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Inclusion of time-odd components into the wave function is important for a reliable description of rotational
motion by the angular-momentum-projection method; the cranking procedure with infinitesimal rotational
frequency is an efficient way to realize it. In the present work we investigate the effect of this infinitesimal
cranking for a triaxially deformed nucleus, where there are three independent cranking axes. It is found that the
effects of cranking about three axes on the triaxial energy spectrum are quite different and inclusion of all of them
considerably modifies the resultant spectrum from the one obtained without cranking. Employing the Gogny D1S
force as an effective interaction, we apply the method to the calculation of the multiple γ vibrational bands in 164Er
as a typical example, where the angular-momentum-projected configuration mixing with respect to the triaxial
shape degree of freedom is performed. With this method, both the K = 0 and the K = 4 two-phonon γ vibrational
bands are obtained with considerable anharmonicity. Reasonably good agreement, though not perfect, is obtained
for both the spectrum and transition probabilities with rather small average triaxial deformation γ ≈ 9◦ for the
ground-state rotational band. The relation to the wobbling motion at high-spin states is also briefly discussed.
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I. INTRODUCTION

The angular-momentum-projection method is a fully mi-
croscopic means to recover the rotational invariance, which
is broken in the self-consistently determined nuclear mean-
field, e.g., by the Hartree-Fock-Bogoliubov (HFB) calculation.
Although a nice rotational spectrum is obtained by the
projection from one intrinsic mean-field, it often happens
that the moment of inertia is smaller in comparison with the
experimental data as long as the projection is performed from
the time-reversal invariant mean-field state. Inclusion of the
time-odd components is important for a realistic description
of nuclear rotational motion, and one of the efficient ways
to realize it is the so-called cranking procedure, which is
justified by the variational point of view [1]. Recently, we
have shown [2] that indeed the calculated moment of inertia is
considerably increased if the projection is performed from the
cranked mean-field state with very small cranking frequency.
Moreover, the resultant spectrum is independent of actual
values of the frequency if it is small enough [2]: We call this
procedure “infinitesimal cranking.” In our previous studies the
self-consistent mean-field state before the cranking is either
axially symmetric [2] or tetrahedrally symmetric [3,4], so that
the direction of cranking axis does not matter; there is only one
rotational axis for the quantum mechanical axially symmetric
system, and the tetrahedral deformation is “spherical” in the
sense that all rotational axes are equivalent, which is also
confirmed numerically [3]. In the present work we consider
the case of the triaxial deformation, where one can crank
the mean-field state around three independent rotational axes.
We study the effects of infinitesimal cranking around three
principal axes on the spectrum of triaxially deformed nucleus
obtained by the angular-momentum-projection method.

The second purpose of the present investigation is the
description of the γ vibration by the angular-momentum-
projection method. The motivation emerged from the prece-

dent analysis by the so-called triaxial projected shell-model
approach [5,6]: It is concluded that rather large triaxial
deformation of the mean-field is necessary to reproduce the
very low-lying nature of the γ vibration; see also Refs. [7,8] for
studies with the axial projected shell model. The γ vibration is
the most well recognized collective vibration in atomic nuclei
[1,9,10]. In the rare-earth region the ground state is believed to
be axially deformed according to the mean-field calculations
by, e.g., the Strutinsky shell correction method and/or the
Skyrme HFB method, and the γ vibration is interpreted as a
surface vibration that dynamically breaks the axial symmetry.
In fact, the γ vibration has been studied by the random
phase approximation (RPA) calculation with the schematic
QQ-type interaction based on the axially symmetric vacuum
state [11], although the strong anharmonicity for two-phonon
states exists; see, e.g., Refs. [12–15] and references therein.
However, there is a long history on the interpretation of the γ
vibration; by employing the asymmetric (triaxial) rotor model
[16] it was discussed in the early days that its low-lying nature
indicates the considerable triaxial deformation, although it is
very difficult to draw a definite conclusion from the existing
experimental data. Therefore, the analysis by the triaxial
projected shell model [5,6] revived the old problem, whether
the nucleus in the rare-earth region is axially symmetric or
triaxially deformed. It is worthwhile mentioning that in the
triaxially deformed case the high-spin part of the multiple
rotational bands based on the excitations of the γ vibration
is interpreted as the wobbling-phonon bands [10]. We briefly
discuss also this interesting issue of the relation between the
multiple γ bands and the wobbling band.

As for the proper treatment of the triaxial degree of freedom,
we use the configuration-mixing, or the generator coordi-
nate method (GCM) [1], on top of the angular-momentum-
projection. One of the great merits of this microscopic
approach is that not only the energy spectrum but also
the transition probability can be calculated fully quantum

2469-9985/2016/93(2)/024323(16) 024323-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.93.024323


SHINGO TAGAMI AND YOSHIFUMI R. SHIMIZU PHYSICAL REVIEW C 93, 024323 (2016)

mechanically without any ambiguity. It is known that the
E2 transition probability between the ground state and the
γ vibrational state is overestimated in the RPA approach
with schematic interaction by a factor 3–4 in the rare-earth
region if the Nilsson potential is used as a mean field [12];
the situation is improved if the Woods-Saxon potential is
used instead, but the B(E2) is still overestimated by a
factor 2–3 [17]. It is shown that this problem is greatly
improved in our angular-momentum-projected configuration-
mixing approach. We employ the Gogny D1S force [18] as
an effective interaction and select the nucleus 164Er as a
typical example of rare-earth nuclei. We present and discuss
our results in comparison with experimental data and with
the previous pioneering works [5]. The paper is organized
as follows. The basic formulation of the method employed
is briefly outlined in Sec. II. The results of the numerical
calculations are presented in Sec. III, where the effects of
the triaxial deformation and the infinitesimal cranking are
discussed. In the final section, Sec. IV, we give summary of
the present work and further discussion.

II. THEORETICAL FRAMEWORK

A. Angular-momentum-projected configuration mixing

The calculational method we employ is the standard one [1],
and the wave function |�I

M,α〉, where α specifies the quantum
numbers other than the angular momentum (IM), is obtained
in the form ∣∣�I

M,α

〉 =
∑
Kn

gI
Kn,α P I

MK |�n〉, (1)

where the operator P I
MK is the angular-momentum projector

and |�n〉 (n = 1,2, . . .) are the mean-field states, which are
specified in more detail in the following. The amplitude gI

Kn,α

is determined by the so-called Hill-Wheeler equation,∑
K ′n′

HI
K,K ′n′ gI

K ′n′,α = EI
α

∑
K ′n′

N I
Kn,K ′n′ gI

K ′n′,α, (2)

with definitions of the Hamiltonian and norm kernels,{
HI

Kn,K ′n′

N I
Kn,K ′n′

}
= 〈�n|

{
H
1

}
P I

KK ′ |�n′ 〉; (3)

see, e.g., Ref. [1] for more details. We do not perform the
number projection in the present work and treat the number
conservation approximately by replacing H → H − λν(N −
N0) − λπ (Z − Z0), where N0 and Z0 are the neutron and
proton numbers to be fixed. As for the neutron and proton
chemical potentials λν and λπ , we use those obtained for the
HFB ground state.

A set of the mean-field states, |�n〉 (n = 1,2, . . .), are
calculated by the constrained HFB method with the quadrupole
operators, Q20 and Q22 in Q2m ≡ r2Y2m, with Ylm being
the spherical harmonics, as constraints. In place of the HFB
expectation values, 〈Q20〉 and 〈Q22〉, we actually constrain two
quantities (Q,γ ) defined by

Q ≡
√

〈Q20〉2 + 2〈Q22〉2, γ ≡ − tan−1

(√
2〈Q22〉
〈Q20〉

)
, (4)

which correspond to the quadrupole deformation parameters
(β2,γ ) with β2 = 4π

5 Q/(A〈r2〉) (note the Lund convention for
the sign of γ ). We employ the augmented Lagrangian method
in Ref. [19] to achieve strict fulfillment of the constraints (Q,γ )
for arbitrarily desired values. In the present work, we mainly
keep the magnitude of the quadrupole deformation Q as that
of the ground state and vary only the value of γ . Then the
projected wave function is obtained as a function of γ ,∣∣�I

M,α(γ )
〉 =

∑
K

gI
K,α(γ ) P I

MK |�(γ )〉. (5)

Instead of the amplitude gI
K,α(γ ) in Eq. (5), the properly

normalized amplitude [1] is necessary in some cases,

f I
K,α(γ ) =

∑
K ′

(
√
N I )K,K ′ gI

K ′,α(γ ), (6)

where the quantity
√
N I denotes the square-root matrix of the

norm kernel.
The triaxial deformation should be finally treated dynami-

cally. This is done by the configuration-mixing or the generator
coordinate method (GCM) with respect to the triaxiality γ .
Thus, the wave function is obtained by

∣∣�I
M,α

〉 =
∫

dγ
∑
K

gI
K,α(γ ) P I

MK |�(γ )〉 (7)

in the continuum limit of the variable γ under the fixed value of
Q. In this case the norm kernel is expressed like N I

K,K ′ (γ,γ ′)
and the properly normalized amplitude is calculated by

f I
K,α(γ ) =

∫
dγ ′ ∑

K ′
(
√
N I )K,K ′ (γ,γ ′) gI

K ′,α(γ ′), (8)

with which the probability distribution of the eigenstate |�I
M,α〉

with respect to the γ coordinate,

pI
α(γ ) =

∑
K

∣∣f I
K,α(γ )

∣∣2
, (9)

can be studied.
We have recently developed an efficient method to perform

the angular-momentum-projection calculation [2], and it is
successfully applied to the study of the nuclear tetrahedral
symmetry [3,4]: The method is fully employed also in the
present work. The same configuration-mixing method has been
also utilized for the study of the rotational motion in Ref. [20],
where the generator coordinate is chosen to be the rotational
frequency ωrot instead of the triaxiality parameter γ . See
Refs. [2,4,20] for more details of our method of calculation.

