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In random-interaction ensembles, three proportional correlations between quadrupole moments of the first
two Iπ = 2+ states robustly emerge, including Q(2+

1 ) = ±Q(2+
2 ) correlations previously remarked by a realistic

nuclear survey, and the Q(2+
2 ) = − 3

7 Q(2+
1 ) correlation, which is only observed in the sd-boson space. These

correlations can be microscopically characterized by the rotational SU(3) symmetry and quadrupole vibrational
U(5) limit, respectively, according to the Elliott model and the sd-boson mean-field theory. The anharmonic
vibration may be another phenomenological interpretation for the Q(2+

1 ) = −Q(2+
2 ) correlation, whose spectral

evidence, however, is insufficient.

DOI: 10.1103/PhysRevC.93.024319

I. INTERACTION

Finite many-body systems (e.g., nuclei, small metallic
grains, metallic clusters) robustly maintain similar regularities,
despite their different binding interactions. For example, they
all present the binding-energy odd-even staggering, which are,
however, attributed to various mechanisms [1–5]. Particularly
in nuclear systems, the nucleon-nucleon interactions numer-
ically exhibit a “random” pattern with no trace of symmetry
groups, whereas nuclear spectra follow some robust dynamical
features: the nuclear spectral fluctuation is universally ob-
served [6–8]; low-lying spectra of even-even nuclei are orderly
and systematically characterized by seniority, vibrational, and
rotational structures [9,10], beyond Iπ = 0+ ground states
without exception.

To demonstrate the insensitivity of these robust regularities
to the interaction details, and to reveal its underlying origin,
random interactions are employed to simulate (or even intro-
duce) variety and chaos in a finite many-body system. Thus,
the predominant behaviors in a random-interaction ensemble
correspond to dynamical features in a realistic system. Many
efforts have been devoted along this direction [11–15]. For
instance, similarly to realistic even-even nuclei, the predomi-
nance of the I = 0 ground states [16,17] and collective band
structures [18,19] have been observed in random-interaction
ensembles. However, there have been only few attempts to
study the robustness of nuclear quadrupole collectivity against
the random interaction. This is partly because a random-
interaction ensemble potentially gives weaker E2 transitions
than a shell-model calculation with “realistic” interactions
[20]. Even so, some robust correlations related to the E2
collectivity can still be expected. For example, the Alaga
ratio between the quadrupole moment (Q) of the 2+

1 state
and B(E2,2+

1 → 0+
1 ) highlights both near-spherical shape and

well deformed rotor in random-interaction ensembles [12,21];
ratios of E2 transition rates between yrast 0+

1 , 2+
1 , and 4+

1
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states are also correlated to the ratio of 2+
1 and 4+

1 excitation
energies [18,22].

This work further studies the robust correlation between
Q values of the first two 2+

1 states, inspired by a recent
experimental survey [23]. As shown in Fig. 1, this survey
demonstrated a global Q(2+

2 ) = −Q(2+
1 ) correlation across

a wide range of masses, deformations, and 2+
1 energies. I

will make use of random-interaction ensembles to provide
an interacting-particle interpretation of this correlation, and
search for other underlying Q correlations. The statistical
analysis based on the Elliott SU(3) model [24] and the
mean-field Hartree-Bose theory [25] is applied.

II. CALCULATION FRAMEWORK

In my random-interaction calculations, the single-particle-
energy degree of freedom is switched off to avoid interference
from the shell-structure detail. The two-body interaction
matrix element, on the other hand, is denoted by V J

j1j2j3j4
as

usual, where j1, j2, j3, and j4 represent the angular momenta
of single-particle orbits (half-integer for fermions and integer
for bosons), and the superscript J labels the total angular
momentum of the two-body configurations involved in the
interaction element. In my calculations, V J

j1j2j3j4
is random-

ized independently and Gaussianly with (μ = 0,σ 2 = 1 +
δj1j2,j3j4 ), which insures the invariance of random two-body
interactions under arbitrary orthogonal transformations [26].
All the possibilities of random interactions and their outputs
via microscopic calculations construct the two-body random
ensemble (TBRE) [27–29]. Obviously, in the TBRE, diagonal
interaction elements potentially have larger magnitudes.

