
2+ L P32 + f5/2 1.14 4.1 x 1079 53 x 10710 4.7 x 10710
217 59x107° 83x107'° 83x1071°
429 3.0 x 10 27x107% 2.7 %1078
2t pap 138 24x107 54x1071° 54x1071°
368 9.6x107" 15x1078 1.5x 1078
1= P32 +d5/2 0.61* 1.7 x 107
1.50° 52x 1077 1.0x107° 49x 1077

2Exp(p32) = Eop(dsy) = 0.641 MeV.
®Egp(p32) = 0.641 MeV, Eyy(ds;2) = 1.50 MeV.

width. The reason is readily found in the potentials, where
the attraction is sufficiently strong, inside very pronounced
confining barriers, to hold a narrow resonance. As seen
in Eq. (22) I', depends on the resonance energy, but it
is dominated by the overlap matrix element for the given
multipole transition. As such it increases slowly with energy
irrespective of partial waves, but it changes dramatically when
the order of the transition is changed. The increase is much
more drastic for I',,. as it depends exponentially on barrier
thickness.

When the energy of the 1~ state is increased, by increasing
the energy of the ds/, single-particle proton levels, the reso-
nance becomes wider. The attractive pockets of the potentials
diminish while moving to higher energies, implying that the
resonance features disappear. The continuum states would
then have substantially less relative probability at distances
comparable to the size of the ground state. This decreases the
rate of the 1~ — OV transition. We emphasize that the method
of the numerical calculations is completely unchanged, and
the results are in fact obtained without any information about
whether such a resonance exists or not.

For the lowest resonance the I' ., is only about an order of
magnitude larger than I',,. This implies the lowest resonance
is at the edge where the effective width becomes a mixture
of the two. As I',,. decreases exponentially with E without
lower limit, while T, decreases as E2"!, where the photon
energy necessarily is finite, I'er will be dominated by I', if
the resonance energy is lowered.

If the three-body resonances E are the only intermediate
configurations acting as doorway states, then nonvanishing
processes occur only when E =~ Ex where the uncertainty
is determined by the width of the states. On the other
hand, small rates and cross sections arise also for energies
without the match to resonance doorway states. The rate is
calculated from the theoretical formulation for given energy,
but the applications are rather for given temperature 7. The
temperature smearing over the energies up to around 7 then
all contribute, and the higher energy contributions become
exponentially suppressed. A much more detailed discussion
can be found in Ref. [30].
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The character of the reaction mechanism as sequential,
direct, a mixture, or something else, is fundamentally deter-
mined by the dynamic evolution from small to large distances.
However, a number of rather solid conjectures can be made
from the calculated static properties. This can be elucidated
with two schematic potentials based on extreme geometric
progression corresponding to sequential and direct decay, for
more details see Ref. [45]. Outside the strong attractive region
the Coulomb potential for one proton moving away from
the proton-core state of given positive energy E,. is given
by Vieq = (Zc + De*/p+E pe- In case of several possible,
different two-body energies the most likely potential to tunnel
through would be the small and narrow potential. If the two
protons are moving away from the core along the most favored
symmetric linear configuration with the same p the potential
is instead Vg, = 2Z, + 1/2)e2ﬁ/p, where Z.|e| is the core
charge. These two potentials, Vieq and Vg, cross each other at
p. for an energy V,, that is

(V2 - 1DZ, —1+1/¥2) _ 262,

- Epe T Epe

2Z. + /232
Ve = Epc ~ 1.6Epc
QV2—1)Z.—1+1/3/2

for Z. > 1. With E,. = 0.641 MeV and Z. = 34, we get
pe =139 fm and V., =1.00 MeV, which is significantly
further out than the potential thickness in Fig. 4(a). The most
energetically favorable decay path is then the sequential path,
barring drastic, and most likely energy demanding, changes in
the configuration during the decay process. As E3, =~ E;;, for
1~ the potential thickness is tending towards infinity, which
would exclude a sequential decay.

The reaction mechanism for photodissociation, or equiva-
lently radiative capture, of given energy E can then be expected
characterized as sequential for V, < E, mixed sequential
direct for £,. < E < V., mixed direct and virtual sequential
E < E,. <V, and direct £ < E . [44,46]. We emphasize
that these characteristics are not rigorous properties, although
limiting cases would be observable [47], as they would leave
distinct signatures in the energy distribution of the emerging
fragments. Based on these limits the reaction mechanism can
very convincingly be classified as sequential for the 2% case,
direct for the low-lying 1~ case, and either sequential or a
mixture for the high-lying 1~ case. It should be noted that this is
very strongly dependent on the specific potential depths and the
temperature in question. For temperatures significantly higher
or lower than the resonance energy the reaction mechanism
would not be determined by the single lowest resonance,
but by the continuum background contribution or possibly
a complicated combination of several different resonances.