B. Cranking procedure with infinitesimal rotational frequencies

As has been stressed in Refs. [2,3,20], it is very impor-
tant to include the time-odd components in the mean-field
wave function |�(γ )〉, from which the angular-momentum
projection is performed, to properly describe the moment of
inertia of rotational band. This can be achieved by the cranking
procedure with infinitesimally small rotational frequencies.
Namely, considering that we are dealing with the triaxial
deformation, the “3D cranked Hamiltonian” with the angular
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momentum operators J ≡ (Jx,Jy,Jz),

H ′ ≡ H − ω · J = H − ωxJx − ωyJy − ωzJz, (10)

is used in the constrained HFB calculation. If the cranking
axis specified by the direction of the frequency vector ω does
not coincide with one of the inertia axes, i.e., in the case of
the tilted-axis cranking, the intrinsic coordinate frame rotates
during the iterations of self-consistent calculation. Therefore,
we require the following additional principal-axis constraints
according to Ref. [21],

〈Q21〉 = 〈Q2−1〉 = 0 and 〈Q22〉 = 〈Q2−2〉. (11)

In fact, the quantity 〈Q22〉 takes real value by the second
condition in Eq. (11) and then Eq. (4) is well-defined. In
the present work we only consider the case of infinitesimal
cranking, but the large rotational frequencies with the tilted-
axis cranking can be applied to study various high-spin
phenomena; see, e.g., Ref. [22].

In this section we discuss what kind of time-odd com-
ponents are included by the 3D cranking in Eq. (10) and
show that the result of angular-momentum projection depends
on the particular choice of neither the cranking frequency
nor the cranking axis as long as the values of frequencies
ω = (ωx,ωy,ωz) are small. Therefore, there is no ambiguity
in this infinitesimal cranking procedure. The content was
partly discussed in relation to the zero frequency limit in
Sec. III C of Ref. [2], but the independence of the result
was not fully explained. Moreover, the case considered was
somewhat specific; the ground state before the cranking is
axially symmetric and its wave function has only K = 0
components. Here we consider more general cases for even-
even nuclei, where the ground mean-field state before the
cranking is time-reversal invariant and has the D2-symmetry
belonging to the totally symmetric (rx,ry,rz) = (+1,+1,+1)
representation [10]. Here ri (i = x,y,z) is the quantum number
of the i signature, i.e., the π rotation around the i axis,
and rxryrz = +1. The classification of the projected states
according to the y signature quantum number is convenient
for the projection calculation using the usual rotation operator
R(α,β,γ ) = eiγ JzeiβJy eiαJz . In Ref. [2] the x signature is
employed instead but the conclusion does not change. For the
notational simplicity we neglect the irrelevant configuration-
mixing in this section but the extension is trivial. Then the wave
function in Eq. (1) is written in the y-signature-classified way
[10] as ∣∣�I

M,α

〉 =
∑
K�0

(
g̃I

K,α P̃ I
MK + g̃I

K̄,α
P̃ I

MK̄

)|�〉, (12)

where the amplitudes (g̃I
K,α,g̃I

K̄,α
; K � 0) are defined by

g̃I
K,α ≡ 1√

2(1 + δK0)

[
gI

K,α + (−1)I+KgI
−K,α

]
for ry = +1,

g̃I
K̄,α

≡ 1√
2(1 + δK0)

[
gI

K,α − (−1)I+KgI
−K,α

]
for ry = −1,

(13)

and the modified projectors (P̃ I
MK,P̃ I

MK̄
) are defined in the

same way. For the noncranked mean-field state |�〉, which is

totally D2 symmetric, only the components compatible with
the representation (rx,ry,rz) = (+1,+1,+1) survive;∣∣�I

M,α

〉 =
∑

K=even�0

g̃I
K,α P̃ I

MK |�〉. (14)

If the cranking frequency vector ω is small, the first-order
perturbation theory can be applied for the self-consistent mean-
field state |�(ω)〉 calculated with the Routhian in Eq. (10),

|�(ω)〉 ≈ |�〉 + ω · C|�〉, (15)

where C = (Cx,Cy,Cz) are one-body operators defined with
respect to |�〉 and related to the so-called angle operators
canonically conjugate to (Jx,Jy,Jz) in the RPA [1]. If the total
Hamiltonian in Eq. (10) were approximated by the mean-field
Hamiltonian neglecting the effect of the residual interaction,
then the operator Ci (i = x,y,z) could be written in a simple
well-known form,

H ≈ h =
∑

α

Eαa†
αaα ⇒ Ci ≈

∑
α>β

[
(Ji)αβ

Eα + Eβ

a†
αa

†
β − H.c.

]
,

(16)
where (a†

α,aα) are the creation and annihilation operators of
the quasiparticle, Eα is the quasiparticle energy, and (Ji)αβ

is the matrix element of the operator Ji with respect to the
quasiparticle states. Note that the operators (Cx,Cy,Cz) have
the same D2-symmetry property as (Jx,Jy,Jz) for the totally
D2-symmetric state |�〉. Taking into account the fact that
the operators Jx , Jy , and Jz belong to the representation
(rx,ry,rz) = (+1,−1,−1), (−1,+1,−1), and (−1,−1,+1),
respectively, the projected state from the cranked mean-field
state (15) can be classified into the four terms:∣∣�I

M,α

〉 =
∑
K�0

(
g̃I

K,α P̃ I
MK + g̃I

K̄,α
P̃ I

MK̄

)|�(ω)〉

≈
∑

K=even�0

g̃I
K,α P̃ I

MK |�〉

+
∑

K=odd>0

ωxg̃
I
K̄,α

P̃ I
MK̄

Cx |�〉

+
∑

K=odd>0

ωyg̃
I
K,α P̃ I

MKCy |�〉

+
∑

K=even�0

ωzg̃
I
K̄,α

P̃ I
MK̄

Cz|�〉. (17)

Thus, each component of the 3D cranking procedure in
Eq. (10) induces different time-odd terms that are classified
according to the D2-symmetry quantum numbers (rx,ry,rz).
Moreover, three frequencies (ωx,ωy,ωz) appear in combina-
tion with the amplitudes gI

Kα , and so the change of frequencies
can be absorbed into the change of the amplitudes when the
Hill-Wheeler equation (2) is solved (even the sign of the
frequencies does not matter). Namely, it has been shown that
the result of the angular-momentum projection is independent
of the infinitesimally small values of frequencies (ωx,ωy,ωz)
within the first-order perturbation theory.

In the case of axial symmetry around the z axis the operator
Cz vanishes and the remaining two terms Cx |�〉 and Cy |�〉
give the same contribution (the x and y axes are equivalent).
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Therefore, there is only one extra term instead of three included
by the infinitesimal cranking.

In Ref. [2] it was found that the spectrum obtained by
projection from the cranked HFB state with vanishingly small
frequency is different from the one obtained by projection from
the noncranked HFB state. Namely, the projected spectrum is
discontinuous in the zero frequency limit. The reason is quite
obvious from the argument above; the projected state from
the cranked HFB state (17) is always different from the one
projected from the noncranked HFB state (14) even if the
frequencies are vanishingly small but nonzero.

III. RESULTS OF NUMERICAL CALCULATION

In the present work we adopt the finite-range Gogny
force with the D1S parametrization [18] as an effective
interaction throughout; the treatment of the Gogny force is
the same as in Ref. [20]. Therefore, there is no ambiguity
about the Hamiltonian. We apply the theoretical framework
of the previous section to a typical rare-earth nuclei, 164Er,
where the low-lying γ vibrational 2+

γ state is observed at the
excitation energy, 0.860 MeV. The constrained HFB Hamil-
tonian is diagonalized on the basis of the isotropic harmonic
oscillator potential with the frequency �ω = 41/A1/3 MeV,
and the same basis is utilized in the subsequent angular-
momentum-projection calculation. The size of the basis states
is controlled by the oscillator quantum numbers; all the
states with nx + ny + nz � Nmax

osc are included. Nmax
osc = 10

is used in the following calculations. We do not intend to
discuss very high-spin states and we take Imax = 40 and
Kmax = 30. The number of mesh points (Nα,Nβ,Nγ ) for the
Euler angles � = (α,β,γ ) utilized in the numerical integration
of the angular-momentum-projection operator are chosen to be
Nα = Nγ = 62 and Nβ = 82, which is checked to be enough
even for large triaxial deformations. The canonical basis cutoff
parameter is taken to be 10−6 as in the all previous calculations,
and the norm cutoff parameter in the configuration-mixing
(GCM) calculation is taken to be 10−10. As for the values of
frequencies ω ≡ (ωx,ωy,ωz) in Eq. (10) for the infinitesimal
cranking, appropriately small values should be chosen; it
should be small enough for the first-order perturbation theory
to be valid, while it should not be too small so that the relative
magnitude of the induced time-odd components are well above
the numerical accuracy. We use 10 keV/� for the value of the
infinitesimal frequencies, which is small enough to guarantee
the independence of the result for excitation spectrum within
about 1 keV for low-lying states.

