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Background: Unbound single-particle states become important in determining the properties of a hot nucleus
as its temperature increases. We present relativistic mean field (RMF) for hot nuclei considering not only the
self-consistent temperature and density dependence of the self-consistent relativistic mean fields but also the
vapor phase that takes into account the unbound nucleon states.
Purpose: The temperature dependence of the pairing gaps, nuclear deformation, radii, binding energies, entropy,
and caloric curves of spherical and deformed nuclei are obtained in self-consistent RMF calculations up to the
limit of existence of the nucleus.
Method: We perform Dirac-Hartree-Bogoliubov (DHB) calculations for hot nuclei using a zero-range
approximation to the relativistic pairing interaction to calculate proton-proton and neutron-neutron pairing
energies and gaps. A vapor subtraction procedure is used to account for unbound states and to remove long range
Coulomb repulsion between the hot nucleus and the gas as well as the contribution of the external nucleon gas.
Results: We show that p-p and n-n pairing gaps in the 1S0 channel vanish for low critical temperatures in the range
Tcp ≈ 0.6–1.1 MeV for spherical nuclei such as 90Zr, 124Sn, and 140Ce and for both deformed nuclei 150Sm and
168Er. We found that superconducting phase transition occurs at Tcp = 1.03�pp(0) for 90Zr, Tcp = 1.16�pp(0) for
140Ce, Tcp = 0.92�pp(0) for 150Sm, and Tcp = 0.97�pp(0) for 168Er. The superfluidity phase transition occurs
at Tcp = 0.72�nn(0) for 124Sn, Tcp = 1.22�nn(0) for 150Sm, and Tcp = 1.13�nn(0) for 168Er. Thus, the nuclear
superfluidity phase—at least for this channel—can only survive at very low nuclear temperatures and this phase
transition (when the neutron gap vanishes) always occurs before the superconducting one, where the proton gap is
zero. For deformed nuclei the nuclear deformation disappear at temperatures of about Tcs = 2.0–4.0 MeV, well
above the critical temperatures for pairing, Tcp . If we associate the melting of hot nuclei into the surrounding vapor
with the liquid-gas phase transition our results indicate that it occurs at temperatures around T = 8.0–10.0 MeV,
somewhat higher than observed in many experimental results.
Conclusions: The change of the pairing fields with the temperature is important and must be taken into account
in order to define the superfluidity and superconducting phase transitions. We obtain a Hamiltonian form of the
pairing field calibrated by an overall constant cpair to compensate for deficiencies of the interaction parameters and
of the numerical calculation. When the pairing is not zero, the states close to the Fermi energy make the principal
contribution to the anomalous density that appears in the pairing field. By including temperature through the use
of the Matsubara formalism, the normal and anomalous densities are multiplied by a Fermi occupation factor.
This leads to a reduction in the anomalous density and in the pairing as the temperature increases. When the
temperature increases (T � 4 MeV), the effects of the vapor phase that take into account the unbound nucleon
states become important, allowing the study of nuclear properties of finite nuclei from zero to high temperatures.
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I. INTRODUCTION

The study of nuclear properties at nonzero temperatures has
been investigated since the pioneering works [1–4] describing
the formation and decay of a compound nucleus induced
by light projectiles in nuclear reactions. In the last years
nuclear reactions involving high-energy projectiles and heavy
ions producing a variety of excited nuclei have been investi-
gated [1,5–8]. Construction of the caloric curve furnishes one
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possible way of comparing nuclear temperatures and excitation
energies [7]. Furthermore, a possible correlation between
nuclear instabilities and the liquid-gas phase transition in
nuclear matter has also been suggested [1]. These studies of
hot nuclei predict the existence of a liquid-gas phase transition
with the signature of a large increase of the entropy and a
peak in the specific heat at some critical temperature [1]. The
ALADIN Collaboration presented a weak isotopic dependence
of the nuclear caloric curve and a critical temperature T ≈
5.6 MeV of excited nuclear systems in the A ≈ 90 region well
below T nm ≈ 14 MeV calculated for nuclear matter [8]. The
stability of a hot nuclear system formed in a heavy ion collision
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depends on the continuum states, since the nucleus can be con-
sidered to be in thermal equilibrium with evaporated nucleons
forming a surrounding gas. It was found that at temperatures
above 3–4 MeV, unbound states make important contributions
to the nuclear density and should be considered in the
calculations [9,10]. Using the Hartree-Fock theory at finite
temperature (FTHF) Bonche, Levit, and Vautherin proposed a
method to consider these unbound states. Instabilities of hot
nuclei due to the Coulomb interaction were also analyzed by
comparison of the FTHF results of Refs. [9,10] with a semi-
classical Thomas-Fermi approximation. They conclude that at
low temperatures (T � 2 MeV) the subtraction procedure is
also indispensable in this approximation [11–13]. They applied
a gas subtraction procedure to account for the unbound states,
which includes the long-range Coulomb repulsion between the
hot nucleus and the gas but not that between the particles of
the gas. Then, using the FTHF approach with different Skyrme
interactions, they found T = 8 ∼ 10 MeV for 208Pb, depend-
ing on the interaction used [9]. These calculations allowed
them to analyze binding energies, nuclear radii, densities,
single-particle spectra, entropy, and level densities beyond
T = 4 MeV, the limiting temperature used in previous works
without the subtraction procedure. The first calculation based
on Hartree-Bogoliubov approximation to consistently describe
pairing correlations (superfluidity) in nonrelativistic nuclear
matter was developed by Gogny [14,15]. This approximation
was extended to a relativistic calculation by Carlson and
Frederico [16] and, later, Kucharek and Ring [17], where a
Dirac-Hartree-Fock-Bogoliubov equation was obtained using
the Gorkov formalism [18]. These calculations furnished pair-
ing gaps that are too large compared to later calculations, where
a full Dirac structure of the self-energy and pairing fields was
used in DHFB approximation [19,20]. An adequate description
of the pairing interaction in nuclear matter was obtained by
requiring the relativistic mean field (RMF) meson-exchange
interaction to describe the low-energy two-nucleon scattering
in the 1S0 channel [21]. One manner of doing this is to
supplement each parameter set with a high-momentum cutoff,
so that it describes the two-nucleon 1S0 virtual state correctly
and, as a consequence, provides consistent values for the
pairing gap in nuclear matter [21]. The same authors extended
their calculations to finite nuclei where the pairing correlations,
the nucleon, and mesons mean fields were calculated self-
consistently neglecting the Fock terms, a formalism called the
Dirac-Hartree-Bogoliubov (DHB) approximation [22]. The
Dirac-Hartree-Bogoliubov equations in the continuum can be
used to study exotic nuclei with large rms matter radius, as
was first observed 15 years ago [23,24]. In the work [25] the
pairing correlations and the scattering of Cooper pairs was
introduced using a continuum Hartree-Bogoliubov (RCHB) in
the framework of relativistic mean field theory with a density
dependent force of zero range in the pairing channel adjusted
to obtain the proper size of the halo 11Li. This neutron halo
phenomena was described in the mean field approximation,
in which the last nucleons of the 11Li nucleus are weakly
bounded with filled orbital close to the continuum limit. The
RCHB theory and associated detailed numerical techniques
were developed in Refs. [26–28] to study not only stable nuclei
but also the nuclei near the drip line.

In this work we extend the self-consistent DHB calculation
of Ref. [22] to include finite temperature effects, considering
explicitly the temperature dependence of the pairing energy
and gaps [29]. Results of the temperature dependence for the
pairing gap and pairing energy have been shown in our brief
work [30], which neglected the vapor subtraction procedure.
Later, [31] we explicitly included the contributions of the
external gas in order to subtract them when calculating binding
energy, nuclear radii of spherical, and deformed nuclei. We
found in this later work that calculated values of the pairing
gaps of 168Er are �nn = 0.62 MeV and �pp = 1.03 MeV that
reproduce the experimental data at T = 0. For this nucleus the
pairing energy is Epair = −17.84 MeV at T = 0 and decreases
to zero at a temperature of about Tcp ≈ 1.0 MeV. Similar
calculations were performed in Ref. [32], where pairing
correlations were included in the constant gap approximation
only for the T = 0 case and were ignored for T > 0 for
open-shell nuclei, since the nuclear pairing energy vanishes
at low temperatures [33–35]. These calculations furnished gap
parameters for neutrons and protons of �nn = 1.034 MeV and
�pp = 1.176 MeV for 168Er. The authors in Ref. [32] did not
show the effects of the temperature on the nuclear spectra
and the shell structure of a hot nucleus. Nor did they include
the effects of the pairing energy that could affect their results,
since pairing is important for higher energy levels that are more
sensitive to the temperature increase. They showed the finite
temperature dependence of the meson mean field potentials
and calculated thermodynamic effects for finite nuclei, such
as deformation, excitation energy, entropy, and level density
parameters at high nuclear excitations. Using a mean field
approach, they found that nuclear deformation and shell effects
disappear at excitations around Tcs ∼ 3 MeV for the deformed
nuclei 168Er and 168Yb, and around Tcs ∼ 2 MeV for the
nucleus 150Sm. As T increases, the calculated binding energy
decreases and the entropy and excitation energy increase. In
Ref. [36], calculations based on finite temperature Hartree-
Fock-Bogoliubov (FTHFB) theory with a Gogny force and
a large configuration space also provide a good analysis of
the thermodynamic effects in finite hot nuclei. By plotting
excitation energy and specific heat against temperature of
superdeformed nuclei they show a normal to superfluidity
phase transition at a critical temperature of Tcp ≈ 0.7 MeV.
In the same plots, the shape transition disappearance of the
nuclear deformation occurs at Tcs ≈ 2.7 MeV.