For the shell-model TBRE in this work, four model spaces
with either four or six valence protons in either the sd or
pf shell are considered, corresponding to four nuclei: 24Si,
26S, 44Cr, and 46Fe. For the interacting boson model-1
(IBM1) TBRE, sd-boson spaces are constructed for nuclei
with valence boson numbers Nb = 12, 13, 14, and 15, where s
and d represents I = 0� and I = 2� bosons, respectively. It is
noteworthy that a single calculation with random interactions
does not match, and is not intended to match, a realistic
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FIG. 1. 〈2+
1 ||E2||2+

1 〉 and 〈2+
2 ||E2||2+

2 〉 matrix elements from
Table I of Ref. [23] (i.e., [Q(2+

1 ), Q(2+
2 )] plots scaled by√

16π/5〈2220|22〉). The θ parametrization defined in Eq. (2) is
illustrated in the red sector. The Q(2+

2 ) = −Q(2+
1 ) correlation is

obvious along the θ = −45◦ direction (the black dashed diagonal
line).

nucleus. It only presents a pseudonucleus in the computational
laboratory. Thus, in this article, model spaces described above
are named as corresponding pseudonuclei for convenience.
For example, the model space with four protons in the
sd shell corresponds to pseudo 24Si. Statistical properties
of many random-interaction calculations for pseudonuclei
can be related to the robustness of dynamic features in
realistic nuclear systems. To ensure the statistical validity of
my conclusions, 1 000 000 sets of random interactions are
generated for each pseudonucleus. If the shell-model or IBM1
calculation with these random interactions produces a I = 0
ground state, Q matrix elements of 2+

1 and 2+
2 states will be

further calculated and recorded for the following statistical
analysis.

III. Q CORRELATIONS IN THE SHELL MODEL

In the shell model, the Q matrix element of one 2+ state,
|2+〉, is defined conventionally as

Q(2+) = 〈2+||Q̂||2+〉,
Q̂ = 〈j ||r2Y 2||j ′〉(a†

j × ãj ′ )(2),
(1)

where a
†
j and ãj ′ are single-particle creation and time-reversal

operators at orbits j and j ′, respectively. A proportional
Q correlation between the first two 2+

1 states is normally
characterized by the ratio of Q(2+

2 )/Q(2+
1 ). Geometrically,

such a correlation also corresponds to a straight line with the
polar angle

θ = arctan

{
Q(2+

2 )

Q(2+
1 )

}
(2)

FIG. 2. θ distributions from the experimental survey (Exp) [23]
and the shell-model TBRE. θ = ±45◦ peaks are highlighted corre-
spondingly to Q(2+

2 ) = ±Q(2+
1 ) correlations, respectively. Error bars

correspond to statistical error.

across the origin in the [Q(2+
1 ),Q(2+

2 )] plane. For example,
the experimental Q(2+

1 ) = −Q(2+
2 ) correlation suggested by

Ref. [23] can be illustrated by a diagonal θ = arctan(−1) =
−45◦ line as expected in Fig. 1. I also visualize the polar-angle
scheme of the [Q(2+

1 ),Q(2+
2 )] plane in Fig. 1.

In this work, I prefer the statistical analysis based on
the polar angle θ over the Q(2+

2 )/Q(2+
1 ) ratio because of

two reasons. First, the distribution of the Q(2+
2 )/Q(2+

1 ) ratio
spreads widely, so that the statistical detail about Q(2+

2 ) =
−Q(2+

1 ) correlation may be concealed. In particular, there
robustly exists 8% probability of |Q(2+

2 )/Q(2+
1 )| > 10 due to

the predominance of weak quadruple collectivity, i.e., small
|Q(2+

1 )|, in the shell-model TBRE [20]. However, I intend as
comprehensively as possible to present the statistical details
around the experimental Q(2+

2 ) = −Q(2+
1 ) = −1 correlation.

The wide statistics range of the Q(2+
2 )/Q(2+

1 ) ratio may
undermine this intention. By converting the Q(2+

2 )/Q(2+
1 )

ratio to the θ value, the statistics range is limited to
(−90◦,90◦), and a clearer vision of the Q(2+

2 ) = −Q(2+
1 )

correlation can be obtained around θ = −45◦. Second, the
θ parametrization intuitively provides a reasonable geometric
standard of symmetric sampling. Taking the Q(2+

2 ) = −Q(2+
1 )

correlation, for example, there is actually no (pseudo)nucleus
following the exact Q(2+

2 ) = −Q(2+
1 ) relation in experiments

or the TBRE, and yet one can take θ ∈ (−50◦,−40◦) as
the sampling range to represent this correlation. One sees
this sampling range indeed covers a symmetric area related
to the Q(2+

2 ) = −Q(2+
1 ) correlation in the [Q(2+

1 ),Q(2+
2 )]

plane. With the Q(2+
2 )/Q(2+

1 ) statistic, the determination of
a symmetric sampling range for one specifical Q correlation
can be controversial or simply another representation of the
θ parametrization. Therefore, all the statistics, analyses, and
discussions in this work are based on the θ value.

In Fig. 2, I present θ distributions of four pseudonuclei in
the shell-model TBRE compared with the experimental dis-
tribution from Ref. [23]. The experimental Q(2+

1 ) = −Q(2+
2 )

correlation is represented by the main peak around θ = −45◦,
which is also reproduced by the TBRE. Furthermore, several
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FIG. 3. R42 distributions around θ = ±45◦ correlations (red
circles and blue triangles, respectively) compared with those in the
whole shell-model TBRE (black squares). Error bars correspond to
statistical error.

weak peaks around θ = 45◦ are also observed in both exper-
imental data and random-interaction systems, corresponding
to the Q(2+

2 ) = Q(2+
1 ) correlation.