Calculated mean-field parameters of the ground state of
164Er are Q = 5.644 b and β2 = 0.316 for the quadrupole de-
formation, which is axially symmetric, and ̄ν = 0.846 MeV
and ̄π = 0.859 MeV for the neutron and proton aver-
age pairing gaps, respectively. Here ̄ is defined by ̄ ≡
−(

∑
a>b abκ

∗
ab)/(

∑
a>b κ∗

ab), where κab is the abnormal
density matrix (the pairing tensor) and ab is the matrix
element of the pairing potential [1]. These values are slightly
different from those—β2 = 0.311, ̄ν = 0.874 MeV, and
̄π = 0.906 MeV—in Ref. [20] because of the different size
of the model space (Nmax

osc = 12 in Ref. [20]).
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FIG. 1. Absolute energy curves as functions of the triaxial defor-
mation parameter γ calculated by the angular-momentum projection
from the noncranked HFB ground state in 164Er. Those for the 0+,
2+, 4+, and 6+ states of the g band and for the 2+, 3+, 4+, 5+, and 6+

states of the γ band are included.

A. Effect of triaxial deformation

There is no low-lying second 2+ state below 2.5 MeV if the
angular-momentum-projection calculation is performed from
the axially symmetric HFB state without cranking. This is
because the axially symmetric HFB state (without cranking)
has only K = 0 components of the wave function; the |K| = 2
components are necessary to have low excitation energy for
the second 2+ state, which is |K| = 2 mode, while the first 2+
state is K = 0 mode. One way to obtain the second 2+ state
is to construct a coherent linear combination of many |K| = 2
two quasiparticle states, which is the way taken by the RPA
method [1]. Another easiest way is to include the |K| = 2
components into the HFB state, from which the projection is
performed, by explicitly breaking the axial symmetry. This can
be done for the quadrupole deformation by requiring the finite
γ deformation with the constraint field −λ22(Q22 + Q2−2),
where the c number λ22 is the Lagrange multiplier; apparently
it induces |K| = 2 (and = 4,6, . . .) components in the ground-
state wave function. In this section we consider the effect
neither of the infinitesimal cranking nor of the configuration
mixing, which is investigated in the following sections.

In the present work, we restrict, without loss of generality,
the triaxial deformation in the 0 � γ � 60◦ sector with the
definition in Eq. (4). Namely, the lengths of inertia axes satisfy〈

A∑
a=1

(x2)a

〉
�

〈
A∑

a=1

(y2)a

〉
�

〈
A∑

a=1

(z2)a

〉
, (18)

where the expectation values are taken with respect to the HFB
state and the first equality holds at γ = 0◦ and the second at
γ = 60◦.

First of all, the calculated energies are shown as functions
of the triaxiality parameter γ in Fig. 1; we include those of the
0+, 2+, 4+ and 6+ states in the ground-state band (g band), and
of the 2+, 3+, 4+, 5+, and 6+ states interpreted as the members
of the γ vibrational band (γ band), which are obtained by the
angular-momentum-projection from a single noncranked HFB
state with triaxiality γ as in Eq. (5). The actual calculation
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is performed for ten γ values, γ = 1◦,5◦,10◦, . . . ,40◦, and
45◦. As in the case of the time-odd components induced
by the cranking term, the |K| �= 0 components induced by
the triaxial deformation make the spectrum discontinuous at
γ = 0. The spectrum obtained by the projection from the
axially symmetric HFB state is different from the one obtained
from the HFB state with vanishingly small but nonzero
triaxial deformation. We adopt γ = 1◦ as a vanishingly small
γ . Utilizing the symmetry of energy E(γ ) = E(−γ ), the
data are extended a few points to the negative values, γ =
−10◦,−5◦,−1◦,1◦,5◦,10◦, . . ., and then continuous curves are
generated by the cubic-spline interpolation to make Fig. 1.
Therefore, the data plotted at γ = 0 in the figure are not those
obtained by setting γ = 0 but the limiting values as γ → 0.
As mentioned in Sec. II A, the magnitude of the quadrupole
moment Q in Eq. (4) is kept at its ground-state value in the
calculation. The deformation parameter β2 slightly changes as
a function of γ because the mean-square radius 〈r2〉 depends
slightly on the triaxiality; the amount of change in β2 is small,
within 2%, however. One can see that the ground-state energy
gains about 1.2 MeV by the angular-momentum projection at
the finite triaxial deformation of about γ ≈ 9.7◦, even if the
minimum of the HFB energy is axially symmetric. This is
well known for the angular-momentum projection [23,24];
breaking the symmetry always introduces new degrees of
freedom and the associated correlation energy for its recovery
quite often defeats the mean-field energy. All curves for
members of the g band take minima at similar values, γ ≈ 9.7◦.
Therefore, we can say that the members of the g band have
almost the same deformation. The same is true for members
of the γ band, although the γ values at minima, γ ≈ 13.6◦,
are slightly larger than those of the g-band members.

Figure 2 shows the excitation energies as functions of the
triaxiality parameter γ for the 2+, 4+, and 6+ states in the
g band and of the 2+, 3+, 4+, 5+, and 6+ states in the γ
band. The same interpolation technique used to draw Fig. 1
is used to draw Fig. 2. This result of the γ dependence can
be compared with that of the asymmetric rotor model with
the irrotational moments of inertia in Ref. [16]; see, e.g.,
Ref. [9] for a more complete figure of the spectrum. Note
that only the γ dependence is meaningful for this macroscopic
rotor model. The similarity is apparent: The excitation energies
of the members of the γ band rapidly decrease as triaxiality
increases in the range 5◦ � γ � 20◦ and the 2+

γ energy crosses
the 6+

g energy at γ ≈ 15◦. Moreover, small bulges are observed
at around γ ≈ 30◦ in the 4+

γ and 6+
γ curves, which makes the

energies of the even-spin members higher than those of the
odd-spin members, leading to the characteristic band structure
of the wobbling band. However, there are marked differences:
The spectrum is symmetric with respect to the γ = 30◦ axis in
the triaxial rotor model with the irrotational inertia but not
exactly symmetric in our microscopic angular-momentum-
projection calculation, and the bulges around γ ≈ 30◦ in
the 4+

γ and 6+
γ curves are not so pronounced as in the case

of the rotor model. The most striking difference is that the
second 2+ state appears at around 2.5 MeV even with the
small triaxiality γ ≈ 1◦–5◦ in the microscopic calculation;
however, the collectivity is not as high as experimentally
observed. At γ ≈ 9.7◦, where the ground-state energy takes
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FIG. 2. Excitation energy curves as functions of the triaxial
deformation parameter γ calculated by the angular-momentum
projection from the noncranked HFB ground state in 164Er. Those
for the 2+, 4+, and 6+ states of the g band and for the 2+, 3+, 4+, 5+,
and 6+ states of the γ band are included. Experimental data are also
shown by symbols, open circles and squares, at γ = 15.4◦, where the
calculated excitation energy of 2+

γ coincides with the experimental
one.

minimum (cf. Fig. 1), the excitation energy of the second
2+ state is about 1.9 MeV, while at γ ≈ 13.6◦, where the
absolute energies of members of the γ band take minima, it is
about 1.1 MeV. Compared with the experimental γ vibrational
energy, 0.860 MeV, the former value is considerably larger
while the latter value is rather close.

The γ value, at which the calculated 2+
γ energy agrees with

the observed one, is γ ≈ 15.4◦; the experimental excitation
energies are included in Fig. 2 at this value. We show in
Fig. 3 the calculated spectrum with this value, γ = 15.4◦, in
comparison with experimental data. Interestingly, the multiple
band structure, the one-, two-, and three-phonon excited bands
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FIG. 3. Energy spectrum calculated by the angular-momentum
projection from the noncranked HFB state at γ = 15.4◦ in 164Er. The
experimental data for the g band and the γ band are included as open
squares.
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starting from I = 2+
2 , 4+

3 , and 6+
4 states, respectively, are

clearly seen with strong anharmonicity; the excitation energy
of the two(three)-phonon state, 4+

3 (6+
4 ), is considerably larger

than the value which is two(three) times that of the one-phonon
state, 2+

2 . Moreover, the signature splitting is observed in the
high-spin part of the one-phonon band; i.e., the odd-spin
members are lower in energy than the even-spin member,
which is characteristic for the wobbling excitations. This
behavior is more strongly observed at larger values of the
triaxiality parameter γ ; cf. the next section. However, the
agreement of the calculated energies with the experimental
data is not satisfactory. The moments of inertia of both the g
band and the γ band are too small; i.e., the energy spacings
of the neighboring states in both bands are too large. We
need some improvements to obtain better agreement, which
is considered in the next section.