Recently, the pairing interaction and temperature de-
pendence of the isotopic chain for spherical nuclei was
investigated in finite-temperature (FTRHB) [37] where the
dependence of the pairing on temperature was calculated for
several spherical nuclei based on a Gogny [38] or a separable
pairing force [39] using the point-coupling interaction PC-
PK1 [40]. A simple rule for evaluating the critical temperature
from the adjusted neutron pairing gap to the experimental
one at zero temperature was found, as Tcp = 0.6�nn(0).
In particular for the nucleus 124Sn, a critical temperature
Tcp = 0.8 MeV was found with a neutron pairing gap at
zero temperature of �nn(0) = 1.33 MeV. This rule was also
obtained in Ref. [41] where pairing field and pairing tensor
were obtained from the solution of FTHFBCS model. In their
calculations using Skyrme interactions, the pairing gap vanish
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between 0.5 and 0.9 MeV for all Sn isotopes and the relation
Tcp = 0.57�nn(0) was also found. More recently a study of
pairing transition has been done in FTRHFB formalism [42]
and a systematic calculation of the pairing was performed for
several semimagic isotopic/isotonic chains. They found that
the critical temperature for pairing transition generally follows
the rule Tc = 0.60�nn(0) with a finite-range pairing force and
Tc = 0.57�nn(0) with a constant pairing force.

It is important to stress that until now no relativistic
calculations for finite nuclei exist that consider the temperature
and density dependence of relativistic pairing fields obtained
self-consistently have included the vapor phase to take into
account the unbound nucleon states. This is done here, in
a finite temperature Dirac-Hartree-Bogoliubov formalism, or
FTDHB, in which we investigate the temperature dependence
of pairing gaps, nuclear deformations, radii, binding energies,
entropy, and the caloric curve of spherical and deformed
nuclei. The RMF model used in our formalism is the nonlinear
Walecka model NL3 [43], since this parameter set provides
a very good description of several experimental properties
of many stable nuclei. The NL3 parametrization was also
used in Ref. [32], and we will compare our results with
the ones obtained in this work. An overall constant cpair is
introduced in the expression for the pairing interaction to better
reproduce the pairing gap and energies at zero temperature for
finite nuclei. Furthermore, as already mentioned, the vapor
subtraction procedure was used to take in account the effects
of unbound states and to remove the long-range Coulomb
repulsion between a hot nucleus and its gas [9,10]. In this
manner, the temperature dependence of nuclear properties of
finite nuclei can be studied from zero temperature to high
temperatures in comparison with the studies done in Ref. [32].
We will show that p-p and n-n pairing gaps in the 1S0 channel
vanish for low temperatures in the range Tcp = 0.6–1.1 MeV
for open-shell spherical nuclei, such as 90Zr, 124Sn, and 140Ce,
and for deformed nuclei, such as 150Sm and 168Er. The nuclear
superconducting phase transition occurs at Tcp = 0.7 MeV
for the 90Zr, Tcp = 1.1 MeV for the 140Ce, Tcp = 0.9 MeV
for the 150Sm, and Tcp = 1.00 MeV for the 168Er. The
superfluidity phase transition occurs Tcp = 1.0 MeV for the
124Sn, Tcp = 0.6 MeV for the 150Sm, and Tcp = 0.7 MeV
for the 168Er. Thus, the nuclear superfluidity phase—at
least for this channel—can only survive at very low nuclear
temperatures and the nuclear superconducting phase transition
occurs after the superfluidity one. For these nuclei, the shell
effects and nuclear deformation disappear at temperatures of
Tcs = 2.0–4.0 MeV higher than the pairing phase transition
one. Our results also indicate that hot finite nuclei appear to
melt into the surrounding vapor at critical temperatures in the
range T = 8.0–12.0 MeV. It is not clear whether this merger
of a hot nucleus with the surrounding vapor can be associated
with a liquid-gas phase transition or not.

This paper is organized as follows: in Sec. II, we present
the FTDHB formalism: in order to simplify the calculation,
we exclude the Fock term and use a zero-range approximation
to the relativistic pairing interaction to obtain proton-proton
and neutron-neutron pairing. We introduce the temperature
dependence in the Fermi occupation factor that is obtained
when the integral that produces the normal and anomalous

densities in DHB theory [22] is transformed into a sum over
Matsubara frequencies [44]. At end of this section we discuss
the Bonche, Levit, and Vautherin gas subtraction procedure
used to account for the unbound states and to remove long
range Coulomb repulsion between the hot nucleus and the
nucleon gas [9]. In Sec. III, we present some details about our
numerical calculations following the formalism of Ref. [22] at
temperature zero as well as the application of the method of
Bonche, Levit, and Vautherin to solve the FTDHB formalism.
In Sec. IV, we present our results concerning the ground state
properties of hot nuclei. In Sec. IV A we discuss spherical and
deformed nuclei. We analyzed the temperature dependence of
the binding energy, the neutron and charge radii, the nuclear
deformation, density, and mean field mesons and Coulomb
potentials. We dedicate particular attention to the temperature
dependence of the pairing gaps and pairing interaction. Finally,
in Sec. IV B thermodynamical properties, such as entropy,
excitation energy, and caloric curves as a function of the
temperature, are also discussed for several nuclei.

II. FORMALISM

The Dirac-Hartree-Bogoliubov (DHB) formalism at zero
temperature was developed in the work of Carlson and
Hirata [22]. We will use the same formalism and the same
structure in this work. The free Lagrangian density for the
nucleon-meson many-body system is taken as

L0(x) = ψ(x)[i/∂ − M]ψ(x) + 1
2∂μσ (x)∂μσ (x) − U [σ (x)]

+ 1
2m2

ωωμ(x)ωμ(x) + 1
2m2

ρ �ρμ(x) · �ρ μ(x)

− 1
4FμνF

μν − 1
4	μν	

μν − 1
4

�Gμν · �Gμν. (1)

The meson fields included are the isoscalar-scalar σ meson, the
isoscalar-vector ω meson, the isovector-vector ρ meson, and
the photon. The Lagrangian also contains a nonlinear scalar
self-interaction term U (σ ) of the σ meson including cubic and
quartic terms,

U [σ (x)] = 1
2m2

σ σ (x)2 + 1
3g3σ (x)3 + 1

4g4σ (x)4, (2)

important for a good description of the nuclear surface. We
take the interaction terms in the Lagrangian density to have
the simplest possible form consistent with their Lorentz and
isospin structure,

Lint(x) = gσψ(x)σ (x)ψ(x) − gωψ(x)γμωμ(x)ψ(x)

− 1

2
gρψ(x)γμ�τ · �ρ μ(x)ψ(x)

− e ψ(x)
(1 + τ3)

2
γμAμ(x)ψ(x). (3)

The quantities M , mσ , mω, and mρ are the nucleon and σ -,
ω-, ρ-meson masses, respectively, while gσ , gω, gρ , and e are
the corresponding coupling constants for the mesons and the
photon. The vector field tensors are defined as

Fμν = ∂μAν − ∂νAμ,

	μν = ∂μων − ∂νωμ, (4)

�Gμν = ∂μ �ρν − ∂ν �ρμ.

In particular, we will not consider tensor couplings of the
vector mesons nor the pseudoscalar π and η mesons. The
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baryon spinor ψ(x) has four Dirac components for each
of the two isospin projections—mt = 1/2 for protons and
mt = −1/2 for neutrons—for a total of eight components.
To obtain a complete one-body description, we must take into
account the propagation of particles and holes as well as the
conversion of one to the other. A HFB formalism that succeeds
in unifying these ingredients simply and clearly is the Gorkov
one [18]. This is constructed in terms of the self-energy �,
which describes the average interaction of a nucleon with the
surrounding matter, and the pairing field � and its conjugate
�̄, which describe respectively the formation and destruction
of pairs during the propagation. In particular, the definitions
of � and �̄ make use of correlated pairs of time-reversed
single-particle states, in agreement with the original idea of
Cooper [45]. In the Gorkov formalism, we introduce such
pairs by using an extended form of the time-reversed states,
which we designate by �T , where we now have as an ansatz
for the effective single-particle Lagrangian∫

dt Leff =
∫

d 4x d 4y

{
ψ(x)[i/∂ − M + γ0μ]

× δ(x − y)ψ(y)ψ(x)�(x,y)ψ(y)

+ 1

2
ψ(x)�(x,y)ψT (y) + 1

2
ψT (x)�(x,y)ψ(y)

}
,

(5)

where μ represents the chemical potential to be used as
Lagrange multipliers to fix the average number of protons
and neutrons.

The hole wave function �T is defined as

�T = A�
T
, �T = �TA†, (6)

where �T denotes the transpose of the wave function �, and
A = τ2 ⊗ γ5C, in which the Pauli matrix τ2 acts in the isospin
space and C is the charge conjugation matrix. The symmetries
of the effective mean-field Lagrangian under transposition,
Hermitian conjugation, and the exchange of dummy variables
x and y, yield the following properties of the mean fields:

�(x,y) = −A �T(x,y) A† = −A [�(y,x)]T A†,

�(x,y) = −A �
T
(x,y) A†, (7)

and

�(x,y) = γ0�
†(x,y)γ0,

�(x,y) = γ0�
†
(x,y)γ0. (8)

These constraints are important in limiting the possible
structure of the self-energy and pairing fields.