. (3D

c

(32)

B. Energy level predictions

The central parameters in the effective lifetimes of the
critical waiting points are the proton binding energies of the
two following isotones. Ideally, one would like to predict
these two- and three-body energies exactly. Unfortunately,
insufficient experimental knowledge makes such predictions
difficult. However, as seen in Sec. III A, it is possible to

024601-13



HOVE, JENSEN, FYNBO, ZINNER, FEDOROV, AND GARRIDO

establish relations between the possible two-body energies
and the needed three-body energies. From there limits can be
inferred regarding the position of low-lying excited energy
levels in both the two- and three-body system.

As the critical waiting points are Borromean in nature the
core-proton system must be unbound, while the two-proton
system must be bound. In other words, the region of interest
is limited to Ep, > 0 and E3, < 0. The following limits are
calculated without including a three-body potential. Adding
an attractive three-body potential would lower the three-body
energy, and thereby increase the estimated energy ranges.

If the ground state proton separation energy S, is greater
than 0.35 MeV (where the highest single wave curve in Fig. 2
crosses zero), then there must be a very close lying first excited
core-proton state for the three-body system to be bound.
Depending on the S, value a very narrow energy range for
this excited level can be predicted. Likewise, S, cannot be
greater than 0.74 MeV (where the p3,» + f52 curve crosses
zero in Fig. 2), as the three-body system then could not be
bound. Of course, this is based on the assumption that shell
model predictions and the mirror nuclei correctly identifies the
relevant single-particle states in the given region.

The only thing missing, if proper estimates are to be made
concerning the waiting point nuclei, is the two-body energies.
However, even this is not as severe a limitation as might be
imagined. Based on the results in Fig. 2 energy intervals can be
established for the proton separation energy. Recently, it was
possible to measure the ground state proton separation energy
of “Brto S ,,(69Br) = 641(42) keV [40]. For this to comply
with our result the ground state must be either a p3/, ora fs5,,
state, with the other being a low-lying excited state, otherwise
the three-body system would be unbound. In Ref. [40] the
ground state is surmised to be a f5,, state with a p3/, state
lying an unknown distance above. All lines allowing only one
partial wave have crossed into the unbound three-body region
before E, = 0.641 keV. The same is true for the f5,5 + p1,2
line. The only remaining possibility among the likely partial
waves is the p3/, + f5,2 combination.

The upper and lower limits for this first excited state
can now be established from the relation between two- and
three-body energy. The lower limit is of course Eo;(p3/2) =
0.641 MeV, corresponding to a degenerate ground state.
The upper limit is determined by keeping the f5,, energy
constant and varying the p3,, energy. Setting Eoy(f52) =
E2b(p3/2) = 0.641 MeV results in E3, = —0.21 MeV. By
slowly changing E»,(ps;2) the upper limit is found to be at
E»,(p3j2) = 0.800 MeV, where E3, = —0.00 MeV. The first
excited p3, state in %Br is then predicted to lie less than 0.16
MeV above the ground state. Likewise, using the estimates
included in the AME 2012 collection, a proton separation
energy of S ,,(73Rb) = 0.6 MeV is predicted [48]. This implies
the ground and first excited states consist of a p3,, and fs/»
state, one lying no more than 0.2 MeV from the other. For
%5 As the AME estimated proton separation energy is at 0.09
MeV, which makes it difficult to predict anything specifically.
However, it does make it very unlikely that there is a py/, ora
f5,2 ground state without a low-lying first excited state.

Similar predictions can be made concerning the excited
continuum levels. Based on Fig. 5 the 2% state is found to
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very consistently be 1.38 MeV above the ground state. The
lower limit of the resonance energy Eg then corresponds
to the lower limit of the ground state, i.e., E}Qi" =2 x
0.641 MeV — 1.54 MeV + 1.38 MeV = 1.12 MeV. Likewise,
the upper limit corresponds to where the ground state is
at the edge of being unbound, i.e., Ey, = 0.74 MeV and
ER*™ = 1.38 MeV. This very narrow interval can be used to
estimate limits for the reaction rate.

It is considered much more unlikely that the three-body
system will form a 1~ state based on both mean field
calculations and comparisons with mirror nuclei. However,
as has been shown, if it is even remotely possible the dipole
transition will dominate the reaction rate. The placement of
the 1 resonance is not as sharply limited as the 2* resonance,
which is dictated by the lowest two-body resonance. On the
other hand, the 1~ resonance needs a combination of opposite
parity states, and could move to arbitrarily high energies
without affecting the 0" ground state.