A similar result has been reported by the triaxial projected
shell model; cf. Fig. 1 of Ref. [5], which can be compared
with our result in Fig. 2. However, one should be careful about
the difference of the way of presentation. In the works of the
triaxial projected shell model, a deformed quadrupole potential
is utilized,

−2

3

√
4π

5

�ω0

b2
0

[
ε Q20 + ε′ 1√

2
(Q22 + Q2−2)

]
, (19)

where the quantity b0 is the oscillator length associated with the
oscillator frequency ω0. In Ref. [5] the excitation energies are
shown as functions of the parameter ε′ with keeping another
parameter ε at the ground-state value. Our β2 and γ defor-

mation parameters roughly correspond to
√

16π
45

√
ε2 + ε′2 and

− tan (ε′/ε), respectively. Therefore, apart from the sign of
γ , which is irrelevant in the present context, the β2 value is
increased when increasing ε′ in the calculation of Ref. [5],
while β2 is kept constant within 2% in our calculation. At
first sight, the result of Ref. [5] is very similar to ours, e.g., the
excitation energies of members of the γ band quickly decrease
as functions of the parameter ε′, although the agreement with
the experimental data is much better than ours when the value
of ε′ is appropriately chosen. However, the value of triaxial
deformation, at which the calculated spectrum agrees with the
experimental one, seems quite different in Ref. [5]; for the
164Er nucleus, ε = 0.258 and ε′ = 0.14, which correspond to
β2 ≈ 0.310 and |γ | ≈ 28.5◦. The value of β2 is very similar
to ours, β2 ≈ 0.316, while that of γ is much larger than ours
γ ≈ 15.4◦.

On this difference, however, one has to be careful about
the definition of the triaxiality parameter: The one utilized
in Ref. [5] is defined with respect to the shape of the
single-particle potential, γpot, while the one utilized in the
present work is defined with respect to the shape of the density
distribution, γden. It has been discussed in Refs. [25,26] that
the difference between these two parameters γpot and γden

is rather large for well-deformed nuclei. Note that the γpot

defined for the Nilsson potential is still different from the
one utilized in Eq. (19), γpot ≡ − tan (ε′/ε). For the harmonic
oscillator potential model with the self-consistent deformation
condition [10], the transformation between the deformation
parameters in these different definitions can be done easily
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FIG. 4. E2 transition probability from the ground state to the
second 2+ state as a function of the triaxial deformation parameter
γ , which is calculated by the angular-momentum projection from
the noncranked HFB state in 164Er (solid curve). The dotted curve
is the prediction of the asymmetric rotor model [16] in Eq. (20)
with B = 5.723 (e2b2). The experimentally measured values [27],
0.148 and 0.170 (e2b2), are shown by two horizontal lines, which are
deduced from two different types of reactions.

(see Appendix of Ref. [26]); the values βpot = 0.310 and γpot =
28.5◦ correspond to βden = 0.334 and γden = 17.6◦. In this way
the triaxiality γden is not very different from our value 15.4◦,
although β2 is a little bit larger. Thus, taking these differences
into account, the results of Ref. [5] and ours are rather
consistent with each other. However, the expected triaxial
deformation γden ≈ 15◦–18◦ is too large if the E2 transition
probability between the g band and the γ band is investigated.

Thus, we show in Fig. 4 the B(E2) value for the transition
from the 0+ ground state to the second 2+ state as a function
of γ calculated by the angular-momentum projection from the
noncranked HFB state. Note that we do not use any kind of
effective charge because the contributions of all nucleon are
included. In the figure the result of the asymmetric rotor model
with the irrotational inertia [16],

B(E2 : 0+
1 → 2+

2 )AR = B

2

[
1 − 3 − 2 sin2(3γ )√

9 − 8 sin2(3γ )

]
(e2b2),

(20)

is also included as the dotted curve, where B is the in-band
transition probability for the g band, B(E2 : 0+

1 → 2+
1 ) at

γ = 0. The calculated value is B = 5.723 (e2b2), which
well corresponds to the experimentally measured value, 5.81
(e2b2). As is well known, this B(E2 : 0+

1 → 2+
2 ) of the rotor

model rapidly increases with increasing the triaxiality, turns
to decrease at γ ≈ 20◦, and vanishes at γ = 30◦; the γ
dependence is symmetric about γ = 30◦ axis. The rotor model
wave function is represented with the Wigner-D function
as

∑
K f I

K,αDI
MK (�), where the amplitudes f I

K,α correspond
to those properly normalized in Eq. (6), and the transition
amplitude is evaluated as

〈2+
2 ||Q(E)

2 ||0+
1 〉 ∝ f

2+
2

K=0

〈
Q

(E)
20

〉 + 2f
2+

2
K=2

〈
Q

(E)
22

〉
= Q(E)

(
f

2+
2

K=0 cos γ − 2f
2+

2
K=2 sin γ

)
, (21)
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where Q
(E)
2μ is the electric quadrupole operator (i.e., e times

the proton contribution) and it is assumed that the deformation
of neutrons and protons is the same. For γ < 20◦ the 2+

2 state
is almost purely K = 2 mode and the K = 0 amplitude is
almost negligible; therefore, the B(E2) increases as ∝ sin2 γ
as γ increases from 0 with the electric quadrupole moment
Q(E) being fixed. Further increasing γ > 20◦, however, the K
mixing quickly grows and the two terms in Eq. (21) tend to
cancel each other; the exact cancellation occurs at γ = 30◦ for
the rotor model with the irrotational inertia. The microscop-
ically calculated transition amplitude approximately satisfies
Eq. (21) and the resultant B(E2) roughly follows the trend of
the rotor model, although it is not rigorously symmetric as in
the case of the excitation spectrum and vanishes at γ ≈ 27◦.
Moreover, the calculated value is considerably larger than that
in the rotor model at γ � 30◦. The calculated B(E2) values
at small triaxiality, γ ≈ 1◦–5◦, are about four to six times
the single-particle unit, which is two times the Weisskopf
unit [10], Bs.p. = 2BW(E2) = 0.0107 (e2b2) in 164Er. The
experimentally measured value [27], 0.148 or 0.170 (e2b2),
is about 14 to 16 times the single-particle unit and can be
reproduced by the calculation with γ ≈ 10◦. Apparently, if
one employs the result with γ ≈ 15◦–18◦, the B(E2) value
is overestimated by about a factor two to three as long as
the calculated quadrupole moment Q(E) is used, which well
reproduces the rotational B(E2) values inside the g band
assuming the axial symmetry (γ = 0) as it was demonstrated
in our previous work [20].

It is worthwhile mentioning that the calculated in-band
B(E2) value for the g band, B(E2 : 0+

1 → 2+
1 ), as a function

of γ also well coincides with the result of the asymmetric rotor
model, which is obtained by changing the first sign in Eq. (20)
from − to + [16], although the deviation is non-negligible for
γ � 27◦ (not shown).

B. Effect of infinitesimal cranking

In the previous section it is found that the spectrum obtained
by the angular-momentum projection from the noncranked
HFB state is not very good in comparison with the experi-
mental data. The first problem is that the moment of inertia is
too small, which was already stressed in Ref. [2]. Moreover,
considerable triaxial deformation, γ � 15◦, is necessary to
reproduce the low-lying nature of the γ vibration, which is
not justified from the energy minimization (cf. Fig. 1) and
from the B(E2 : 0+

1 → 2+
2 ) value; the B(E2) value for such

triaxial deformation, γ � 15◦, is too large compared with
the measured value. To achieve a better description of the
rotational motion for triaxial nuclei, we here study the effect of
infinitesimal cranking, which is explained in detail in Sec. II B.

In Figs. 5 and 6 we show how the spectrum changes for the
triaxial deformation with γ = 10◦ and γ = 20◦, respectively,
if the infinitesimally cranked HFB state is employed instead
of the noncranked one for the angular-momentum-projection.
As discussed in Sec. II B, there are three independent axes
for cranking. The results of all seven cases in addition to the
noncranked one are included in the figures; the principal-axis
cranking around the x, y, and z axis, and the planar tilted-axis
cranking around the xy, yz, and zx axes, and finally the
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FIG. 5. Energy spectrum calculated by the angular-momentum
projection from the infinitesimally cranked HFB state with triaxial
deformation, γ = 10◦, for 164Er. The axis (axes) of cranking is (are)
specified in each panel, e.g., “xyz crank” means that the infinitesimal
cranking is performed about all the x, y, and z axes. The noncranked
case is also included as panel (a).