The coupled equations of motion for the fields ψ and ψT

that result are known as the (Dirac-)Hartree-Fock-Bogoliubov
(DHFB) equations,

∫
d4y

(
(i/∂ − M + γ0μ)δ(x − y) − �(x,y) �(x,y)

�̄(x,y) (i/∂ + M − γ0μ)δ(x − y) + �T(x,y)

)(
ψ(y)
ψT(y)

)
= 0. (9)

Defining the generalized baryon field operator as

�(x) =
(

ψ(x)
ψT(x)

)
, (10)

one obtains for the generalized baryon (quasiparticle) propa-
gator

S(x,y) =
(

G(x,y) F (x,y)
F̃ (x,y) G̃(x,y)

)

= −i

〈(
ψ(x)
ψT(x)

)
(ψ(y) , ψT(y))

〉
, (11)

where, by 〈. . . 〉, we mean the time-ordered expectation value in
the interacting nuclear matter ground state, 〈0̃|T (. . . )|0̃〉. We
assume that the state |0̃〉 contains only nucleons interacting
through the exchange of virtual mesons and contains no
real mesons. We also assume that |0̃〉 is symmetric under
rotations and translations, so that the propagator S depends
only on the difference between the end points of propagation.
We observe that G(x,y) is the usual baryon propagator
while G̃(x,y) describes the propagation of baryons in time-
reversed states. The off-diagonal terms of S(x,y) describe the
propagation of correlated baryons and are just the relativis-
tic generalization of the anomalous propagators defined by
Gorkov [18].

The self-consistency equations for the mean fields can be
written in terms of the propagators as

�(x,y) = −iδ(x − y)
∑

j

�jα(x)
∫

d4z D
αβ
j (x − z)

× Tr[�jβ(z)G(z,z+)]

+ i
∑

j

�jα(x)Dαβ(x − y)G(x,y)�jβ (y), (12)

and

�(x,y) = i
∑

j

�jα(x)Dαβ
j (x − y)F (x,y)A�T

jβ (y)A†. (13)

We construct a static, ground-state solution to the self-
consistency equations. We write the temporal Fourier trans-
form of the full DHFB propagator as

S(�x,�y; ω) =
(

G(�x,�y; ω) F (�x,�y; ω)

F̃ (�x,�y; ω) G̃(�x,�y; ω)

)

=
∑

α

(
Uα(�x)

Vα(�x)

)
1

ω − εα + iη
(Uα(�y), V α(�y))

+
∑

β

(
Uβ(�x)

Vβ(�x)

)
1

ω + εβ − iη
(Uβ(�y), V β(�y)).

(14)
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The components Uα,β and Vα,β are Dirac spinors correspond-
ing to the normal and time reversed components, respectively,

of the positive-frequency (εα) and negative-frequency (εβ)
solutions to the DHFB equation, Eq. (9),

∫
d3y

(
γ0[(ε + μ)δ(�x − �y) − h(�x,�y)] �(�x,�y)

�̄(�x,�y) [(ε − μ)δ(�x − �y) + hT(�x,�y)]γ0

)(
U (�y)
V (�y)

)
= 0, (15)

where we have introduced the single-particle Hamiltonian,
h(�x,�y), given by

h(�x,�y) = (−i �α · �∇ + βM)δ(�x − �y) + β�(�x,�y), (16)

with

hT(�x,�y) = AhT (�x,�y)A† and h(�x,�y) = h†(�x,�y). (17)

The solutions to the DHFB equation occur in pairs with real
eigenvalues of opposite sign and eigenvectors of the form

ε = εα :

(
U (�y)
V (�y)

)
, ε = −εα :

(
γ0AV ∗(�y)
γ0AU ∗(�y)

)
. (18)

We can thus write either the first or the second sum of Eq. (15)
in terms of the eigenvectors of the other term.

The self-consistency equations can then be written as

�(�x,�y) = δ(�x − �y)
∑

j

�jα(�x)
∫

d3z D
αβ
j (�x − �z)

× Tr[�jβ(�z)ρ(�z,�z)]

−
∑

j

�jα(�x)Dαβ(�x − �y)ρ(�x,�y) �jβ(�y), (19)

and

�(�x,�y) = γ0�̄
†(�x,�y)γ0

= −
∑

j

�jα(�x)Dαβ
j (�x − �y)κ(�x,�y) A�T

jβ(�y)A† (20)

where at zero temperature we have(
ρ(�x,�y) κ(�x,�y)
κ̃(�x,�y) ρ̃(�x,�y)

)
=
∑
εγ <0

(
Uγ (�x)
Vγ (�x)

)
(Uγ (�y), V γ (�y)), (21)

with the sum running over the negative frequency solutions,
εγ < 0 of Eq. (15). We identify the matrix elements of Eq. (21)
as the component equations of the normal and anomalous
densities,

ρ(�x,�y) =
∑
εγ <0

Uγ (�x)Uγ (�y), (22)

κ(�x,�y) =
∑
εγ <0

Uγ (�x)V γ (�y). (23)

The anomalous density, in the given form, does not necessarily
satisfy the antisymmetry condition of Eq. (7). We rewrite the
density in a form which explicitly satisfies this condition,

κ(�x,�y) = 1

2

∑
εγ <0

(
Uγ (�x)V γ (�y) − γ0AV ∗

γ (�x)UT
γ (�y)A†) . (24)

When the pairing is zero, Vγ = 0 for a state of frequency
εγ = −|eγ − μ| with single-particle energy eγ below the
Fermi energy μ, while Uγ = 0 for a state with single-particle
energy eγ above the Fermi energy μ. When the pairing is
not zero, the transition from Vγ ≈ 0 to Uγ ≈ 0 occurs fairly
smoothly with energy in the region of the Fermi energy.
The states close to the Fermi energy thus make the principal
contribution to the anomalous density.

To include temperature in the model, the sum that produces
the normal and anomalous densities from Eq. (21) is trans-
formed to a sum over Matsubara’s frequencies [44],(

ρ(�x,�y; T ) κ(�x,�y; T )
κ̃(�x,�y; T ) ρ̃(�x,�y; T )

)

= −1

2

∑
εγ

(
Uγ (�x)

Vγ (�x)

)
(Uγ (�y) V γ (�y)) tanh

(
εγ

2T

)
. (25)

This expression is subtracted so as to provide the zero
temperature limit given in Eq. (21). The result is(

ρ(�x,�y; T ) κ(�x,�y; T )

κ̃(�x,�y; T ) ρ̃(�x,�y; T )

)

=
∑
εγ

(
Uγ (�x)

Vγ (�x)

)
(Uγ (�y), V γ (�y))n(εγ ,T ), (26)

where n(εγ ,T ) is the Fermi occupation factor,

n(εγ ,T ) = 1

1 + exp(εγ /T )
. (27)

Using the relation between solutions of positive and negative
frequencies, Eq. (18), we can write the densities in terms of
the negative frequency solutions as(

ρ(�x,�y; T ) κ(�x,�y; T )

κ̃(�x,�y; T ) ρ̃(�x,�y; T )

)

=
∑
εγ <0

[(
Uγ (�x)

Vγ (�x)

)
(Uγ (�y), V γ (�y))n(εγ ,T )

+
(

γ0AV ∗
γ (�x)

γ0AU ∗
γ (�x)

)(
V T

γ (�y)A†, UT
γ (�y)A†)n(−εγ ,T )

]
.

(28)

The normal and anomalous densities are given by

ρ(�x,�y; T ) =
∑
εγ <0

(
Uγ (�x)Uγ (�y) n(εγ ,T )

+ γ0AV ∗
γ (�x)V T

γ (�y)A† n(−εγ ,T )
)
, (29)
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and

κ(�x,�y; T ) =
∑
εγ <0

(
Uγ (�x)V γ (�y) n(εγ ,T ) + γ0AV ∗

γ (�x)UT
γ (�y)A† n(−εγ ,T )

)
. (30)

The last equation should again be antisymmetric with respect to particle exchange. This is ensured at T = 0 by the form of the
anomalous density given in Eq. (24). The anomalous density can be written in a similar form here as

κ(�x,�y; T ) = 1

2

∑
εγ <0

{[
Uγ (�x)V γ (�y) − γ0AV ∗

γ (�x)UT
γ (�y)A†] n(εγ ,T ) + [γ0AV ∗

γ (�x)UT
γ (�y)A† − Uγ (�x)V γ (�y)

]
n(−εγ ,T )

}

= 1

2

∑
εγ <0

[
Uγ (�x)V γ (�y) − γ0AV ∗

γ (�x)UT
γ (�y)A†] [n(εγ ,T ) − n(−εγ ,T )]. (31)

The isospin structure of the self-energy and pairing fields is determined by the assumption of pure proton-proton and neutron-
neutron pairing. In this case, we can reduce the densities to two distinct matrices, one for neutrons and another for protons,
distinguished by the isospin index t ,(

ρt (�x,�y; T ) κt (�x,�y; T )
κ̃t (�x,�y; T ) ρ̃t (�x,�y; T )

)
=
∑
εtγ <0

[(
Utγ (�x)
Vtγ (�x)

)
(Utγ (�y), V tγ (�y))n(εtγ ,T )

+
(

γ0BV ∗
tγ (�x)

−γ0BU ∗
tγ (�x)

)(
V T

tγ (�y)B†, − UT
tγ (�y)B†)n(−εtγ ,T )

]
, (32)

where B = γ5C.
The normal and anomalous densities for neutrons and

protons at finite temperature are thus

ρt (�x,�y; T ) =
∑
εtγ <0

[
Utγ (�x)Utγ (�y) n(εtγ ,T )

+ γ0BV ∗
tγ (�x)V T

tγ (�y)B† n(−εtγ ,T )
]
, (33)

and

κt (�x,�y; T ) = 1

2

∑
εtγ <0

[
Utγ (�x)V tγ (�y) + γ0BV ∗

tγ (�x)UT
tγ (�y)B†]

× [n(εtγ ,T ) − n(−εtγ ,T )]. (34)

It is interesting at this point to compare the densities at
T �= 0 with those T = 0, Eq. (22), in the context of pairing.
The Utγ (�x)Utγ (�y) term in the normal density, which can be
loosely interpreted as the contribution of the states below
the Fermi energy, is now multiplied by a Fermi occupation
factor. In addition, a term which we can loosely interpret
as the contribution of the states above the Fermi energy,
γ0BV ∗

tγ (�x)V T
tγ (�y)B†, now appears multiplied by the Fermi

factor of a positive-frequency state. A simple analysis of the
two Fermi occupation factors reveals that, when the pairing is
zero, they reduce to the expected factor of 1/{1 + exp[(eγ −
μ)/T ]}, where eγ is the single-particle energy and μ is the
Fermi energy. The contributions to the anomalous density are
simply multiplied by the difference between the negative- and
positive-energy Fermi occupations. The difference between
the two factors decreases as the temperature increases, causing
a reduction in the anomalous density and in the pairing.