As proposed by Ref. [23], nuclear rotor models can give
the θ = −45◦ correlation, even though such a correlation
experimentally occurs in both rotational and nonrotational
nuclei. Therefore, I will further examine whether θ = ±45◦
correlations are the indicator of the underlying rotational
collectivity in TBRE. First, I verify whether θ = ±45◦ cor-
relations accompany rotational spectra in the TBRE. Second,
I search for the statistical signature of the random-interaction
elements that provides the θ = ±45◦ correlations, and trace
such a signature back to the microscopic Hamiltonian of the
nuclear rotor model, namely the Elliott SU(3) Hamiltonian.

Following previous random-interaction studies
[18,19,22,30], potential rotational spectra with θ = ±45◦
correlations can be characterized by the energy ratio
R42 = E4+

1
/E2+

1
� 10/3, where E2+

1
and E4+

1
correspond to

the excitation energies of yrast 2+ and 4+ states, respectively.
Thus, I plot the R42 distributions with θ ∈ (−50◦,−40◦) and
θ ∈ (40◦,50◦), respectively, in Fig. 3, and compare them with
those in the whole TBRE. Except for 26S, R distributions in
both θ ∈ (−50◦,−40◦) and θ ∈ (40◦,50◦) regions are identical
to those in the whole TBRE within statistical error. For 26S,
the R42 distribution has an observable enhancement at R42 = 1
with θ ∈ (40◦,50◦). Namely, the θ = 45◦ correlation seems to
partially originate from the seniority-like level scheme in 26S
space. This observation explains why the θ = 45◦ peak for
26S is stronger than those for other pseudonuclei as shown
in Fig. 2, given the dominance of pairing-like behaviors
in the TBRE [16,17,31]. Nevertheless, there is no special
favoring of rotational spectra from θ = ±45◦ correlations in
the shell-model TBRE, in agreement with the survey on the
realistic nuclear system [23].

In Ref. [21], the interaction signature of prolate and oblate
shapes is represented by the average values of interaction

elements (denoted by V J
j1j2j3j4

). In this work, I also adopt

TABLE I. |V J
j1j2j3j4

| values around θ ± 45◦ correlations and

|〈j1j2|ĈSU(3)|j3j4〉J | elements [“SU(3)” column] in the sd shell.
The “Index” column presents the integer, 2j1 × 10000 + 2j2 ×
1000 + 2j3 × 100 + 2j4 × 10 + J , to identify two-body interaction
elements. All the data are sorted by increasing order of the index
column.

Order Index |V J
j1j2j3j4

| SU(3)

θ ∈ (−50◦,−40◦) θ ∈ (40◦,50◦)

1 11110 0.031 0.028 20.0
2 11330 0.009 0.006 5.7
3 11550 0.017 0.006 6.9
4 13131 0.047 0.007 7.0
5 13132 0.022 0.053 10.2
6 13152 0.007 0.028 3.9
7 13332 0.035 0.025 2.5
8 13351 0.006 0.007 0.0
9 13352 0.002 0.043 2.3
10 13552 0.006 0.024 3.3
11 15152 0.045 0.087 11.8
12 15153 0.095 0.172 7.0
13 15332 0.024 0.005 3.1
14 15352 0.016 0.014 2.8
15 15353 0.004 0.060 0.0
16 15552 0.064 0.002 4.0
17 33330 0.118 0.039 15.0
18 33332 0.136 0.107 0.7
19 33352 0.025 0.021 4.1
20 33550 0.014 0.014 2.4
21 33552 0.016 0.018 0.4
22 35351 0.018 0.076 13.0
23 35352 0.015 0.104 7.2
24 35353 0.180 0.009 2.0
25 35354 0.028 0.167 2.0
26 35552 0.015 0.028 4.8
27 35554 0.046 0.021 0.0
28 55550 0.151 0.086 16.0
29 55552 0.046 0.069 8.1
30 55554 0.160 0.037 2.0

V J
j1j2j3j4

to probe the the interaction signature of θ = ±45◦
correlations. In detail, I collect all the interaction elements
within θ ∈ (−50◦,−40◦) and θ ∈ (40◦,50◦), normalize them
by the factor of

∑
Jj1j2j3j4

V J
j1j2j3j4

, and then calculate all the

V J
j1j2j3j4

values for both θ ∈ (−50◦,−40◦) and θ ∈ (40◦,50◦)
regions. Because signs of interaction elements can be changed
by different phase conventions, I only discuss magnitudes of

V J
j1j2j3j4

(denoted by |V J
j1j2j3j4

|) to avoid the potential ambiguity
from phase conventions. To simplify the following discussion,

each |V J
j1j2j3j4

| is labeled by the index 2j1 × 10000 + 2j2 ×
1000 + 2j3 × 100 + 2j4 × 10 + J . For example, the pairing
force between s1/2 or p1/2 nucleons, V 0

1
2

1
2

1
2

1
2
, corresponds to

index “11110”. I list |V J
j1j2j3j4

| values of both θ ∈ (−50◦,−40◦)
and θ ∈ (40◦,50◦) region in increasing order of their indices
in Tables I and II.
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TABLE II. The same as Table I but for the pf shell.