C. Rate predictions

In the preceding sections it was argued that very narrow
resonances will be produced by the fairly attractive short-
distance region in combination with the wide Coulomb barrier
at large distances. In addition, very confining limits have been
placed on both two- and three-body energy levels. Collectively,
this allows for limits to be placed on the relevant three-body
reaction rates for specific energies. These limits would again be
affected by the addition of a three-body potential. However,
the energy scaling is predicted by Egs. (19) and (24). More
generally, this provides a method for estimating proton capture
rates for the region in general given few experimental data.

As the reaction rate is dominated by narrow resonances
it can well be approximated by Eq. (24) for temperatures
in the 0.1-4-GK range. The limits of the resonance energy
was established in Sec. VB for the specific case of the
critical waiting points. Assuming the overlap matrix element
is constant for small changes in two-body energy, I', only
depends on photon energy as E>‘*'. However, as the distance
between the curves in Fig. 5 is constant, £, would also
be constant independent of two-body energy. The same is
therefore true of I'),, and the I',, value from Table III can be
used for a given resonance. As Fe_ff' = F;plc +I, ! the largest
possible value of I'ef is the constant I',,.

Itis then clear that using Eq. (24) the largest rate is achieved
at the lowest resonance energy where I'ey >~ I',. At some
point, for sufficiently low resonance energies, the 'y =T,
assumption no longer holds as I',, continues to decrease. For
lower resonance energies I'eit < I',, and the rate decreases.

To estimate the rate it is then necessary to estimate ',
which means the barrier must be determined very accurately.
Unfortunately, the intermediate distances that are relevant
here are notoriously difficult to treat accurately by simple
expressions. For large distances approximation such as the Vg,
and V4 potentials presented earlier could be used. These will
however overestimate the potential, which will underestimate
of the rate exponentially. A more appealing alternative is to
use the potential calculated in full in Sec. IV A. The potential
outside the barrier is the determining part. To study the rate
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based on a two-body energy different from the value of
0.641 MeV this part of the potential needs to be shifted an
amount corresponding to the difference in two-body energies.
The final procedure in estimating the three-body reaction
rate is as follows. The first step is to assess the two-body
energies somehow. For waiting point nuclei limits can be
established from Fig. 2. The second step is to find the
three-body energies based on the two-body energies. The
ground state three-body energy is determined from Fig. 2,
while the first excited level is determined from Fig. 5. If
different two-body energies are used for the relevant partial
waves the lower limit for the three-body energy is given by
the curve where the energy is the same, while the upper limit
is given by the highest single wave curve. The third step is to
estimate I'er. The value of I',, is given in Table III for the most
likely cases. Otherwise the single-particle decay rates can be
used to estimate I'y, [31], where a factor of 2 should be added
to account for the two particles. In many cases I', <« I, and
the exact value of I',,c is then not relevant. When necessary,
for relatively low resonance energies, I',,,. can be estimated
with a WKB calculation through the known potential barrier
shifted appropriately according to the two-body energy. The
fourth and final step is to calculate the limits of the reaction
rate with Eq. (24) using the calculated effective width and the
limits on the resonance energy. This method applies generally
for proton capture in the region around the critical waiting
points. If considering ®*Ge or "°Kr instead of ®®Se minor
changes in the long-range Coulomb potential would have to
be considered, but the most important change would be the
two- or three-body energy spectrum. The same method could
be applied based on estimates of the particular energy levels.
The result is seen in Fig. 9, where the 2" — 0% rate is
estimated based on three different two-body energies. The
energy studied in Sec. IV A is used along with the upper
energy level of Ey;, = 0.74 MeV established in Sec. V B and an
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FIG. 9. Estimates of the reaction rate for 2* — 07 with ps;,
and f5/, based only on two-body energies. The blue curve at Ey, =
0.74 MeV corresponds to the upper limit established in Sec. V B.
The low temperature region has been scaled up to demonstrate the
similarities.
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energy an equal amount below. The low temperature region is
scaled up to show how closely the rates agree for temperatures
below ~1 GK. The rate decreases with increasing resonance
energy because of the exponential factor in Eq. (24), and it also
decreases with decreasing resonance energy because we are at
the edge where I" . starts affecting I'er. Changing the various
two-body energies individually, between 0.54 and 0.74 MeV,
would change the three-body resonance energy, but the final
reaction rate would be within the limits here presented. Going
outside this two-body energy region would decrease the rate
exponentially, based on Eq. (24), for temperatures around
1-4 GK.