The densities that enter the Hartree self-energy terms are
traces of the normal density that can be reduced to the

following expressions:

ρs(�x) = 2
∑

εtγ <0,t

(U †
tγ γ0Utγ n(εtγ ,T ) + V

†
tγ γ0Vtγ n(−εtγ ,T )),

ρB(�x) = 2
∑

εtγ <0,t

(U †
tγ Utγ n(εtγ ,T ) + V

†
tγ Vtγ n(−εtγ ,T )),

ρ3(�x) = 2
∑

εtγ <0,t

2mt (U †
tγ Utγ n(εtγ ,T ) + V

†
tγ Vtγ n(−εtγ ,T )),

ρc(�x) = 2
∑

εtγ <0,t

(mt + 1/2) (U †
tγ Utγ n(εtγ ,T )

+V
†
tγ Vtγ n(−εtγ ,T )). (35)

The Hartree contribution to the self-energy can be written
in terms of these densities as

β�H (�x) = −βgσ σ (�x) + gω ω0(�x) + gρ

2
τ3 ρ00(�x)

+ e
(1 + τ3)

2
A0(�x), (36)

with

ω0(�x) = gω

∫
d3z d0

ω(�x − �z)ρB(�z),

ρ00(�x) = gρ

2

∫
d3z d0

ρ(�x − �z)ρ3(�z),

A0(�x) = e

∫
d3z d0

γ (�x − �z)ρc(�z), (37)

σ (�x) = gσ

∫
d3z dσ (�x − �z)ρs(�z)

=
∫

d3z d0
σ (�x − �z)[gσρs(�z) − g3 σ (�x)2 − g4 σ (�x)3],
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where the mesonic propagators are

d0
j (�x − �z) = 1

4π

exp(−mj |�x − �y|)
|�x − �y| . (38)

Here, we have written the mean field σ in terms of the free
propagator and have included the nonlinear terms explicitly.
The meson mean fields has the same symmetry as the densities.

The pairing field has the structure of an exchange term.
We neglect its Coulomb contribution and approximate the
contributions of the other mesons using the zero-range limit of
the meson propagators. We also neglect the contribution of the
nonlinear σ -meson terms here. The zero-range approximation
greatly simplifies the numerical calculations, but must be
calibrated phenomenologically. The Hamiltonian form of the
pairing field is, in this case,

�̄
†
t (�x,�y) = γ0�t (�x,�y)γ0

= δ(�x − �y)cpair

[
g2

σ

m2
σ

γ0 κt (�x) γ0

−
(

g2
ω

m2
ω

+ (gρ/2)2

m2
ρ

)
γ0γ

μ κt (�x) γμγ0

]
. (39)

An overall constant cpair has been introduced in the
expression for the pairing field to compensate for deficiencies
of the interaction parameters and of the numerical calculation.
The necessity for such a constant is apparent from studies
of pairing in nuclear matter. Nonrelativistic [46–48] and
relativistic [20] calculations have verified that 1S0 pairing in
nuclear matter is dominated by the two-nucleon 1S0 virtual
state. Pairing in nuclear matter is weaker the further the 1S0

virtual state is from the real axis in the complex-momentum
plane. The location of the virtual state depends on the strength
and form of the two-nucleon interaction and on the space of
states used in the calculation. In Ref. [20], various sets of
interaction parameters, even zero-range ones, were shown to

furnish mutually consistent physical values for the pairing
gap function, when they were supplemented with a large
momentum cutoff adjusted so as to place the two-nucleon
virtual state at its physical location. We expect a condition
similar to that in nuclear matter to apply here. However, as
it is extremely difficult to fix the position of the two-nucleon
virtual state within the harmonic oscillator basis that we use,
we instead multiply the pairing field by an overall constant
that we expect to be able to fix independently of the charge
and mass of the systems under consideration. We emphasize
that this is not a weakness of our calculations alone, but of any
Hartree-(Fock)-Bogoliubov calculation using a limited space
of states and an effective interaction, even those using a finite-
range one. The pairing field obtained in such a calculation will
depend on both the interaction and the space of states used and
will usually require that one or the other of these be adjusted
in order to obtain reasonable results. Here, we find it more
convenient to introduce an arbitrary constant in the interaction
rather than arbitrarily limit the space of states we use.

With the above simplifications in the self-energy and pairing
fields, the DHFB equations for neutrons and protons reduce to
local differential equations. Their Hamiltonian form is(

ε + μt − ht (�x) �̄
†
t (�x)

�̄t (�x) ε − μt + ht (�x)

)(
Ut (�x)

γ0Vt (�x)

)
= 0, (40)

with

ht (�x) = −i �α · �∇ + βM∗(�x) + Vt (�x); t = p,n, (41)

where

M∗(�x) = M − gσ σ (�x), (42)

Vt (�x) = gω ω0(�x) + gρ

2
2mt ρ

00(�x) + e (1/2 + mt ) A0(�x),

(43)

and �̄
†
t (�x) is given in Eq. (39) after some simplifications of the

anomalous density. The total energy can be written in terms of
the mean fields as

E =
∫

d3x

⎡
⎢⎢⎢⎢⎢⎣2

∑
εγ <0,t,εγ >0

[|Utγ (�x)|2(εtγ + μ)n(εtγ ,T ) + |Vtγ (�x)|2(−εtγ + μ)n(−εtγ ,T )]

︸ ︷︷ ︸
Epart

−1

6
g3 σ (�x)3 − 1

4
g4 σ (�x)4︸ ︷︷ ︸

Eσ NL

+1

2
gσ σ (�x) ρs(�x)︸ ︷︷ ︸

Eσ

−1

2
gω ω0(�x) ρB(�x)︸ ︷︷ ︸

Eω

−1

2

gρ

2
ρ00(�x) ρ3(�x)︸ ︷︷ ︸

Eρ

−1

2
e A0(�x) ρc(�x)︸ ︷︷ ︸

ECoul

+1

2

∑
t

Tr[�̄†
t (�x) κt (�x)]

︸ ︷︷ ︸
Epair

⎤
⎥⎥⎥⎥⎦− Ecm. (44)
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In the expression above, we have also subtracted the harmonic
oscillator estimate of the center-of-mass energy,

Ecm = 3

4
�ω0 coth

(
�ω0

2T

)
, (45)

where we take �ω0 = 41A−1/3 MeV, to obtain an expression
for the total internal energy of the nucleus at finite temperature.

At temperatures above about 3–4 MeV, unbound states
begin to make important contributions to the density. Bonche,
Levit, and Vautherin [9,10] proposed a method to take these
states into account and to extend mean field calculations to
even higher temperatures. They observed that the mean field
equations have two solutions for a given chemical potential and
temperature. One of these can be associated with a nucleus in
equilibrium with the evaporated nucleons (nucleus+gas) while
the other consists of a gas of nucleons alone. They determined
the properties of the hot nucleus in terms of the difference
between quantities associated with the the nucleus+gas and
those of the gas. Formally, this is done by defining a subtracted
thermodynamic potential as the difference between that of the
nucleus+gas 	n+g and that of the gas 	g , with the exception of
the Coulomb contribution to be discussed below. In particular,
the baryon and proton numbers of the hot nucleus are then
found to be

A =
∫

d3r [ρB,n+g(�r) − ρB,g(�r)],

Z =
∫

d3r [ρp,n+g(�r) − ρp,g(�r)], (46)

where ρB,n+g and ρp,n+g are the baryon and proton densities
of the nucleon+gas solution, respectively, while ρB,g and ρp,g

are the corresponding quantities for the gas solution. The
energy and entropy associated with the hot nucleus are also the
difference between those of the two solutions, as are quantities,
such as rms radii, that depend linearly on the densities.

The Coulomb contribution to the thermodynamic potential
must be treated differently due to its long range, which
Bonche, Levit, and Vautherin [9,10] found it to lead to strong
instabilities. They thus modified the Coulomb term so that the
only Coulomb interaction that contributes is that of the protons
in the hot nucleus. This is done by replacing the difference
between the two Coulomb contributions in the thermodynamic
potential by a term taking into account only the contribution
of those protons,

1

2

∫
d3r[ρp,n+g(�r)VCρp,n+g(�r ′) − ρp,g(�r)VCρp,g(�r ′)]

→ 1

2

∫
d3r{[ρp,n+g(�r) − ρp,g(�r)]VC

× [ρp,n+g(�r ′) − ρp,g(�r ′)]}. (47)

Note that, with this substitution, the evaporated protons of
the nucleon+gas and gas solutions are still subject to the
Coulomb repulsion of the hot nucleus, as would be expected for
protons leaving the hot system. However, they no longer suffer
Coulomb repulsion due to the other evaporated/gas protons nor
do they contribute to the Coulomb energy.