Order Index |V J
j1j2j3j4

| SU(3)

θ ∈ (−50◦,−40◦) θ ∈ (40◦,50◦)

1 11110 0.030 0.011 32.0
2 11330 0.011 0.008 12.2
3 11550 0.010 0.006 9.7
4 11770 0.006 0.007 0.0
5 13131 0.018 0.033 23.4
6 13132 0.039 0.004 27.9
7 13152 0.000 0.000 6.6
8 13332 0.009 0.007 3.2
9 13351 0.000 0.000 0.0
10 13352 0.002 0.000 3.5
11 13372 0.007 0.004 8.6
12 13552 0.003 0.005 4.1
13 13571 0.008 0.000 9.0
14 13572 0.007 0.005 5.4
15 13772 0.004 0.002 0.0
16 15152 0.006 0.006 20.1
17 15153 0.077 0.079 6.5
18 15173 0.002 0.003 1.0
19 15332 0.001 0.000 4.7
20 15352 0.005 0.005 7.9
21 15353 0.001 0.009 1.3
22 15372 0.000 0.001 2.8
23 15373 0.000 0.009 1.9
24 15552 0.025 0.000 6.1
25 15572 0.003 0.000 2.4
26 15573 0.008 0.000 2.2
27 15772 0.001 0.000 0.0
28 17173 0.069 0.097 18.9
29 17174 0.045 0.074 12.0
30 17353 0.000 0.002 1.1
31 17354 0.011 0.005 5.9
32 17373 0.014 0.003 8.9
33 17374 0.015 0.002 2.0
34 17554 0.002 0.002 3.4
35 17573 0.010 0.002 4.8
36 17574 0.013 0.000 6.3
37 17774 0.000 0.002 0.0
38 33330 0.070 0.045 40.6
39 33332 0.101 0.126 25.6
40 33352 0.005 0.005 2.5
41 33372 0.007 0.001 6.1
42 33550 0.011 0.021 2.0
43 33552 0.010 0.010 0.2
44 33572 0.004 0.001 4.4
45 33770 0.009 0.019 10.2
46 33772 0.005 0.004 6.7
47 35351 0.004 0.027 27.0
48 35352 0.059 0.110 18.9
49 35353 0.044 0.030 9.1
50 35354 0.044 0.011 12.3
51 35372 0.002 0.001 2.3
52 35373 0.004 0.005 3.8
53 35374 0.006 0.007 3.8
54 35552 0.003 0.011 3.7
55 35554 0.010 0.000 3.3
56 35571 0.006 0.000 0.0

TABLE II. (Continued.)

Order Index |V J
j1j2j3j4

| SU(3)

θ ∈ (−50◦,−40◦) θ ∈ (40◦,50◦)

57 35572 0.002 0.002 4.1
58 35573 0.010 0.004 6.2
59 35574 0.005 0.002 5.1
60 35772 0.004 0.001 3.3
61 35774 0.004 0.005 2.6
62 37372 0.035 0.032 26.8
63 37373 0.033 0.041 15.3
64 37374 0.067 0.058 12.9
65 37375 0.060 0.042 6.0
66 37552 0.001 0.004 0.9
67 37554 0.000 0.008 1.0
68 37572 0.004 0.002 2.4
69 37573 0.001 0.002 3.3
70 37574 0.007 0.000 1.5
71 37575 0.005 0.004 0.0
72 37772 0.010 0.003 3.4
73 37774 0.026 0.000 8.6
74 55550 0.071 0.073 26.4
75 55552 0.041 0.040 12.2
76 55554 0.042 0.019 7.1
77 55572 0.007 0.004 5.8
78 55574 0.003 0.000 3.6
79 55770 0.016 0.013 2.1
80 55772 0.009 0.005 1.2
81 55774 0.002 0.010 0.2
82 57571 0.006 0.026 24.6
83 57572 0.067 0.080 18.0
84 57573 0.053 0.015 7.2
85 57574 0.028 0.004 0.2
86 57575 0.095 0.045 9.0
87 57576 0.020 0.036 9.0
88 57772 0.010 0.006 5.4
89 57774 0.010 0.000 5.1
90 57776 0.013 0.002 0.0
91 77770 0.082 0.071 27.0
92 77772 0.025 0.011 18.6
93 77774 0.092 0.080 3.1
94 77776 0.123 0.118 9.0

To comprehensively compare |V J
j1j2j3j4

| values between θ ∈
(−50◦,−40◦) and θ ∈ (40◦,50◦) regions, I plot them against
their order numbers (see Tables I and II) in Fig. 4. Most

V J
j1j2j3j4

are close to zero, following the ensemble distribution.