nonplanar tilted-axis cranking around all the xyz axes. To
see each spectrum in more detail, the reference rotational
energy, I (I + 1)/(2J0), is subtracted with J0 = 39 (�2/MeV),
which roughly corresponds to the average moment of inertia
of the experimentally observed g band in 164Er. In the case
of smaller triaxiality γ = 10◦ in Fig. 5(a), one can see nice
multiple rotational bands without cranking, as discussed in
Fig. 3. With the x- and y-axis cranking, Figs. 5(b) and 5(c),
the slopes of the multiple bands decrease considerably, while
with the z-axis cranking, Fig. 5(d), the relative excitation
energies of excited bands from the g band decrease. It can
be seen that the excitation energy of the γ vibration is roughly
1.2 MeV if the cranking around the z axis is performed,
while it is about 1.7 MeV without it for γ = 10◦; thus, the
considerable reduction of excitation energy is observed by the
z-axis cranking. Comparing with the x- and y-axis cranking,
the increase of the moment of inertia is more or less the
same (or slightly larger with the y-axis cranking) for γ = 10◦,
although the signature splitting of the one-phonon γ band,
i.e., the splitting between the even-I and odd-I members,
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FIG. 6. Energy spectrum calculated by the angular-momentum
projection from the infinitesimally cranked HFB state with triaxial
deformation, γ = 20◦, for 164Er. The axis (axes) of cranking is (are)
specified in each panel, e.g., “xyz crank” means that the infinitesimal
cranking is performed about all the x, y, and z axes. The noncranked
case is also included as panel (a).

increases by the y-axis cranking, while it decreases by the
x-axis cranking. The combination of cranking around two
axes, Figs. 5(e)–5(g), gives more or less combined effects;
for example, with the xy cranking the increase of the moments
of inertia for multiple bands is largest. The results with the yz
and the zx cranking have similar multiple band structures, but
the signature splitting is only apparent in the case of the yz
cranking. With the cranking around all three axes in Fig. 5(h),
the largest effect is observed and all multiple rotational bands
are approximately parallel and almost horizontal with smaller
excitation energies than those of the noncranked case.

With larger triaxial deformation, γ = 20◦, in Fig. 6, the
basic trend is similar, e.g., the reduction of the excitation
energy of the γ vibration is largest with the z-axis cranking
and the large signature splitting is induced by the y-axis
cranking. However, considerable differences from the case
with smaller triaxial deformation, γ = 10◦, in Fig. 5 are
observed; the signature splitting is much larger except for
the cases where the x-axis cranking is performed without the
y-axis cranking in Figs. 6(b) and 6(g). Generally, an increase

of moments of inertia is observed for all multiple bands, but
the amounts of increase are somewhat different for each band
and those of the excited bands are not so large compared with
the case with smaller triaxiality, γ = 10◦. The only exception
is the g band, which is almost horizontal, if the y-axis cranking
is performed as is seen in Figs. 6(c), 6(e), 6(f), and 6(h); in
the case of γ = 20◦ the increase of inertia is largest with the
y-axis cranking. The signature splitting is generally larger
with larger triaxial deformation, as seen even in the case
without cranking; compare Figs. 5(a) and 6(a). The larger
signature splitting induced by the y- and z-axis cranking,
[cf. Figs. 6(c), 6(d), and 6(f)] makes the band structure
as if it is composed of the even-I and odd-I sequences
alternately, which is characteristic for the wobbling rotational
band. With the cranking around all three axes in Fig. 6(h),
nice multiple band structure appears with the wobblinglike
structure developing at higher-spin part. The relation to the
wobbling band is briefly discussed in the following section.

In Table I the first and second excited 2+ energies obtained
by the angular-momentum projection with the infinitesimal
cranking around various axes are summarized for γ = 10◦ and
γ = 20◦. The B(E2) values of the transition from the ground
state to the second excited 2+ state are also included. It is clear
that the first 2+ state in the g band is lowered in energy by the
x- and y-axis cranking, while the second 2+ state in the γ band
is lowered by the z-axis cranking, as was discussed in relation
to Figs. 5 and 6. As for the B(E2) value, however, it increases
by the x-axis cranking, while it decreases by the y- and z-axis
cranking; the z-axis cranking especially reduces the transition
markedly, and the simultaneous yz cranking makes the B(E2)
value about one-third compared with the case without cranking
for the triaxiality γ = 20◦. In this way, it is interesting to see
that the effects of cranking around three independent axes
are quite different and the different combinations of rotation
axes considerably change the resultant angular-momentum-
projected spectrum in the case of triaxial deformation.

From the variational point of view the cranking around all
three axes gives the best results in our theoretical framework.
With the infinitesimal cranking around all three axes, i.e., the
xyz cranking, the calculated absolute energies for members
of the g band and of the γ band are shown as functions of
the triaxiality parameter γ in Fig. 7 as in the case without
cranking in Fig. 1, and the calculated excitation energies are
shown in Fig. 8 as in the case without cranking in Fig. 2. The
same interpolation technique is used to draw Figs. 7 and 8
as Figs. 1 and 2. Comparing these two sets of figures, the
absolute 0+ ground-state energy is very similar, while the
excitation energies of members of both the g band and the γ
band decrease considerably. This means that the moment of
inertia is increased by the infinitesimal cranking on one hand,
and the excitation energy of the γ vibration is decreased on the
other hand, which was already discussed in relation to Figs. 5
and 6. The value of triaxiality γ , which gives the minimum
energy for the 0+ ground state, is about γ ≈ 9.7◦; it is almost
the same as in the case without cranking. In contrast, the value
which gives the minimum energy of the 2+ γ vibrational
state is about γ ≈ 12.2◦, which is slightly smaller than the
value γ ≈ 13.6◦ without cranking. In Fig. 8 the experimental
excitation energies are included as symbols at γ = 12.8◦,
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TABLE I. The excitation energies of the first and second 2+ states and the B(E2 : 0+
1 → 2+

2 ) value calculated by the angular-momentum-
projection from the infinitesimally cranked HFB state around various axes; e.g., “xyz” means cranking around all the three axes. The upper
and lower tables are for the triaxial deformation, γ = 10◦ and 20◦, respectively.

no x y z xy yz zx xyz

γ = 10◦

E(2+
1 ) (MeV) 0.133 0.094 0.106 0.133 0.076 0.105 0.094 0.076

E(2+
2 ) (MeV) 1.742 1.732 1.735 1.237 1.722 1.226 1.221 1.216

B(E2) (e2b2) 0.174 0.207 0.151 0.120 0.182 0.100 0.158 0.135
γ = 20◦

E(2+
1 ) (MeV) 0.157 0.114 0.132 0.154 0.093 0.128 0.114 0.092

E(2+
2 ) (MeV) 0.498 0.481 0.494 0.349 0.474 0.347 0.330 0.324

B(E2) (e2b2) 0.409 0.675 0.316 0.199 0.549 0.125 0.593 0.431

where the second 2+ excitation energy is reproduced. In
contrast to the result shown in Fig. 2, the agreement with the
experimental excitation energies at γ = 12.8◦ is much better;
clearly indicating that the infinitesimal cranking improves
the description of the γ band. In Fig. 9 the calculated
spectrum using the xyz-cranked HFB state with the triaxiality
γ = 12.8◦ is compared with the experimental data, as in
the case without cranking in Fig. 3. Apparently much better
agreement with the experimental excitation energies for both
the g band and the γ band are obtained with this infinitesimal
cranking procedure. It looks that the agreement of the γ band
becomes worse after I � 14. There is a reason for this: The
band crossing occurs for the experimental γ band. Namely,
the I � 14 members are interpreted as the states generated by
exciting the γ vibration on the Stockholm band (s band), the
lowest two-quasineutrons-aligned band, not on the g band. We
do not include the s-band configuration in the present work and
cannot describe the band crossing phenomenon in the γ band.

To see the effect of the xyz cranking on the transition
probability, we show in Fig. 10 the calculated B(E2) from the
0+ ground state to the second excited 2+ state in the γ band
as a function of the triaxiality γ . The prediction of the triaxial
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FIG. 7. Absolute energy curves as functions of the triaxial defor-
mation parameter γ calculated by the angular-momentum projection
from the xyz-cranked HFB ground state in 164Er. Those for the 0+,
2+, 4+, and 6+ states of the g band and for the 2+, 3+, 4+, 5+, and 6+

states of the γ band are included.

rotor model in Eq. (20) is also included with the calculated
value of B = 5.585 (e2b2) in the case of the xyz cranking.
Compared to the result without cranking in Fig. 4, the general
dependence of B(E2) on γ is similar; for example, the B(E2)
values seem to vanish at γ ≈ 27◦ in both cases. Precisely
speaking, however, the B(E2) value does not vanish in the
case with the xyz cranking; this is because the amplitude gI

K,α

is complex in this case and the exact cancellation in Eq. (21)
does not occur, although the imaginary part is very small so
that the actual B(E2) value almost vanishes. There are other
marked differences: The position of the lower peak moves to
higher γ value, while that of the higher peak to lower γ value,
and the B(E2) values at both peaks are slightly larger in the
case with the xyz cranking. The largest difference is observed
at lower γ values, γ � 17◦, where the B(E2) value calculated
with the xyz cranking is smaller than that without cranking;
e.g., it is less than half in γ < 5◦. The fact that the B(E2) value
with the xyz cranking is larger than that without cranking in
the range, 17.5◦ � γ � 38◦, and is smaller otherwise can be
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FIG. 8. Excitation energy curves as functions of the triaxial
deformation parameter γ calculated by the angular-momentum
projection from the xyz-cranked HFB ground state in 164Er. Those
for the 2+, 4+, and 6+ states of the g band and for the 2+, 3+, 4+, 5+,
and 6+ states of the γ band are included. Experimental data are also
shown by symbols, open circles and squares, at γ = 12.8◦, where the
calculated excitation energy of 2+

γ coincides with the experimental
one.
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FIG. 9. Energy spectrum calculated by the angular-momentum
projection from the xyz-cranked HFB state at γ = 12.8◦ in 164Er.
The experimental data for the g band and the γ band are included as
open squares.

seen also in Table I; the B(E2) value reduces from 0.174 to
0.135 (e2 b2) at γ = 10◦, while it increases from 0.409 to
0.431 (e2 b2) at γ = 20◦. As discussed in the next section, the
expected γ value is not so large, γ � 15◦, and the effect of
xyz cranking appears to reduce the B(E2) value, which makes
the agreement better with the experimentally measured value.