III. NUMERICAL SOLUTION OF THE DHB EQUATION

We solve the Dirac-Gorkov and the Klein-Gordon equations
by using the same procedure that has been used by many
researchers, among them, Vautherin [49] in the nonrelativistic
Hartree-Fock approximation, Ghambir et al. [50] in the
relativistic mean field + BCS approach, and Lalazissis et al.
[51–53] in the RHB approach. To perform the calculations, the
meson fields and the nucleon wave functions are expanded in
deformed bases of harmonic oscillator states as done before
in relativistic mean field theory for finite nuclei [50]. In actual
calculations, the expansion is truncated at a finite number of
major shells, with the quantum number of the last included
shell denoted by NF in the case of the fermions and by NB for
the bosons. The maximum values are selected so as to assure
the physical significance of the results obtained as we discuss
in Sec. IV.

The spinors of the Dirac-Gorkov equation are expanded in
terms of the eigenfunctions of an axially deformed harmonic-
oscillator potential,

Vosc(r⊥,z) = 1
2Mω2

zz
2 + 1

2Mω2
⊥r2. (48)

The oscillator constants are taken as

βz = 1

bz

=
√

Mωz

�
, β⊥ = 1

b⊥
=
√

Mω⊥
�

, (49)

with volume conservation relating the two constants to that of
a spherically symmetric potential b2

⊥bz = b3
0.

The eigenfunctions of the deformed harmonic oscillator can
be written explicitly as

�α(�r) = ψml
nr

(r⊥) ψnz
(z)

ei ml ϕ

√
2 π

χms
χmt

, (50)

where α denotes the complete set of quantum numbers (nr ,
ml , nz, ms , and mt ) and

ψml
nr

(r⊥) = Nml
nr

b⊥

√
2 ηml/2 Lml

nr
(η) e−η/2 with

η =
(

r

b⊥

)2

, (51)

ψnz
(z) = Nnz√

bz

Hnz
(ξ )e−ξ 2/2 with ξ = z

bz

.

In Eq. (51), Lml
nr

(η) and Hnz
(ξ ) are Hermite and associated

Laguerre polynomials [54], with the normalization constants,
Nml

nr
and Nnz

, given in Ref. [50]. In these equations, nr and nz

are the number of nodes in the r and z directions, and ml and
ms are the projections of angular momentum and spin on the z
axis. The third component of the total angular momentum 	γ

and the parity π are then defined as

	γ = ml + ms, π = (−1)nz+ml . (52)

We expand the Pauli components of the Dirac spinors,
uftγ (r⊥,z), ugtγ (r⊥,z), vftγ (r⊥,z), and vgtγ (r⊥,z), in terms
of the oscillator eigenfunctions. Inserting these expansions
into the Dirac-Gorkov equation, Eq. (40), we can reduce
the equation to the diagonalization problem of a symmetric
matrix and calculate the Hartree densities and components of
the anomalous density, Eq. (35). The fields of the massive
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mesons are expanded in a manner similar to the fermion
expansion, with the same deformation parameter β0 but a
smaller oscillator length of bB = b0/

√
2.

To apply the method of Bonche, Levit, and Vautherin [9,10],
we initiate calculation of the self-consistent nucleus+gas
solution with Wood-Saxon potentials of the approximate
expected depths and initiate the nucleon gas solution with
no potential. At each iteration, new single-particle states are
calculated using the same Fermi energies for both solutions and
the potentials obtained from the previous sets of single-particle
states. Iteration continues until converged solutions satisfying
Eq. (46) are obtained. Since we expand the single-particle
wave functions in a harmonic oscillator basis, we performed
calculations with up to 30 major shells to avoid spurious edge
effects as much as possible. We find the resulting densities
to be in good agreement with those of Bonche, Levit, and
Vautherin [10] and with Skyrme Thomas-Fermi [55] ones up to
temperatures near the nuclear dissolution temperature. Above
this temperature, the nucleon densities of the Bonche, Levit,
and Vautherin and the Skyrme Thomas-Fermi calculations,
which were performed “in a box,” form a bubble, with
the nucleons pressed against the edges of the box. In our
calculations, the densities of the nucleon gas solution increase
until there are no longer enough unoccupied states for the
conditions of Eq. (46) to be fulfilled.

IV. RESULTS

A. Spherical and deformed nuclei

In this subsection we investigate the effect of temperature
on the closed-shell spherical nucleus 208Pb [32], the open-shell
spherical nuclei 90Zr [50], 124Sn [42], and 140Ce [50], and the
deformed nuclei 150Sm [32,56,57] and 168Er [32,35] including
major oscillator shells up to Nf = 32 and Nb = 64. We use the
the nonlinear Walecka model with the NL3 interaction [43].
This interaction furnishes excellent results for the binding
energies and rms radii of spherical and deformed nuclei near
the stability line [22]. Moreover, we can also compare our

results with other calculations of excited nuclei found in the
literature also obtained using the NL3 parameter set [32]. In
our calculations, the expansion is truncated at a finite number
of major shells, with the quantum number of the last included
shell denoted by NF in the case of the fermions and by NB for
the bosons [50]. We choose NF and NB to be sufficiently large
to obtain reasonable values for the nuclear observables studied.
We use different bases, NB = 20 and NF = 10 to NB = 64 and
NF = 32. We checked that the intermediate basis is sufficient
to achieve the convergence in our numerical calculations in
order to reproduce experimental and earlier theoretical results
of the literature at both low and high temperatures. The larger
basis with NB = 80 and NF = 40 increases the computational
time greatly but furnishes the binding energies, rms radii,
excitation energies, and entropies that are almost the same as
those obtained with the smaller basis. In all cases, the oscillator
frequencies �ω0 = �ωz = �ω⊥ = 41A−1/3 MeV, correspond-
ing to an undeformed basis, were used. An overall constant cpair

was introduced in the pairing interaction, Eq. (39), to better
reproduce the experimental pairing gaps and energies. For the
closed-shell case, we used a small value of cpair = 0.01, which
results in a null pairing field, as expected for closed-shell
nuclei. For the case of open-shell nuclei, the value of cpair

is chosen for each nucleus to reproduce the gap parameters
�nn and �pp at T = 0 from the experimental odd-even mass
differences [58].

In order to study the effect of temperature on the binding
energy (E), we use Eq. (44). The various partial energy
contributions to E are the sum of the one-particle (Epart),
nonlinear σ (EσNL), σ (Eσ ), ω(Eω), ρ(Eρ), Coulomb (Ecoul),
pairing (Epair), and center of mass (Ecm) terms. We present in
Figs. 1(a) and 1(b) the results for 208Pb and 168Er, respectively.
Other spherical and deformed nuclei show very similar
behavior with a different parameter cpair, and basis (NB,NF ).
Inspection of Fig. 1 shows that for a given temperature the
largest contribution to the binding energy comes from the sum
Eσ + Eω energy terms and the one-particle term Epart that
are multiplied by factor 0.1. In general all terms decrease in

FIG. 1. Partial contributions in MeV of Eq. (44) to the binding energy E (MeV) for the nuclei (a) 208Pb and (b) 168Er for several values
of the temperature in MeV. In plots the terms Epart, the sum of (Eσ + Eω), and binding energy E are multiplied by factor 0.1 due to the large
scale of them. The stars symbols represent the values of E that are calculated self-consistent in RMF-T for T � 4.0 MeV [32].
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magnitude when the temperature increases, except the meson ρ
(and σNL) contribution, which reach a minimum (maximum) in
magnitude near T = 3 MeV, after which they begin to increase
(decrease) for 208Pb and 168Er. The center of mass energy
term not shown in Fig. 1, obtained from Eq. (45), is Ecm =
−5.19 MeV at T = 0 for 208Pb and is about a factor of 3 larger
at T = 10 MeV. For 168Er the center of mass contribution to the
energy is Ecm = −5.57 MeV at T = 0 and increase by a factor
of about 2.7 as the temperature increases to T = 10 MeV. For
the two nuclei the total energy E acquires a positive value at
T = 9.5–9.6 MeV. These results are expected because a hot
nucleus becomes unstable once high temperature is reached.
For 208Pb the limiting temperatures obtained in Ref. [10] are
Tlim = 8.0 MeV and Tlim = 10.0 MeV for effective Skyrme
interactions SKM and SIII, respectively. Moreover, the Bonche
procedure allows us to reach higher temperatures compared
with the ones obtained not considering the vapor phase in
Ref. [32] for the nuclei 208Pb and 168Er. For the nucleus
208Pb ( 168Er) they found at T = 4.0 MeV (T = 3.5 MeV) a
binding energy of E = −1320.4 MeV (E = −1208.3 MeV),
which is about 5% (0.5%) smaller than our result due to the
energy of the vapor. For small temperatures T = 0–4 MeV the
accordance of our results and the ones showed in Ref. [32]
is good with a difference of less than 1% for values of E
we showed by star symbols in Fig. 1. However, when the
temperature increases (T > 4 MeV), the effects of the vapor
phase becomes important.

In the case of open-shell nuclei the binding energy becomes
positive for temperatures in the range T = 10.0–10.1 MeV
for 90Zr (Z = 40 and N = 50) and of T = 9.8–9.9 MeV
for 140Ce (Z = 58 and N = 82) in our calculations. A
limiting temperature of Tlim = 8.2 MeV for 140Ce with
an excitation energy of E� = 750.40 MeV was reported
in Ref. [11], where a Skyrme approach was used, while
we obtain E� = 739.75 MeV at the same temperature. For
the deformed nuclei 150Sm we found almost the same
critical temperature as the one obtained in relativistic
Thomas-Fermi approximation at finite temperature using NL1

parameters [57]. The ground state experimental value of the
binding energy agrees very well with our calculations [56] and
the critical temperature is T = 9–10 MeV. This difference
may be due to the parametrization we used in our calculations,
which yields a slightly higher limiting temperature in our case.