However, there are several relatively large |V J
j1j2j3j4

| values,
which present obvious peaks in Fig. 4. Peak positions for
θ ∈ (−50◦,−40◦) are roughly consistent with those for θ ∈
(40◦,50◦), which hints that θ = ±45◦ correlations may share
the same interaction signature.

The interaction signature of θ = ±45◦ correlations can
be related to the Elliott Hamiltonian. Such a Hamiltonian is
dominated by the SU(3) Casimir operator as defined by

ĈSU(3) = 1

4
Q̂ · Q̂ + 3

4
L̂ · L̂, (3)
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FIG. 4. |V J
j1j2j3j4

| and |〈(j1j2)J |ĈSU(3)|(j3j4)J 〉| values (see text
for definitions) against order numbers from Tables I and II. Indices
are highlighted for obvious peaks of |〈(j1j2)J |ĈSU(3)|(j3j4)J 〉| values.

where Q̂ and L̂ are quadrupole-moment and orbital-
angular-momentum operators. I calculate matrix elements
of 〈(j1j2)J |ĈSU(3)|(j3j4)J 〉, and still focus on their mag-
nitudes (denoted by |〈j1j2|ĈSU(3)|j3j4〉J |), similarly to the

treatment of V J
j1j2j3j4

. |〈j1j2|ĈSU(3)|j3j4〉J | is also labeled
by the index 2j1 × 10000 + 2j2 × 1000 + 2j3 × 100 + 2j4 ×
10 + J , and thus is comparable with |V J

j1j2j3j4
| as shown

in Tables I and II and in Fig. 4. In Fig. 4, relatively
large |〈j1j2|ĈSU(3)|j3j4〉J | values also presents several obvious

peaks, which have similar pattern to |V J
j1j2j3j4

| peaks for both
θ ∈ (−50◦,−40◦) and θ ∈ (40◦,50◦) regions. This observation
implies the relation between the SU(3) symmetry and θ =
±45◦ correlations.

I also highlight indices for |〈j1j2|ĈSU(3)|j3j4〉J | peaks
in Fig. 4, according to which the SU(3) Casimir operator
always has large magnitudes for diagonal matrix elements
with j1j2 = j3j4. On the other hand, large |V J

j1j2j3j4
| for

θ = ±45◦ correlations also occurs for diagonal j1j2 = j3j4

in Tables I and II. As described in Sec. II, larger magnitudes of
diagonal elements is required by the invariance of TBRE under
orthogonal transformation of the two-body configuration.
Therefore, the shell-model TBRE intrinsically maintains part
of the SU(3) properties to restore the θ = ±45◦ correlations,
even though it spectrally presents no trace of the SU(3)
symmetry as illustrated in Fig. 3.

After clarifying the relation between θ = ±45◦ correlations
and the SU(3) symmetry, I microscopically describe how
these two Q correlations emerge in a major shell, i.e., sd
or pf shell here. In the Elliott model, any 2+ state within a
major shell is labeled by the SU(3) representation (λ,μ), the
quantum number of the intrinsic state (K), and orbital angular
momentum L = 2 [24]. The 2+ state is normally near the
bottom of a K band, and thus its Q value can be approximately
given by [32]

Q(2+) = 2λ

7
(K2 − 2). (4)

The K number is limited to 0, 1, and 2. Thus, the Q(2+
1 ) =

−Q(2+
2 ), i.e., θ = −45◦, correlation is produced by two 2+

states with the same λ number and K = 0,2, which agrees
with the rotor-model conjecture [23]. On the other hand, the
Q(2+

1 ) = Q(2+
2 ), i.e. θ = 45◦, correlation is from two 2+ states

with the same λ and K values.
According to above SU(3) description, one can expect two

2+ states with the θ = −45◦ correlation from the same (λ,μ)
representation. On the contrary, a single (λ,μ) representation
cannot produce two 2+ states with the same K number, so
that the θ = 45◦ correlation always requires the coopera-
tion of two different (λ,μ) representations. Empirically, the
former case has a relatively larger probability of emerging
in the low-lying region, which explains why the θ = −45◦
peak intensity is always larger than the θ = 45◦ one in
Fig. 2.