These limits are based on the assumption that only the
lowest resonance contributes significantly. The temperature
must be in the vicinity of the three-body energy for this to
be true. For much lower temperatures the resonance energy
is not accessible, and the main contribution is through off-
resonant reactions. This would lower the rate exponentially.
For higher temperatures other resonances would contribute,
and the lowest resonance might only contribute through the
tail of the cross section.

In principle, these rate estimates should include the various
contributions discussed at the end of Sec. IV B, even for tem-
peratures in the 1-4-GK region. However, these are all minor
corrections which does not change the result significantly.
Major changes would only occur with changes in energy levels.

VI. CONCLUSION

The waiting points in the rp process are prime candidates
for three-body calculations by their very definition. Given
the heavy core in the three-body system the proton-core
interaction will determine the characteristic of the system,
with only minor corrections stemming from the proton-proton
interaction. Because of this, very simple relations between the
two- and three-body energies can be derived and understood
based on the three-body Hamiltonian. These relations apply
equally well for both ground and excited energy levels. These
very simple, and rather general, relations between two- and
three-body structures and energies allow for the estimation
of either two- or three-body properties given very sparse
experimental data.

It is also seen that the three-body structure consists of
the two protons located at the surface of the heavy core. At
larger distances the structure is that of a single proton moving
away from a two-body core-proton resonance. Conceptually,
this corresponds to what is traditionally known as sequential
decay. For low available initial three-body energy (and low
temperature) this configuration would no longer be the
energetically most favorable.

When calculating the cross section for the process A +
y — p + p + c the effective potential confining the particles
is decisive. The relatively heavy core gives rise to a large
Coulomb barrier and an attractive short-distance potential.
This makes the lowest continuum states narrow, well-defined
resonances. Based on the spectrum of the mirror nuclei, 2+
states were assumed to dominate the low-lying spectrum.
The full three-body rate calculation was based on the entire
2% spectrum. Assuming the narrow, well-defined resonances
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have a Breit-Wigner shape, the full rate calculation could be
reproduced from around 0.5 GK and up to 4 GK based solely on
the lowest resonance. Summing over the contributions from the
first few resonances for the 27 case increased this temperature
range to about 5-6 GK. The off-resonance, background
contribution is mainly relevant for lower temperatures, where
the chance of accessing the resonance level is much smaller.
For the much more unlikely 1~ case only one resonance state
is present, which then dominates a wide temperature range
around the resonance energy.

In the unlikely scenario where an 17 state is available,
depending on its position, the £1 transition could contribute
significantly. However, based on both mean field calculations
and experimental measurements in the region around the
critical waiting points single-particle orbitals of like parity
dominate the low-lying energy levels. Also no 1~ state is seen
in the mirror nuclei. This very effectively excludes three-body
states of negative parity. The most likely transition is then the
always allowed (as long as more than s waves are available)
&2 transition.

As the expression based on the assumed Breit-Wigner
shape depends mainly on the resonance energies, the relations
between two- and three-body energies can be used to provide
limits for the reaction rate. Alternatively, the rate estimates
could also be based directly on three-body resonance energies
if available.

An added benefit of the three-body formalism is that no
assumptions regarding the preferred reaction path are needed.
On the contrary, the most likely reaction mechanism can be
deduced based on the structure of the angular wave functions
corresponding to the lowest A, eigenvalues. For most of the
relevant energies the mechanism can be considered sequential
through narrow two-body resonances. This is intuitively
understandable if the three-body excited resonance state has
a higher energy than the resonance(s) of the subsystem. On
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the other hand, a very low temperature only allows direct
decay (or capture) since then the available energy is too low
to populate the two-body resonances even virtually. However,
these reaction questions would eventually have to be answered
by studying the dynamic evolution from small to the large
distances in more detail.

In conclusion, we have performed a full three-body analysis
of the nuclear structure and decay of critical waiting points in
the rp process. This allowed us to study in detail the two-proton
capture rate needed to bridge the waiting points, as well as the
energy levels central in determining the effective lifetimes of
these waiting points in a stellar environment. We find that a
simple expression, based on an assumed Breit-Wigner shape,
can accurately reproduce the full three-body rate calculation
in the temperature region 0.5-5 GK generally considered to
be of astrophysical interest. This led to a general method for
estimating two-proton capture rates in the region around the
critical waiting points based only on either the two- or three-
body energies, if these are more readily available. Specifically,
we predict, given the currently available experimental data,
that the two-proton capture rate forming "°Kr for temperatures
between 2 and 4 GK increase by a factor of 3.5 from 0.4 x
107"'N2 cm® s~ mol 2.
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