The other terms that contribute to the binding energy
show the same temperature behavior as those of closed-shell
spherical nuclei, except for the pairing energy that, although
small, is quite important. As we have already noted, the value
of the pairing interaction parameter cpair must be chosen to
reproduce the T = 0 pairing gaps for neutrons �nn and protons
�pp obtained from experimental odd-even mass tables [58] as
well other observables, such as the binding energy and the
charge radius. The experimental average value of the neutron
gap parameter is calculated as

〈�n(Z,A)〉 = B(Z,A) − 1
2 [B(Z,A − 1) + B(Z,A + 1)],

(53)

where B(Z,A) is the binding energy [58]. To reproduce the
experimental results at T = 0 for 140Ce, 124Sn, and 90Zr, we
fix the parameter cpair = 0.60, cpair = 0.55, and cpair = 0.50,
respectively, with interaction NL3 [43], in Eq. (39). The bases
are (NF ,NB ) = (14,28) for 124Sn, (NF ,NB) = (32,64) for
90Zr and 140Ce. We choose a different basis for the tin nucleus
in order to be able to calculate the neutron gap parameter for all
tin even isotopes as a function of the mass number (see Fig. 3).
The pairing constant is taken to be cpair = 0.57 for 150Sm and
cpair = 0.60 for 168Er. The bases are (NF ,NB ) = (32,64) for
150Sm and 168Er.

We present in Fig. 2 the variations of the (a) pairing energy
and (b) gap as the temperature increases. In Fig. 2 the full
lines represent �nn and dashed lines represent �pp. For 90Zr
at T = 0, we find �nn(0) = 0 and �pp(0) = 0.681 MeV as
output of our self-consistent calculations, which provides a
pairing energy of |Epair| = 4.261 MeV. We have also studied
the nucleus 140Ce and obtained �nn(0) = 0 and �pp(0) =
0.949 MeV with |Epair| = 9.432 MeV. The value �nn(0) = 0

FIG. 2. Temperature dependence of the (a) pairing energy, |Epair| in MeV and (b) gap, � in MeV for the open-shell and deformed nuclei.
The full lines represent �nn and dashed lines represent �pp .
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is justified because both nuclei have a neutron close shell.
The nucleus 124Sn is a semimagic nucleus with a magic
proton number. Thus, �pp = 0 and gap and their n-n pairing
energy at zero temperature are �nn(0) = 1.394 MeV and
|Epair| = 15.88 MeV, respectively. The semimagic nuclei 90Zr
and 140Ce with magic neutron number show a superconducting
phase transition at critical temperatures Tcp ≈ 0.70 MeV
and Tcp ≈ 1.10 MeV, respectively. The semimagic nucleus
124Sn with magic proton number show a superfluidity phase
transition at critical temperatures Tcp ≈ 1.00 MeV. It has been
shown by using the BCS limit of the FTHFB equations
(FTBCS) with a constant gap value that the pairing gap
vanishes when the temperature increases showing a phase
transition from the pair correlated phase to the normal one [33].
The author found a critical temperature of Tcp ≈ 0.50 MeV
for nuclear matter. In this approximation, it is possible to
show analytically that Tcp = 0.50�nn(0), where �nn(0) is
the pairing gap at T = 0. From Fig. 2(b) we can calculate
the ratio Tc/�(0) for each nucleus discussed before. For
124Sn we found Tc/�nn(0) = 0.72 which is different from
the one obtained in the BCS approximation and reported as a
phase transition from a superfluidity to normal phase obeying
the rule Tcp = 0.60�nn(0) [37]. More recently a study of
pairing transition has been done in FTRHFB formalism [42]
and a systematic calculation of the pairing was performed
for several semimagic isotopic/isotonic chains obtaining
Tcp = 0.60�nn(0) for finite-range Gogny D1S interaction and
Tcp = 0.57�nn(0) for zero-range density-dependent contact
interaction (DDCI). They conclude the vanishing of pairing
correlations at finite temperature slightly depends on the type
of pairing force.

The pairing energy and gap for deformed nuclei 150Sm and
168Er are also shown in Fig. 2. For deformed nuclei 150Sm
and 168Er the �pp(0) is larger than �nn(0) and decreases
slower with temperature. For 150Sm the phase transition from
a superfluidity to normal phase is achieved at Tcp = 0.60 MeV
and the superconducting phase transition occurs at Tcp =
0.90 MeV. For 168Er the n-n and p-p pairing energy and gap
vanish at Tcp = 0.70 MeV and Tcp = 1.00 MeV, respectively.
Thus, in the 1S0 channel the nuclear superfluidity phase can
only survive at very low temperatures and the transition to
normal matter occurs always in a temperature smaller than
the superconducting one. Our simple rules for the critical
temperature are Tcp = 1.22�nn(0) and Tcp = 0.92�pp(0) for
150Sm and Tcp = 1.13�nn(0) and Tcp = 0.97�pp(0) for 168Er.
The different rules calculated in this work can be explained by
the overall constant cpair introduced in the expression for the
pairing interaction, Eq. (39), to better reproduce the pairing
gap and energies at zero temperature for finite nuclei. The
pairing field obtained in such a calculation will depend on
both the interaction and the space of states used and will
usually require that one or the other of these be adjusted in
order to reproduce experimental data. As we have argued in
the Introduction, we find it more convenient to introduce an
arbitrary constant in the interaction rather than arbitrarily limit
the space of states we use. Besides, the NL3 parameter used in
our relativistic calculations of the pairing field produce results
that are different from the ones of [37] where the temperature
dependence of the pairing was investigated by using a Gogny

or a separable pairing force based in the point-coupling
interaction model PC-PK1. The authors in Ref. [42] also
conclude that finite- or zero-range nature of the pairing force,
while generating different density dependence pairing gaps,
causes small differences in results of the ratio Tc/�(0).

In Fig. 3(a) the dependency the average value of the
neutron gap parameter with temperature for even Sn isotopes
as a function of the mass number A is presented, for the
value of cpair = 0.55 and basis with NF = 14 and NB = 28.
The value cpair = 0.55 was chosen to fit the ground state
observables of the Sn isotopes [22]. Larger (smaller) bases than
(NF ,NB) = (14,28) raise (reduce) the pairing gaps at T = 0
and do not reproduce the experimental Audi-Wapstra [58]
(filled circles) and the Moller-Nix [59] (open squares) values
for the standard estimate of the neutron gap parameter as the
difference between the binding energy of an even-even nucleus
and its odd mass neighbors, Eq. (53). In Fig. 3(a) we can
see for T � 0.4 MeV the pairing gap changes smoothly with
increasing of temperature for all tin isotopes as also we can
see in Fig. 2 for the nuclei 124Sn, 168Er, 150Sm, 140Ce, and
90Zr. However, for T > 0.4 MeV the pairing gap decreases
quickly when it vanishes at a critical temperature of order
0.9–1 MeV. In Fig. 3(b) we show our calculations for pairing
gap energies at zero temperature (black circles) with NL3
interaction, and calculations with PKA1 (red squares), PKO1
(blue triangles), and DD-ME2 (orange diamonds) models, with
the pairing channel described by Gogny pairing interaction
D1S [42]. Our FTDHB results for �nn(0) for isotopic tin are
in good agreement with the results of Ref. [42]. In Fig. 3(b) we
also show the critical temperature Tc (open symbols), when
the pairing gap vanishes for the tin isotopic chain. These
temperatures are calculated by FT-RHFB with PKA1 (open red
square), PKO1 (open blue triangle), and calculated by FT-RHB
with DD-ME2 (open orange diamond). For the last three
models the ratio is between critical temperature and pairing gap
at zero temperature Tc/�nn(0) = 0.6 for the 124Sn nucleus.
Our calculations produce a higher critical temperature as we
see in Fig. 3(a) and as a consequence this ratio is slightly higher,
Tc/�nn(0) = 0.7. In Fig. 3(a), shell closures are visible at
A = 100, 132, and 176 and our results show that 〈�nn(Z,A)〉 at
T = 0 underestimates the experimental values below the shell
closure A = 132 and overestimates them above it. A subshell
closure is also visible in the calculations, at values of the mass
at which the gap parameter reaches a nonzero minimum. This is
more visible when the pairing field is weaker and, thus, is more
sensitive to the energy differences between the levels [22].
In our calculations this occurs at A = 144 (N = 94) and
A = 146 (N = 96) just in the region where the Sn nuclei are
deformed [60]. For the 144Sn the deformation is β = 0.0023
at T = 0.4 MeV and changes to β = 0.1283 at T = 0.5 MeV.
For the 146Sn the deformation is β = 0.0120 at T = 0.4 MeV
and changes to β = 0.1224 at T = 0.5 MeV. Besides for the
superficial levels 2f5/2−, 3p1/2−, and 3p3/2− the single-particle
energies are ε = −1.112 MeV, ε = −1.215 MeV, and ε =
−1.441 MeV, respectively, at T = 0.4 MeV and change to
ε = −0.068 MeV, ε = −0.270 MeV, and ε = −0.508 MeV
at T = 0.5 MeV for the 144Sn. A similar jump occurs for 146Sn
while for the nuclei 142Sn and 148Sn the difference between
energies is almost constant.
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FIG. 3. (a) Evolution of neutron gap energy with temperature calculated in FT-DHB with effective interaction NL3. The experimental values
are obtained from the Audi-Wapstra (filled circles) [58] and Moller-Nix [59] (open squares) mass tables at temperature zero. (b) Comparison
of �nn(0) (full symbols) and Tc (open symbols) calculated in FT-DHB with effective interaction NL3 (black circle), FT-RHFB with PKA1 and
the Gogny pairing interaction D1S (red square), FT-RHFB-HFB with interaction PKO1 (blue triangle), and FT-RHB with interaction DD-ME2
(orange diamond) of Ref. [42].