Independently of the rotor interpretation, the anhar-
monic vibration (AHV) with quadrupole degrees of free-
dom [33] can also provide the θ = −45◦ correlation. In
the AHV interpretation, the first two 2+ states are con-
structed with a significant mixing of one- and two-phonon
configurations as

|2+
1 〉 = a1|b†〉 + a2|(b†)2〉,

|2+
2 〉 = −a2|b†〉 + a1|(b†)2〉,

(5)

where b† is the creation operator of a phonon; a1 and a2 are
amplitudes of phonon configurations. In this phonon space,
the quadrupole operator Q̂ is a polynomial of operator b† + b̃
[34], where b̃ is the phonon time-reversal operator. The first
order of such a polynomial dominates the Q matrix element.
However, it also vanishes with respect to configuration with
definite numbers of phonons. In particular,

〈b̃||Q̂||b†〉 ∝ 〈b̃||b† + b̃||b†〉 = 0,

〈(b̃)2||Q̂||(b†)2〉 ∝ 〈(b̃)2||b† + b̃||(b†)2〉 = 0,
(6)

Thus,

〈2+
1 ||Q̂||2+

1 〉 = 2a1a2〈b̃||Q̂||(b†)2〉,
〈2+

2 ||Q̂||2+
2 〉 = −2a1a2〈b̃||Q̂||(b†)2〉,

(7)

and the θ = −45◦ relation is obtained.
We can spectrally examine this AHV interpretation for the

θ = −45◦ correlation in the shell-model TBRE. Because AHV
2+ states correspond to the mixing of one- and two-phonon
configurations as defined in Eq. (5), the excitation energy
of the first 2+ state, E(2+

1 ), is smaller than the one-phonon
excitation energy �ω, while E(2+

2 ) is larger than 2�ω according
to the perturbation theory. Thus, the energy ratio of R22 =
E(2+

2 )/E(2+
1 ) of the AHV is always larger than 2. In other

words, if the AHV contributes to the θ = −45◦ correlation
in the TBRE, the distribution of R22 with θ ∈ (−50◦,−40◦)
should have an obvious enhancement for R22 > 2. In Fig. 5, I
compare R22 distributions in the θ ∈ (−50◦,−40◦) range with
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FIG. 5. R22 distributions around θ = −45◦ (red circles) com-
pared with those in the whole shell-model TBRE (black squares).
Error bars correspond to statistical error.

those in the whole shell-model TBRE. There is no obvious
difference between these R22 distributions. Thus, we do not
see the spectral sign of the AHV contribution to the θ = −45◦
correlation.

IV. Q CORRELATIONS IN IBM1

In IBM1, the Q operator is a linear combination of two
independent rank-2 operators as

Q = Q1 + χQ2, (8)

where Q1 = d†s + sd̃ , Q2 = [d†d̃]2, and χ is a free parameter.
Correspondingly, we need to define two independent θ
coordinates as

θ1 = arctan

{ 〈2+
2 ||Q1||2+

2 〉
〈2+

1 ||Q1||2+
1 〉

}
,

θ2 = arctan

{ 〈2+
2 ||Q2||2+

2 〉
〈2+

1 ||Q2||2+
1 〉

}
.

(9)

A robust correlation with the polar angle θ should be insen-
sitive to the χ value, which requires θ1 = θ2 = θ . Obviously,
such a correlation corresponds to a peak at (θ , θ ) point in the
two-dimensional (θ1, θ2) distribution of the IBM1 TBRE.

Figure 6 represents (θ1, θ2) distributions of the IBM1
TBRE with Nb = 12, 13, 14, and 15. These distributions
follow a similar pattern, with three sharp peaks along the
θ1 = θ2 diagonal line corresponding to three proportional Q
correlations. I fit (θ1, θ2) distributions to a two-dimensional
function, f (θ1,θ2), with three Gaussian peaks as

f (θ1,θ2) = f0 +
3∑

i=1

Ai exp

{
−

[(
θ1 − θ1

c,i

)
cos ωi + (

θ2 − θ2
c,i

)
sin ωi

]2

2w2
‖,i

−
[ − (

θ1 − θ1
c,i

)
sin ωi + (

θ2 − θ2
c,i

)
cos ωi

]2

2w2
⊥,i

}
,

(10)

where f0 is the background; all the other fitting variables are
parameters of Gaussian peaks. These three Gaussian peaks
are labeled by indices i = 1, 2, and 3. For the ith peak, ωi

defines its orientation in the (θ1,θ2) plane, (θ1
c,i ,θ

2
c,i) is the

peak position, Ai is the amplitude, and (w‖,i ,w⊥,i) are widths
along and perpendicular to the ωi direction. Thus, the best-fit
intensity of the ith peak can be calculated as 2πAiw‖,iw⊥,i .