C. Configuration mixing for triaxial deformation

Until the previous section, the triaxiality γ is a parameter
and the results of the angular-momentum-projection calcula-
tion have been presented as a function of it; in some cases
the appropriate value of γ is searched to reproduce the exper-
imental data. However, it should be determined theoretically,
or it should be treated properly to make theoretical predictions
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FIG. 10. E2 transition probability from the ground state to the
second 2+ state as a function of the triaxial deformation parameter
γ , which is calculated by the angular-momentum projection from
the infinitesimally cranked HFB state around all the xyz axes
in 164Er (solid curve). The dotted curve is the prediction of the
asymmetric rotor model [16] in Eq. (20), with B = 5.585 (e2b2).
The experimentally measured values [27], 0.148 and 0.170 (e2b2),
are shown by two horizontal lines.
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FIG. 11. Energy spectrum calculated by the angular-momentum-
projected configuration-mixing using the five noncranked HFB states
with γ = 1◦, 10◦, 20◦, 30◦, and 40◦ in 164Er. The rotational energy
I (I + 1)/78 MeV is subtracted. The experimental data for the g band
and the γ band are included as open squares.

independently of the experimental data. In this section we show
the result of configuration-mixing with respect to the triaxiality
parameter γ ; namely, the final wave function is obtained
by superposing the angular-momentum-projected states as in
Eq. (7) in Sec. II A. Here five points have been employed for the
γ coordinate, γ = 1◦, 10◦, 20◦, 30◦, and 40◦. We have checked
that the excitation energies do not change within about 10 keV
by increasing the number of HFB states from five in the range
0 < γ � 45◦ at least for the low-lying states.

The resultant spectrum calculated by the configuration
mixing superposing the five noncranked triaxial HFB states
after the angular-momentum-projection is presented in
Fig. 11, where the reference rotational energy is subtracted
as in Figs. 5 and 6. In Fig. 12 the probability distributions
[Eq. (9)] for the selected members of both the g band and the
γ band are shown. The distributions for the members of each
band are quite similar, but those for the g band and for the γ
band are different; the average γ value in the g band, ≈9◦,
is smaller than that in the γ band, ≈15◦; cf. Table II below.
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FIG. 12. The probability distributions of 0+
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1 states
in the g band and 2+
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2 states in the γ band with respect to
the triaxiality parameter γ for the configuration-mixing calculation
of Fig. 11.
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TABLE II. The excitation energies of the first and second 2+ states and the B(E2 : 0+
1 → 2+

2 ) value calculated by the angular-momentum-
projected configuration mixing with the infinitesimally cranked HFB states around various axes; e.g., “yz” means cranking around the y and
z axes. The average triaxiality, 〈γ 〉, and two times the standard deviation, 2γ = 2

√〈(γ − 〈γ 〉)2〉, for the 0+ ground state and the 2+ γ

vibrational state are also included. The experimental data for the excitation energies and the B(E2) value [27] are also tabulated at the last
column.

no x y yz zx xyz Exp.

E(2+
1 ) (MeV) 0.137 0.090 0.100 0.099 0.089 0.078 0.091

E(2+
2 ) (MeV) 1.458 1.445 1.450 1.000 0.993 1.005 0.860

B(E2) (e2b2) 0.222 0.259 0.202 0.137 0.200 0.180 0.148/0.170

〈γ 〉0+
1

(◦) 8.8 8.8 8.8 8.8 8.8 8.8 –

2(γ )0+
1

(◦) 13.8 13.8 13.8 13.8 13.8 13.8 –

〈γ 〉2+
2

(◦) 15.1 15.1 15.0 13.7 13.7 13.8 –

2(γ )2+
2

(◦) 12.8 12.8 12.8 12.1 12.1 12.1 –

These average γ values are close to those which give minima
of the absolute energies in Fig. 1; more precisely, γ ≈ 9.6◦ for
the g band and γ ≈ 13.6◦ for the γ band. Thus, the resultant
triaxiality of the configuration-mixing is not so large, although
the distribution with respect to γ is considerably broad. From
the spectrum shown in Fig. 11 one can see that the moments
of inertia for both the g band and the γ band are too small
and deviation from the experimental data increases rapidly
at higher spins. This is because the noncranked HFB states
are employed. Moreover, the calculated excitation energy
of the γ vibration is too high, ≈1.46 MeV, compared with
the experimental data, ≈0.86 MeV. Thus, the configuration
mixing does not help to improve the moments of inertia or
the excitation energy of the γ vibration.

It should be mentioned that qualitative change of the
calculated spectrum by the configuration-mixing is observed
in Fig. 11 in comparison with, e.g., Fig. 5(a): New excited
bands appear at higher excitation energy, for example, an
even-I band starting from the 0+ state at about 2.7 MeV. In
this calculation with noncranked HFB states, this new band
starting from the 0+ state almost degenerates with the band
starting from the 4+ state at about 3.1 MeV (note that the
reference rotational energy is subtracted in Fig. 11), both of
which are interpreted as “two-phonon” γ vibrational bands. In
fact, the excitation energies of bandhead of these two bands are
almost twice of that of the (one-phonon) γ vibrational state. As
it is well known, there are two two-phonon γ vibrational states
corresponding to the K quantum numbers, K = 0 and K = 4.
As discussed in Ref. [5], no 0+ excited band appears by the
angular-momentum-projection from one triaxial mean-field
state, which is exactly the feature of the asymmetric rotor
model with the (rx,ry,rz) = (+1,+1,+1) D2 symmetry [10];
this is also the case in our microscopic calculation. With
the configuration mixing for the triaxial degree of freedom
we additionally obtain the 0+ excited band. It may not be
evident that this 0+ excited band can be interpreted as the
K = 0 two-phonon γ band. We have compared the three E2
transition probabilities, B(E2 : 0+

1 → 2+
2 ), B(E2 : 2+

2 → 4+
3 )

and B(E2 : 0+
2 → 2+

2 ), which are B(E2 : 0+
g.s. → 2+

γ ), B(E2 :
2+

γ → 4+
γ γ ), and B(E2 : 0+

γ γ → 2+
γ ), respectively, in an ob-

vious notation, and all coincide in the harmonic vibrational

limit [28]. The calculated values of these B(E2)’s are 0.222,
0.206, and 0.253 (e2b2), respectively; they are indeed close
with each other. This result is in contrast to that of the other
microscopic calculation in Ref. [15], where the calculated
value of B(E2 : 0+

γ γ → 2+
γ ) is considerably smaller than that

of B(E2 : 2+
γ → 4+

γ γ ). It is interesting to investigate how such
a difference appears in the two microscopic calculations; it is,
however, beyond the scope of the present work.

As for the moment of inertia and the excitation energy of
the γ vibrational band, the infinitesimal cranking plays an
important role, as discussed in the previous section. We show
the result of calculation by employing the five xyz-cranked
triaxial HFB states with the same set of triaxiality parameters
in Fig. 13 and the corresponding probability distribution in
Fig. 14. Compared with the spectrum calculated without
cranking in Fig. 11, a great improvement has been achieved
by the infinitesimal cranking. The excitation energy of the γ
vibration, ≈1 MeV, becomes close to the experimental value.
The moments of inertia for both the g band and the γ band
are considerably increased, although they are still slightly
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FIG. 13. Energy spectrum calculated by the angular-momentum-
projected configuration-mixing using the five infinitesimally xyz-
cranked HFB states with γ = 1◦, 10◦, 20◦, 30◦, and 40◦ in 164Er. The
rotational energy I (I + 1)/78 MeV is subtracted. The experimental
data for the g band and the γ band are included as open squares.
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respect to the triaxiality parameter γ for the configuration-mixing
calculation of Fig. 13.

smaller at high-spin states. The experimentally observed
moments of inertia increase as functions of spin, while the
calculated inertias are rather constant in the present work.
It was shown that the experimentally observed increasing
feature of the moment of inertia can be well reproduced
by superposing angular-momentum-projected configurations
with different values of the cranking frequency [20]. It
is, however, too heavy to perform the configuration-mixing
calculations taking into account both the cranking frequency
and the triaxial deformation at the same time. We believe
further improvements can be obtained with such calculations.
As for the probability distributions, those for the members of
the g band are almost the same as in the case without cranking,
while those for the members of the γ band slightly move to
lower γ values and the widths of distribution become a little
bit smaller by the effect of the xyz cranking; cf. Table II.