We now discuss the energy spectra at several values of the
temperature, for 40Ca, in Fig. 4. The single-particle levels vary
only slightly with temperature below T = 1 MeV. The lower
levels acquire a minimum in the energy around T = 2 MeV
and show a faster increase in magnitude when T increases
in contrast with the levels near the chemical potential (star
symbols), which show a slower variation in magnitude. These
effects are similar for neutron [Fig. 4(a)] and proton [Fig. 4(b)]
spectra, with the difference between them being only an

upward shift due to the Coulomb correction of about 8 MeV
in the case of the protons.

The decrease of chemical potential with temperature is
a manifestation of the increase of the entropy with the
temperature as particles are added to the system as was
found in the works [9,10]. In Fig. 5 we display the neutron
spectrum of 208Pb as a function of temperature into low
energy [Fig. 5(a)] and high energy [Fig. 5(b)] regions due
to the number of levels. We see similar behavior as in the

FIG. 4. (a) Neutron and (b) proton levels of 40Ca as function of the temperature calculated with Bonche procedure. Levels above the
chemical potential μN,P are partially occupied when T �= 0.

024321-12



DIRAC-HARTREE-BOGOLIUBOV CALCULATION FOR . . . PHYSICAL REVIEW C 93, 024321 (2016)

FIG. 5. The effect of the temperature in the (a) lower and (b) top levels of neutron energy spectra of 208Pb. In panel (b), levels above the
chemical potential (μN ) are partially occupied when T �= 0.

FIG. 6. The effect of temperature on the energy spectra for neutrons in (a) positive and (b) negative parity states of 168Er.
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FIG. 7. Nuclear densities as a function of the radius for even values of the temperature of 208Pb in equilibrium with an external gas. In the
top panels the scalar densities for (a) neutrons and (b) protons are displayed. In the bottom panels, the vector densities for (c) neutrons and
(d) protons are shown.

case of 40Ca, with the main difference being that the strong
variation in the spectrum occurs only when T > 4 MeV. The
decrease of the chemical potential with temperature seen for
the nucleus 40Ca and more rapidly in 208Pb is a consequence
of the ω potential (Vω) that decreases with the temperature
faster [see Fig. 9(b)] than increase of the single-particle energy.
At zero temperature the chemical potential in RMF theories
is the Fermi energy plus vector potentials Vt (�x) of Eq. (43).
This explains why the temperature dependence of the vector
potential of ω meson [dominant term of Vt (�x)] is so important
in these models to explain the chemical potential dependence
with the temperature.

Furthermore, at high temperatures we see that the levels
are more compressed. The temperature also affects the
levels above the chemical potential, which are partially
occupied when the temperature increases due to the Fermi
occupation factor of nuclear densities shown in Eq. (27).
The thermal energy E ∼ KBT is of the order of several
MeV in comparison with the difference in the energy levels
of around 5 MeV at most. Thus, the nucleons in the higher
levels are the most affected by the temperature and may
be thermally excited to the available single-particle levels

above the chemical potential. In Fig. 6 we present the neutron
energy levels of positive and negative parity for 168Er as a
function of the temperature. As the temperature increases,
the energy levels collapse to those of a spherical nucleus
near Tcs = 4 MeV as we already related, where the shape
transition takes place. The same observations can be made
for 150Sm, for which the pairing phase transition occurs at
Tcp = 0.7 MeV and the shape transition at Tcs = 5.1 MeV.

We now analyze the nuclear densities of the 208Pb nucleus
in equilibrium with the external gas. In Fig. 7 we present
(a) the scalar density for neutrons, (b) the scalar density for
protons, (c) the vector density for neutrons, and (d) the vector
density for protons. For each panel we plot the densities as
a function of the radius for even values of the temperature
in the range from T = 0 to T = 10 MeV. For all densities
the magnitude of the well depth decreases and the diffusivity
increases as T increases. Above T = 2 MeV the oscillations
of the densities at the center of the nucleus due to shell
effects disappear and the densities in the surface region are
more sensitive to the increase of the temperature. Beyond
T ∼ 9 MeV the densities display a maximum value around
r = 12 fm represented by stars symbols in each panel of Fig. 7.
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FIG. 8. Nuclear densities as a function of the radius for 208Pb at three values of the temperature. In the top panels, scalar densities for
(a) neutrons and (b) protons are displayed. In the bottom panels, vector densities for (c) neutrons and (d) protons are shown. The solid lines
represent the nucleus+gas solution (NG), the dotted lines represent the gas alone (G), and the dashed lines represent the difference between
the two—the nucleus without the gas (N).

At this high temperature, various nucleons are driven out of
the nucleus and its nuclear structure is completely dissolved.
These effects are most pronounced when the vapor subtraction
procedure is not considered as the temperature increases. In
our calculations we take this effect into account by placing
the hot nucleus in equilibrium with the nucleons which are
evaporated. Thus, we can remove the contribution of the gas
of nucleons in the continuum in such a way that only nucleons
in bound and resonant energy states are taken into account.
As the temperature increases, the densities of the nucleon gas
solution increase until there are no longer enough unoccupied
states for the conditions of Eq. (46) to be fulfilled.

In Fig. 8 we present nuclear densities for the 208Pb nucleus
as a function of the radius. In each panel we present three
temperatures: T = 0, 3, 6 MeV. The solid lines represent the
nucleus in equilibrium with the external gas (nucleus+gas/NG
curve) in correspondence to Figs. 7(a)–7(d). The dotted lines
represent the contribution of the gas alone (gas/G curve),
and the dashed lines represent the difference between the
two—the nucleus without the gas (nucleus/N curve). In all
panels of Fig. 8 there is only one curve for the density of the

nucleus+gas at T = 0 because no nucleons have evaporated
this temperature. This density vanishes near r∼11 fm for
neutrons and r ∼ 12 fm for protons. The densities of the
nucleus+gas (NG curves) do not go to zero at large radii when
the temperature is turned on, because the gas contribution (G
curves) becomes important at larger radii. When we remove
the contributions of the gas, the densities of the nucleus alone
(N curves) go to zero at T �= 0, just like the nucleus+gas at
T = 0. This procedure for removing the gas allows us to reach
temperatures above T = 3 MeV up to almost T = 10 MeV.
When the temperature increases the volume the nucleus
increases and the density decreases. The nucleus disappears
at temperatures above T = 12 MeV.

We display in Fig. 9 the radial dependence of the (a) Vσ ,
(b) Vω, (c) Vρ mean field potentials, and (d) the Vc Coulomb
potential for 208Pb in equilibrium with an external gas. In
each panel the potential is shown at temperatures varying
from T = 0 to T = 10 MeV. As was seen for the nuclear
densities, the magnitudes of the well depths decrease and the
diffusivity increases as T increases. Above T = 2 MeV the
oscillations of the mean field potential well disappears and
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FIG. 9. Mean field potentials as a function of the radial distance for even values of the temperature of 208Pb in equilibrium with an external
gas. In panels (a) Vσ (r), (b) Vω(r), (c) Vρ(r), and (d) the Coulomb potential Vc(r) are shown for 208Pb.

the sensitivity to temperature of the potential in the surface
region increases. At T = 10 MeV the potentials display a
maximum in magnitude around r = 12 fm represented by the
star symbols in all panels of Fig. 9. In Fig. 9(d) it is possible
to see the long range effect of the Coulomb potential. The hot
nucleus exists while the balance between surface and Coulomb
contributions is maintained, as was explained in Ref. [10].
Our results extend those presented in Ref. [32], where the
contribution due to evaporation of nucleons was ignored and,
as a consequence, results were shown only up to T � 4 MeV
and pairing correlations were ignored for T �= 0. However, we
agree with their main conclusions concerning the behavior of
the nucleus as the temperature increases.

In Fig. 10(a) we show the calculated radii for deformed
nucleus 168Er. All radii decrease as the temperature increases
and reach minimum values at T ∼ 3 MeV before increasing
at higher temperatures up to values 15%. In Fig. 10(b) the
deformation β decreases more slowly with the increase in the
temperature. At T ∼ 3 MeV (T ∼ 4 MeV) the deformation
vanishes for 150Sm ( 168Er) and the nucleus becomes spherical.
The circle and square symbols represents the results of 168Er
and 150Sm, respectively, from [32]. It is important to note

that the nuclear deformation is constant until the pairing
energy vanishes (Tcp ∼ 1 MeV). After that, it decreases and
vanishes turning the nuclei spherical. Thus, the superfluidity
and the superconducting phase transition happen before the
shape transition. The pairing field goes to zero at a smaller
temperature than the nuclear deformation.