In Table III, I list the best-fit peak positions and intensities
for the three sharp peaks in Fig. 6. The i = 1 and i = 2 peaks
are very close to (±45◦, ± 45◦), i.e., “Q(2+

2 ) = ±Q(2+
1 )”

correlations, as labeled in Fig. 6 and Table III. The i = 3 peak is
located around (−21◦, − 22◦), and thus gives Q(2+

2 )/Q(2+
1 ) �

−3/7, the typical IBM1 Q ratio at the U(5) limit regardless
of the boson number. Therefore, I believe the i = 3 peak may
correspond to the vibrational U(5) collectivity, and I denote it
as “U(5)” in following analysis.

To identify or confirm the collective patterns corresponding
to the three sharp peaks in Fig. 6, I first investigate their
R42 distribution, i.e., the predominance of low-lying collective
excitations, similarly to my R42 analysis for the shell-model
TBRE with Fig. 3; second, I adopt the sd-boson mean-field
theory to observe dominant nuclear sharps of these peaks.

For the analysis of R42 distributions, I first collect all the
random interactions, which produce (θ1, θ2) points within
3◦ from peaks in Fig. 6. Second, all R42 values from these
interactions are calculated. Third, R42 distributions of these
peaks are calculated and presented in Fig. 7. Q(2+

2 ) = ±Q(2+
1 )

peaks always have large probabilities at the rotational limit
R42 = 3.3, which agrees with the rotor-model description. On
the other hand, R42 distributions of U(5) peaks are dominated
by R42 = 2, corresponding to a typical U(5) vibrational
spectrum, which supports my U(5) assignment for this peak.

My analysis with the sd-boson mean-field theory starts with
the sd-boson coherent state for the ground band as

|g〉 = (s† + tan α0d
†
0)Nb |0〉. (11)

Similarly to Ref. [30], the nuclear shape, i.e., the optimized
α0 value, is determined by minimizing the Hamiltonian
expectation value of this coherent state as

Eg(α) = a1 sin4 α + a2 sin3 α cos α

+ a3 sin2 α cos2 α + a0 cos4 α, (12)

where Eg(α0) reaches the minimum of this equation; a0, a1,
a2, and a3 are linear combinations of sd-boson two-body
interaction matrix elements as formulated in Ref. [35]. I
calculate α0 values for all the interactions with spin-0�

ground states in the TBRE, and perform frequency counting
for calculated α0 values. Thus, the ensemble-normalized α
distribution for the ith peaks is given by

P (α) = N
(
α,θ1

c,i ,θ
2
c,i

)
/N (α), (13)
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FIG. 6. Two-dimensional (θ1, θ 2) distributions of the IBM1 TBRE. Three sharp peaks are characterized with “Q(2+
2 ) = ±Q(2+

1 )” and
“U(5)” correlations.

where N (α,θ1
c,i ,θ

2
c,i) is the counting number with α0 ∈ (α −

2.5◦,α + 2.5◦) and
√

(θ1 − θ1
c,i)

2 + (θ2 − θ2
c,i)

2
<3◦, and N (α)

is that with α0 ∈ (α − 2.5◦,α + 2.5◦) in the whole IBM1
TBRE.

Figure 8 presents calculated P (α) values. The U(5) peak
only has a significant probability at α = 0, corresponding
to the s-boson condensation. Thus, 2+ states for the U(5)
peak are constructed by replacing s bosons with d bosons in
the s-boson condensation, which agrees with the quadrupole
vibration described by the U(5) limit. This further confirms
my U(5) characterization of this peak. On the other hand,
the Q(2+

2 ) = ±Q(2+
1 ) peaks both have large probabilities for

0 < |α| < 90◦, corresponding to the axially symmetric rotor at

the SU(3) limit. Considering that the Q(2+
2 ) = ±Q(2+

1 ) peaks
also favor SU(3) rotational spectra with R = 3.3 in Fig. 7, I
conclude that both Q(2+

2 ) = ±Q(2+
1 ) correlations in IBM1 are

strongly related to the SU(3) limit.
Conversely, I also derive Q(2+

2 ) = ±Q(2+
1 ) correlations

from the SU(3) limit of the IBM1. At the SU(3) limit, the
2+

1 state is from the ground band with (λ = 2Nb, μ = 0) and
K = 0; yet the 2+

2 state belongs to the (λ = 2Nb − 4, μ = 2)
representation, which generates β and γ bands with K = 0
and 2, respectively [25]. Thus, the 2+

2 is from either the β or
γ band, which leads to two phase-different Q correlations:

Qβ(2+)

Qg(2+)
= 4Nb − 3

4Nb + 3
,

Qγ (2+)

Qg(2+)
= −4Nb − 3

4Nb + 3
. (14)

TABLE III. Best-fit peak positions (θ1
c,i ,θ

2
c,i) and intensities of three sharp peaks in Fig. 6 with the two-dimensional three-peak Gaussian

function defined in Eq. (10).