Another interesting difference observed in Fig. 13 in
comparison with Fig. 11 is that the degeneracy of the two
bands interpreted as the two-phonon γ bands with K = 0
and K = 4 is resolved by the xyz cranking. The 0+ excited
state at about 2.7 MeV keeps its excitation energy, while the
third 4+ state becomes lower in energy from about 3.1 to
2.3 MeV (note that the reference rotational energy is subtracted
in Figs. 11 and 13). With this effect the spectrum of the
one- and two-phonon γ vibrational states becomes similar
to that in other calculations (see, e.g., Refs. [12,15]); namely,
energies of the two-phonon states are larger than twice the
energy of the one-phonon state, i.e., large anharmonicity is
observed, and the 0+ state with K = 0 lies higher than the 4+
state with K = 4. The three B(E2) values, B(E2 : 0+

1 → 2+
2 ),

B(E2 : 2+
2 → 4+

3 ), and B(E2 : 0+
2 → 2+

2 ) are 0.180, 0.164,
and 0.176 (e2b2), respectively, and so the interpretations of the
0+ and 4+ states as two-phonon γ vibrational states may be
justified also with the xyz cranking.

To see the effect of superposing the five HFB states
with different triaxial deformations, we show in Fig. 15 the
calculated spectrum with a single HFB state with γ = 11.6◦,
whose low-spin part of the γ band roughly coincides with the
result of configuration-mixing in Fig. 13. For the g band and
the γ band the resultant spectra in the two figures are very
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FIG. 15. Energy spectrum calculated by the angular-momentum
projection from one xyz-cranked HFB state with γ = 11.6◦ in
164Er. The rotational energy I (I + 1)/78 MeV is subtracted. The
experimental data for the g band and the γ band are included as open
squares.

similar; as for these two bands the effect of the configuration
mixing is not very large. However, other more excited bands
are very different if Figs. 15 and 13 are compared. For
example, excitation energies of the band starting from the
4+

3 state, interpreted as one of the excited two-phonon γ
bands, and of the band starting from the 6+

4 , interpreted as
a three-phonon band, are considerably lower in Fig. 13 than
those in Figs. 15. Note that there are two almost completely
degenerate 6+ states at about 3.4 MeV, which are at about
2.9 MeV in Fig. 13 because of the subtraction of the rotational
energy, I (I + 1)/78 MeV. Moreover, as already discussed,
the band starting from the 0+

2 state, which is interpreted
as another two-phonon band with strong anharmonicity, and
the band from the 2+

4 state, which is interpreted as one of
other three-phonon bands, etc., are missing in the angular-
momentum-projection calculation from a single HFB state
in Fig. 15. Therefore, the effect of configuration mixing is
important for the complete understanding of the multiple
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FIG. 16. Energy spectrum calculated by angular-momentum
projection from the one xyz-cranked HFB state with the triaxial
deformation, γ = 20◦, for 164Er, i.e., the same as Fig. 6(h) but its
higher-spin part is shown. Only the five excited |I | = 2 bands from
the lowest are shown.
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γ bands, although the experimental information of them,
especially for the higher excited bands, is still scarce.

Although our best result is the one employing the in-
finitesimal cranking about all three axes, the xyz cranking,
we have performed the configuration-mixing calculations for
some other cases. The results are summarized in Table II,
where, for example, “yz” means that the five yz-cranked HFB
states with the same set of triaxial deformations, γ = 1◦, 10◦,
20◦, 30◦, and 40◦, are superimposed. In this table, the average
γ values calculated by the probability distribution in Eq. (9),

〈γ 〉α ≡
∫

γ pI
α(γ )dγ ≈

∑
n

γn pI
α(γn), (22)

and the two times the standard deviation, 2(γ )α ≡
2
√

〈(γ − 〈γ 〉α)2〉α , which roughly corresponds to the full
width at half maximum, are also included. The basic feature
is the same as that in the result of calculation with using a
single HFB state: The moment of inertia reflected by the first
2+ energy is increased mainly by the x- and y-axis cranking,
and the second 2+ (i.e., the γ vibrational) energy is lowered
mainly by the z-axis cranking. The B(E2) value is increased
by the x cranking, while it is decreased by the y- and z-axis
cranking. These features are specific for the case where the
triaxial deformation is relatively small. In fact, the average γ
values are about 9◦ for the g band and about 13◦–15◦ for the
γ band. It may be worthwhile noticing that the infinitesimal
cranking about more than two axes makes the average γ value
and the width of distribution smaller for the γ band, while
those for the g band are not affected.

As for the rotational in-band E2 transitions for the g
band, the result is similar to that of our previous axially
symmetric calculation in Ref. [20] and agrees very well with
the experimental data. The reason is that the deformation
parameter β2 is very similar and the triaxiality is rather
small in the g band. Precisely speaking, the B(E2) value is
about 2% larger than that in Ref. [20] at low spins and the
difference gradually increases up to about 10% at I ≈ 20,
where there are no experimental data available. Thus, the effect
of configuration mixing for the triaxial deformation does not
have a large impact for the E2 transitions inside the g band.

D. Relation to wobbling motion

It was suggested in Ref. [29] that a character change from
the γ vibration to the wobbling motion is expected in the
high-spin continuation of the γ band. In fact, in the result of
calculation with the larger triaxial deformation, γ = 20◦, the
signature-splitting of the multiphonon excited bands becomes
large at high spins and the even-I and odd-I sequences
alternately compose a different type of multiple band structure
from the one at low spins, as clearly seen in Figs. 6(c), 6(d),
and 6(f). We take the example of this calculation with γ = 20◦
and briefly discuss the character change in the following,
although it does not correspond to the experimental situation of
164Er: More complete discussion will be reported in a separate
publication.

We show the higher-spin continuation of the result of the
xyz cranking in Fig. 6(h), where a slightly different rotational
energy from that in Fig. 6 is subtracted to make the yrast band
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FIG. 17. The B(E2) ratio of the out-of-band to the in-band
transitions, B(E2 : I → I ± 1)/B(E2 : I → I − 2), for the first and
the second excited bands in the wobblinglike structure in Fig. 16. The
solid (open) symbols denote the transitions from the first (second)
band.

as flat as possible. It can be seen that a nice wobblinglike
multiple band structure develops at I � 20; the yrast band
is composed of the even-I states, the first excited band is of
the odd-I , the second excited band is of the even-I , and so
on. The excitation energy of the first excited band increases
almost linearly as a function of spin as it is expected [10]. It
may be interesting to notice that the spectrum is not exactly
phononlike in the sense that the excitation energy from the
(n − 1)th excited band to the nth band decreases as n increases
(n = 1,2,3, . . .).

The ratios of E2 transition probabilities, the out-of-band
to the in-band, B(E2 : I → I ± 1)/B(E2 : I → I − 2), are
shown as functions of spin in Fig. 17 for the first and second
excited bands. The large out-of-band transition is one of the
characteristic features of the wobbling band, which is, in fact,
employed as a guide to identify it in experiments. As is seen
in the figure, the out-of-band transitions are indeed very large,
as expected. It should be mentioned that there are two types of
out-of-band transitions: One is the I → I + 1 transition and
another is the I → I − 1 transition (cf. Ref. [30]), and the
former transitions are one or two orders of magnitude larger
in the present case. One might wonder why; the reason is
that the main rotation axis is the y axis in the present case.
The three nuclear moments of inertia behave like those of the
irrotational flow liquid, and the largest inertia is that of the
middle axis, which is the y axis, as mentioned in Eq. (18).
Namely, the rotation of the present example is of the so-called
“negative-γ ” scheme, where nucleus rotates mainly about the
middle axis, in contrast to the “positive-γ ” scheme with the
main rotation about the shortest axis. Note that if the axis of
rotation is chosen to be the x axis, as is usually done in the study
of high-spin states [31], the positive-γ and negative-γ rotation
schemes correspond to the triaxial shape with 0 < γ < 60◦
and −60◦ < γ < 0, respectively, from which the naming of
them comes.

To confirm that the main rotation axis is the y axis in the
present example, the expectation value of the angular mo-
mentum vector should be calculated in the body-fixed frame,
which is nontrivial at all for angular-momentum-projected
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are defined by Eq. (23), for the yrast band (solid symbols) and for the
first excited band (open symbols) in Fig. 16.

wave functions. In Ref. [32] the result of such a calculation
have been shown, but, unfortunately, how to calculate is not
explained. In the present work, following the rotor model and
using the microscopically calculated normalized amplitudes
{f I

K,α} in Eq. (6), we define the expectation value of the squared
intrinsic component J 2

i for the projected eigenstate α as((
J 2

i

))
α

≡
∑
KK ′

f I∗
K,α 〈IK|J 2

i |IK ′〉 f I
K ′,α, (23)

where i = x,y,z denotes the axis of the body-fixed frame
specified by the deformed mean-field wave function |�〉, from
which the projection is performed. Needless to say, the purely
algebraic quantity 〈IK|J 2

i |IK ′〉 should be manipulated in the
intrinsic frame. The expectation values thus calculated for the
yrast band and for the first excited band are shown in Fig. 18
as functions of spin. Apparently, the main rotation axis is the y
axis; those of the x and z components increase almost linearly
as functions of spin, which is a typical behavior for the angular
momentum fluctuations.