B. Excitation energy and entropy as function of the temperature

We will now discuss the effect of temperature on excitation
energy and entropy and look for signatures of the pairing and
deformation phase transitions and of nuclear dissolution in
these quantities. The entropy for hot nuclei increases as the
temperature increases. On the scale of Fig. 11(a), the entropy
increase is almost linear with temperature for 40Ca, 90Zr,
124Ce, 140Ce, 168Er, and 208Pb. It is possible to identify a weak
change in the slope of the entropy curve at T ∼ 2–4 MeV for
the deformed nuclei, which corresponds to the shape phase
transition, and another change in slope at T ∼ 8–10 MeV
where the nuclei dissolve into the gas. To study the pairing
phase transition, the plot of entropy against temperature is
shown on a magnified temperature scale in Fig. 11(b). In this
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FIG. 10. (a) The charge rch, neutron rn, proton rp , and rrms radii (fm) for 168Er and (b) deformation, β for the nuclei 150Sm and 168Er as a
function of temperature in MeV. The square and circle symbols represent calculated self-consistent RMF-T from [32].

zoom, for 0 � T � 1.5 MeV, the curves for the deformed
and open-shell spherical nuclei are no longer linear below the
critical temperature Tcp . Thus, it is possible to clearly identify
the critical temperatures of the superfluidity phase from the
entropy change in agreement with those given in Fig. 2.
Several recent experimental studies of the thermodynamics of
finite hot nuclei have been performed by the Oslo cyclotron
group [6,61–64]. They develop a thermodynamical model
to investigate and classify the pairing phase transition at low
temperature, T ≈ 0.5 MeV, where the pairing interaction
vanishes. Their model calculations of the heat capacity and
entropy of 93–98Mo isotopes as a function of the temperature
show a peak in the heat capacity and a smooth bump on the
entropy curves where Cooper pairs are broken. They obtained
critical temperatures in the range Tcp ∼ 0.7–1.0 MeV for the
93–98Mo isotopes [63], in general agreement with our results.

In Ref. [42] similar results to the entropy as a function of the
temperature were found for the nucleus 120Sn. They show that
the pairing correlations is clearly visible below the critical
temperature, inducing a strong reduction of the entropy.

Finally, we show the caloric curve per nucleon E�/A for
spherical nuclei in Fig. 12(a) and for the deformed nuclei in
Fig. 12(b). We can see that the excitation energy increases
approximately quadratically with the temperature. As the
curves lie close to one another, we can claim that the excitation
energy per nucleon E�/A is roughly independent of the mass
number A and is a function of the temperature T alone. This
is what one would expect if the nuclear equation of state were
determined by the volume energy term alone. Corrections
to the volume energy (surface, symmetry, Coulomb, etc.)
furnish the small differences seen in the figure on the right,
where the differences in mass number and charge to mass

FIG. 11. The entropy as a function of the temperature for spherical and deformed nuclei. (a) Shape transitions and dissolution of the
nuclei are revealed by negative and positive curvature, respectively. (b) In the zoom of temperature scale in the figure on the left, the critical
temperature for the pairing transition in deformed nuclei appears as a change in slope of the curve.
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FIG. 12. Caloric curve for the (a) spherical and (b) deformed nuclei in the range of number of mass discussed in the text. (a) Experimental
data from heavy ion collisions are shown for the mass number interval 50–100 [65] (full triangle), for a mass number of 200 [66] (open triangle),
and for a mass number ∼160 [67] (stars). (b) Results for 150

62 Sm88 calculated for a fixed proton fraction Yp = 0.41 (square) and for 166
62 Sm104

calculated for a fixed proton fraction Yp = 0.37 (circles).

ratio are larger. In Fig. 12(a) we compare the caloric curve
obtained for spherical nuclei with experimental data of heavy
ion collisions at higher energies for mass numbers between
50 and 100 from the EOS collaboration (full triangles) [65],
mass number 200 (open triangles) [66], and mass number 160
(stars) [67]. In Fig. 12(b) we also plot calculations from [68] for
the nucleus 150

62 Sm88 (open squares) for a fixed proton fraction
Yp = 0.41 and for the nucleus 166

62 Sm104 (open circles) for
a fixed proton fraction Yp = 0.37. In this figure our results
are in agreement with calculations done in Ref. [68]. Our
caloric curves of Fig. 12(a) agree reasonably well with the
experimental data of [65–67] at temperatures up to 4 to 5 MeV
and excitation energy from 1 to 3 MeV, but diverge from these
at higher temperatures. However, such a result is not all that
surprising. Our model takes into account only the neutrons
and protons that have been emitted from the hot nucleus. One
would expect that the emission of heavier particles, as well
as multifragmentation, which begins to occur at temperatures
of about 3 to 4 MeV, could substantially modify the relation
between the excitation energy and the temperature.

V. CONCLUSION

In this work we have studied the effects of temperature
on spherical and deformed nuclei in the Dirac-Hartree-
Bogoliubov formalism. To investigate the nuclear structure
we also take into account for the first time pairing and defor-
mation calculated self-consistently. We analyze the effects of
temperature on basic nuclear properties as well as on the ther-
modynamical properties of the caloric curve and entropy. We
obtain self-consistent results for the temperature dependence
of the pairing interaction within a relativistic formalism of the
Dirac-Hartree-Bogoliubov theory [29,31]. In our approach, we
use the NL3 parameter set as well as an additional parameter
cpair, which modifies the strength of the pairing interaction.
We calculate the pairing energy, rms radii, nuclear spectra,

binding energy, excitation energy, caloric curves, and entropy
for several spherical and deformed nucleus as a function of the
temperature. We investigate the closed-shell spherical nuclei
40Ca and 208Pb, the open-shell spherical nuclei 90Zr, 124Sn,
140Ce, and the deformed nuclei 150Sm and 168Er. We observe
fluctuations in the mesonic potentials in the center of the nuclei
in our calculations, an effect of the shell model, and find that
these fluctuations disappear when the temperature increases.
Furthermore, the strength of the mesonic and Coulomb
potentials decreases with the increase of the temperature. For
the case of the heavy nucleus 208Pb, as temperature increases
from T = 0 to T = 4 MeV, the energy change for each nuclear
meson potential is �E ∼ 45 MeV for Vσ , �E ∼ 50 MeV for
Vω, �E ∼ 5 MeV for Vρ , and �E ∼ 0.5 MeV for Vcoul. We
show that the rms radii, rn, rp, rch, and rm, increase with the
temperature.

We have studied the effects of temperature on the terms
that contribute to the nuclear binding energy. We find that
dependence on the temperature from the terms associated
with the σ and ω meson potentials are almost the same:
both increase in magnitude when the temperature grows.
Thus since they have opposite signs their sum is almost
independent of the temperature and of the same order of
magnitude as the one-particle energy term Epart. The Epart

term increases with temperature and is more sensitive to its
changes, and it is the dominant term in the changing of the
binding energy with temperature (see Fig. 1). The ρ meson
potential is almost insensitive with change of the temperature
and other terms increase slowly when the temperature grows.
The total nuclear binding energy decreases with temperature
and becomes positive when the nucleus becomes unbound. In
general, the corresponding critical temperature is in the range
T ∼ 8–10 MeV.

In the case of open-shell spherical and deformed nuclei,
we studied the role of temperature on the pairing interactions.
In the cases of 124Sn, 150Sm, and 168Er, we found that the
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contribution of the pairing energy to the binding energy is
initially large at T = 0 and becomes almost zero at tem-
peratures of T ∼ 1 MeV. We show that change of pairing
fields with temperature is important, and must be taken into
account in order to define the superfluidity and supercon-
ducting phase transitions. As shown in our formalism the
normal density is a sum of two terms, one which can be
loosely interpreted as the contribution of the states below
the Fermi energy, now multiplied by a Fermi occupation
factor. In addition, the other term which we can loosely
interpret as the contribution of the states above the Fermi
energy now appears multiplied by the Fermi factor of a
positive-frequency state. When the pairing is zero, they reduce
to the expected Fermi occupation factor. The contributions to
the anomalous density are simply multiplied by the difference
between the negative- and positive-energy Fermi occupations.
The difference between the two factors decreases as the
temperature increases, causing a reduction in the anomalous
density and in the pairing. The pairing field maintains the
initial deformation of deformed nuclei and reproduces the
critical temperature (Tcp ) observed in experimental analysis of
several deformed nuclei [6,61–63]. We found that the critical
nuclear temperature for the superconducting to normal phase
in the 1S0 channel is quite low, and occurs in the range Tcp ∼
0.6–1.1 MeV. The superfluidity phase transition when �nn →
0 occurs at smaller temperatures compared to the supercon-
ducting one. The superconducting phase transition occurs
at Tcp = 1.03�pp(0) for 90Zr, Tcp = 1.16�pp(0) for 140Ce,
Tcp = 0.92�pp(0) for 150Sm, and Tcp = 0.97�pp(0) for 168Er.
The superfluidity phase transition occurs at Tcp = 0.72�nn(0)
for 124Sn, Tcp = 1.22�nn(0) for 150Sm, and Tcp = 1.13�nn(0)
for 168Er. These relations for the critical temperature as a

function of the proton and neutron gap at zero temperature are
slightly larger than ones obtained in previous works, Tcp ∼
0.57�pp(0) and Tcp ∼ 0.60�nn(0) as shown in Refs. [35,42].
The main reason for this difference comes from our pairing
gap calculations that are relativistic and self-consistent, with
the pairing interaction parameter cpair chosen to reproduce
the experimental results for �pp(0) and �nn(0) at zero
temperature.

The shape transition for deformed nuclei occurs at higher
temperatures in the range Tcs ∼ 2.0–4.0 MeV. This phase
transitions can be clearly identified as a change in the slope
of the entropy curve. The caloric curves for our calculations
and their relation to the liquid-gas phase transition are also
discussed. We found reasonable agreement between our
curves and the experimental results shown in Refs. [1,2]
at temperatures below 3–4 MeV. We encourage that more
experimental studies be performed on excited nuclei, in order
to better test our theoretical predictions.
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