Nb Q(2+
2 ) = −Q(2+

1 ) Q(2+
2 ) = Q(2+

1 ) U(5)

θ 1
c,1 θ 2

c,1 Intensity θ1
c,2 θ 2

c,2 Intensity θ1
c,3 θ 2

c,3 Intensity
(deg) (deg) (×102 counts) (deg) (deg) (×102 counts) (deg) (deg) (×102 counts)

12 −42.05(1) −36.27(2) 361(6) 40.19(2) 43.44(1) 272(5) −21.27(4) −22.17(1) 565(9)
13 −42.29(1) −36.92(2) 476(6) 40.60(1) 43.62(1) 347(5) −21.12(3) −22.21(1) 742(9)
14 −42.52(1) −37.45(1) 468(6) 40.91(1) 43.73(1) 347(5) −21.20(2) −22.23(1) 733(8)
15 −42.66(1) −37.94(1) 393(7) 41.20(1) 43.83(1) 334(5) −21.32(2) −22.26(1) 683(8)
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FIG. 7. R42 distributions around three peaks in Fig. 6.

For Nb → ∞, Qβ(2+) = Qg(2+) and Qγ (2+) = −Qg(2+)
are achieved, corresponding to Q(2+

2 ) = Q(2+
1 ) and Q(2+

2 ) =
−Q(2+

1 ) correlations, respectively.
In the shell-model TBRE, the Q(2+

2 ) = −Q(2+
1 ) correlation

has a larger probability than the Q(2+
2 ) = Q(2+

1 ) one (see
Fig. 2). Yet, in the IBM1 TBRE, these two correlations
have roughly equal peak intensities, i.e., probabilities, as
shown in Fig. 6 and Table III. This is a major difference
between behaviors of the Q correlations in shell-model and
IBM1 TBREs. This difference can be explained accord-
ing to the (λ,μ) assignment of the SU(3) scheme. In the
shell model, i.e., the Elliott model, the Q(2+

2 ) = −Q(2+
1 )

correlation normally emerges with two 2+ states from a
single (λ,μ) representation, which empirically provides a
larger probability. However, in the sd-boson space, both

FIG. 8. P (α) around three peaks in Fig. 6, as defined in Eq. (13).

Q(2+
2 ) = ±Q(2+

1 ) correlations require 2+
1 and 2+

2 states from
two different (λ,μ) representations, and thus have similar
probabilities.

As shown in Table III, |θ1
c,i | and |θ2

c,i | of Q(2+
2 ) =

±Q(2+
1 ) correlations are systematically smaller than 45◦.

This observation can be explained with Eq. (14). For
large but finite Nb, the magnitude of Q(2+

2 ) is always
smaller that that of Q(2+

1 ), which drives the |θ1
c,i | and

|θ2
c,i | value smaller than 45◦. Therefore, I attribute the

systematical derivation of Q(2+
2 ) � ±Q(2+

1 ) peak posi-
tions from the exact SU(3) prediction to the finite-boson-
number effect, as proposed by Ref. [23] with consistent-Q
calculations.

V. SUMMARY

To summarize, I observe three proportional correlations
between Q values of the first two Iπ = 2+ states in the TBRE.
Q(2+

1 ) = ±Q(2+
2 ) correlations robustly and universally exist

in both shell-model and sd spaces, consistent with experi-
ments. In the IBM1 TBRE, the Q(2+

2 ) = − 3
7Q(2+

1 ) correlation
is also reported. By using the Elliot model and the sd-boson
mean-field theory, we can microscopically assign Q(2+

1 ) =
±Q(2+

2 ) correlations to the rotational SU(3) symmetry, and the
Q(2+

2 ) = − 3
7Q(2+

1 ) correlation to the quadrupole vibrational
U(5) limit. Phenomenologically, the anharmonic vibration
may also provide the Q(2+

1 ) = −Q(2+
2 ) correlation, although

its spectral behavior is not observed in the shell-model
TBRE.

In particular, the invariance of under orthogonal trans-
formation intrinsically provides the shell-model TBRE more
opportunity to restore part of SU(3) properties, i.e., Q(2+

1 ) =
±Q(2+

2 ) correlations, even though these Q correlations are
insensitive to the SU(3) rotational spectrum, as expected
based on the experimental survey [23]. On the other hand,
IBM1 Q(2+

1 ) = ±Q(2+
2 ) correlations always favor low-lying

rotational spectra, which indicates that the IBM is more
strongly governed by the dynamic symmetry. The SU(3)
group reduction rule also qualitatively explains why the
shell model more obviously favors the Q(2+

1 ) = −Q(2+
2 )

correlation compared with IBM1.
Low-lying Q correlations represent intrinsic nuclear col-

lectivity, and thus are more sensitive to the wave-function
detail than the spectrum. Therefore, the nuclear quadrupole
collectivity may be maintained in a far deeper level than
the common realization based on the orderly spectral
pattern.
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