IV. SUMMARY AND DISCUSSION

In the present work, we have investigated the infinitesimal
cranking of the mean-field wave function to improve the
description of the collective rotational motion by means of
the angular-momentum-projected method. For the triaxial
deformation there are three axes for cranking. Assuming
the totally D2 symmetric mean-field wave function before
the cranking, it is clarified what kind of different time-odd
components are induced into the wave function by the cranking
about these three axes; they are classified according to the D2

symmetry quantum numbers (rx,ry,rz).
Taking a nucleus 164Er as a typical example in the rare-earth

region, we have first studied the spectrum and the B(E2)
values by the angular-momentum-projection from a single

HFB state without cranking assuming the triaxial deformation.
The Gogny D1S force is employed as an effective interaction
and there is no adjustable parameter in the Hamiltonian. As in
the pioneering work of Ref. [5], the multiple γ bands appear
in addition to the g band by including the triaxial deformation
into the mean-field wave function. The γ dependencies of
the microscopically calculated energy spectrum and B(E2)
values are similar to those of the asymmetric rotor model with
the irrotational moments of inertia at least for 5◦ � γ � 30◦.
It has been found, however, that the moments of inertia for
both the g band and the γ band are too small compared
with the experimental data, and, moreover, rather large triaxial
deformation is necessary to reproduce the low-lying nature
of the γ vibration, with which the B(E2) value from the g
band to the γ band is largely overestimated. These problems
of the result of the projection from a single HFB state without
cranking are shown to be greatly improved if the infinitesimal
cranking around all three axes is performed for the mean-field
wave function. The effects of the infinitesimal cranking around
the three axes are quite different: For γ = 10◦ and γ = 20◦ the
x- and y-axis cranking mainly increase the moments of inertia
and the z-axis cranking decreases the excitation energy of the
γ vibration; furthermore, it was found that the y-axis cranking
increases the signature splitting between the even-I and the
odd-I sequences of the γ band, while the x-axis cranking de-
creases it. With the infinitesimal cranking about all three axes a
reasonable agreement for both the spectrum and B(E2) can be
achieved with relatively small triaxial deformation γ ≈ 12◦.

To see what is the most probable triaxial deforma-
tion, we next performed the angular-momentum-projected
configuration-mixing calculation by superposing several HFB
states with different triaxial deformations. The average γ
values for the g band and the γ band are slightly different;
they are about 9◦ and 14◦, respectively, which are not so
large and are comparable to the amplitude of the zero-point
oscillation estimated by the measured B(E2) value [10]: In
fact, the calculated width of the distributions for the triaxial
deformation is about 12◦–14◦. Thus, it does not conflict with
the usual belief that the ground-state deformation is axially
symmetric in the rare-earth region. With these calculated distri-
butions for the triaxial deformation, the resultant spectrum and
the B(E2) value agree reasonably well with the experimental
data, although the agreement is not perfect. This is in contrast
to the result of the RPA calculation [12]: If the excitation
energy is reproduced, the B(E2) value is largely overestimated
by a factor 2–4. Our calculation gives a correct magnitude
if the amplitude for the triaxial deformation is properly
determined by the configuration mixing. It should be stressed
that several new bands appear at higher excitation energy by
the configuration mixing. Especially the K = 0 two-phonon
band, which is missing in the projection calculation from a
single HFB state, emerges above the K = 4 two-phonon band;
this anharmonic pattern is very similar to what was predicted
by other calculations; cf., e.g., Refs. [12–15].

Finally, we have investigated the conjecture of Ref. [29] that
the multiple γ bands change their character into the wobbling
band. By the hypothetical calculation with relatively large
triaxial deformation, γ = 20◦, for 164Er, it has been found that
indeed the character change occurs and the high-spin part of
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the multiple γ bands can be interpreted as the wobbling band.
The characteristic features of the calculated wobbling motion
are studied: The excitation energy of the wobbling phonon
almost linearly increases as a function of spin and the strong
I → I + 1 out-of-band E2 transitions are predicted, which are
expected in the original work of the wobbling motion [10] for
the so-called negative-γ rotation scheme [30]. In experiment
the wobbling band had been first observed in the odd nucleus,
163Lu, in the rare-earth region. Interestingly enough, however,
the experimentally observed properties are opposite from what
are predicted in the present calculation. The excitation energy
decreases as spin increases, which is now understood as the
characteristic feature of the so-called “transverse” wobbling
[33], and only the I → I − 1 out-of-band E2 transitions are
measured, which is characteristic for the so-called positive-γ
rotation scheme [30]. It should be pointed out that the possible
occurrence of the transverse wobbling was first pointed out in
Ref. [34], where the effect of the aligned angular momentum
of the odd particle on the wobbling excitation energy was
carefully examined. We have also studied the wobbling motion
in 163Lu by the angular-momentum-projection method, and
the preliminary result was reported in Ref. [35], where the
expected properties for the case of 163Lu are reproduced,
although the agreement with the experimental data is not
very satisfactory. Thus, the wobbling motion that appeared
in the present hypothetical calculation is somewhat different
from what is observed in experiment. We would like to
notice, however, that the observed excitation energy of the
two-phonon wobbling state in 163Lu is smaller than twice
the energy of the one-phonon state [36], which roughly
corresponds to what is seen in the result of present calculation.
We have been investigating the wobbling motion in 163Lu by
performing similar calculation to the present work; the result
will be reported in a separate publication.
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APPENDIX: EXPECTATION VALUE IN
THE INTRINSIC FRAME

There is no concept of the intrinsic frame or the body-fixed
frame for the angular-momentum-projected wave function in
Eq. (1). Therefore, the expectation value of some operator
in the intrinsic frame is not an observable quantity and
should be defined in some way. In the text we have used
the definition by Eq. (23) for the squared component of the
angular momentum vector, but this definition solely relies
on the macroscopic rotor model and can be applied only
for the angular momentum operator without any additional
assumptions. It is desirable to calculate the expectation value
of an arbitrary operator microscopically. In this Appendix we
present some attempt following again the basic idea of the rotor
model; the components of the spherical tensor operator in the
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FIG. 19. Comparison of the two definitions for the “expectation
values” of the squared components of the angular momentum vector
in the body-fixed frame for the first excited band in Fig. 16, which
are calculated by Eq. (23) (solid lines) and by Eq. (A3) (dotted lines).
The solid lines are the same as those with the open symbols in Fig. 18.

body-fixed frame are scalar and commute with the rotation
operator. For an arbitrary scalar observable O the expectation
value with respect to the projected wave function in Eq. (1) is
written, just like for the Hamiltonian, as〈

�I
M,α

∣∣O∣∣�I
M,α

〉 =
∑

KnK ′n′
gI∗

Kn,α 〈�n|OP I
KK ′ |�n′ 〉 gI

K ′n′,α.

(A1)
Of course, it does not depend on the M quantum number.
However, if the observable O does not commute with the
projector, the right-hand side is generally complex, so that one
has to take the real part or symmetrize; thus, we define the
expectation value by

〈〈O〉〉α ≡ Re

( ∑
KnK ′n′

gI∗
Kn,α 〈�n|OP I

KK ′ |�n′ 〉 gI
K ′n′,α

)

= 1

2

∑
KnK ′n′

gI∗
Kn,α 〈�n|(OP I

KK ′ + P I
KK ′O)|�n′ 〉

× gI
K ′n′,α, (A2)

where because of this specific definition, we have used the
notation, 〈〈O〉〉α , instead of a usual single bracket, and the
amplitudes {gI

Kn,α} are assumed to be normalized.
Then the expectation value of the squared intrinsic compo-

nent J 2
i can be microscopically calculated by

〈〈
J 2

i

〉〉
α

≡ Re

(∑
KK ′

gI∗
K,α 〈�|J 2

i P I
KK ′ |�〉 gI

K ′,α

)
, (A3)

where the configuration-mixing is neglected for simplicity and
the projection is performed from a single HFB state |�〉. This
expression is a microscopic analog of Eq. (23), in which the
concept of the rotor model is fully employed. In Fig. 19 we
compare the results of two definitions, Eqs. (23) and (A3),
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for the first excited band considered in Sec. III D (the result
for the ground-state band is similar). The agreement of these
two definitions is clear from the figure, and the definition in
Eq. (A3) seems to be meaningful: However, it is not always the
case. In fact, the operators J 2

i (i = x,y,z) are not scalar but a
part of the second rank tensor, Xij ≡ 1

2 (JiJj + JjJi). We have
found that the expectation value of the nondiagonal part, e.g.,

〈〈Xyz〉〉α , depends on the infinitesimal frequencies (ωx,ωy,ωz),
and therefore can take arbitrary values [〈〈Xij 〉〉α = 0 (i �= j )
without cranking]. It can be confirmed that the diagonal part,
〈〈J 2

i 〉〉α , is independent of these frequencies by using the D2

symmetry; the mean-field wave function before the cranking
is totally D2 symmetric in the present case. Therefore, the
definition in Eq. (A2) does not always work.
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