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We describe electromagnetic and favored α transitions to rotational bands in odd-mass nuclei built upon a
single particle state with angular momentum projection � �= 1

2 in the region 88 � Z � 98. We use the particle
coupled to an even-even core approach described by the coherent state model and the coupled channels method to
estimate partial α-decay widths. We reproduce the energy levels of the rotational band where favored α transitions
occur for 26 nuclei and predict B(E2) values for electromagnetic transitions to the band head using a deformation
parameter and a Hamiltonian strength parameter for each nucleus, together with an effective collective charge
depending linearly on the deformation parameter. Where experimental data are available, the contribution of the
single particle effective charge to the total B(E2) value is calculated. The Hamiltonian describing the α-nucleus
interaction contains two terms, a spherically symmetric potential given by the double-folding of the M3Y
nucleon-nucleon interaction plus a repulsive core simulating the Pauli principle and a quadrupole-quadrupole
(QQ) interaction. The α-decaying state is identified as a narrow outgoing resonance in this potential. The intensity
of the transition to the first excited state is reproduced by the QQ coupling strength. It depends linearly both
on the nuclear deformation and the square of the reduced width for the decay to the band head, respectively.
Predicted intensities for transitions to higher excited states are in a reasonable agreement with experimental data.
This formalism offers a unified description of energy levels, electromagnetic and favored α transitions for known
heavy odd-mass α emitters.
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I. INTRODUCTION

A brief overview of the α-emission process in even-even
nuclei is helpful for the understanding of the more complex
situation in odd-mass emitters.

In the case of transitions to excited states, the single-particle
levels around the Fermi surface play the dominant role and the
corresponding decay widths are very sensitive to the structure
of the daughter nucleus [1,2]. An important problem is the
study of the α-daughter interaction. One of the most popular
approaches is the double folding procedure [3]. This method
has been used together with the coupled channels approach
and a repulsive core simulating the Pauli principle in order to
study the α-decay fine structure in transitional and rotational
even-even nuclei [4]. For a thorough study of the structure and
α-emission spectrum in vibrational, transitional, and rotational
even-even nuclei, see Ref. [5].

Several calculations for the fine structure of the emission
spectrum have already been made in the case of odd-mass
α emitters. For example, in Ref. [6] a multichannel cluster
model together with the coupled channels equation is used
to calculate branching ratios to excited states for favored
transitions in heavy emitters, in the region 93 < Z < 102.
In Ref. [7], a microscopic method is employed with a
Skyrme SLy4 effective interaction. Starting from the Hartree-
Fock-Bogoliubov vacuum and quasiparticle excitations, the
α-particle formation amplitude is calculated for the α decay to
various channels mostly in the 84 < Z < 88 region. Several
unfavored transitions are treated in this paper and predictions

are made for the properties of the g.s.→g.s. α transition in
odd-mass superheavy nuclei. The unfavored g.s.→g.s. α decay
in odd-mass nuclei in the region 64 � Z � 112 is also treated
in Ref. [8], with the purpose of investigating the effect of the
difference in the spin and parity of the ground states on
the α particle and daughter nucleus preformation probability.
The calculations are done in the framework of the extended
cluster model, with the Wentzel-Kramers-Brillouin penetrabil-
ity and assault frequency, together with an interaction potential
computed on the basis of the Skyrme SLy4 interaction.

In the current paper, we expand the method previously
used in Ref. [5] for the even-even case by allowing the
coupling of an odd-particle to a core described by a coherent
function. We study the energy levels and electromagnetic
transition rates of this nucleus and then couple an α particle
to it in order to describe the emission spectrum for the
case of favored transitions. Our method is to employ an
(I,l) coupling procedure in the laboratory frame, between the
angular momentum I of the daughter nucleus and the orbital
angular momentum l of the α particle, similar to Nilsson’s
original (I,j ) coupling method for the description of nuclear
spectra in the intrinsic frame [9], where j is the angular
momentum of the odd particle. We show that using a small
basis having a single value for l in each channel, we can
use a QQ α-daughter interaction to generate simultaneously
resonant states of even or odd parity at the same reaction
energy and QQ coupling strength. The partial decay widths
obtained this way are in good agreement with the available
experimental data.
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II. THEORETICAL BACKGROUND

In this section we present the theoretical tools required for
the calculation of energy levels and electromagnetic transition
rates for odd-mass nuclei, as well as the coupled-channels
method that is applied to the study of the fine structure of the
α-emission spectrum.

A. Nucleon coupled to a coherent state core

A description of the surface dynamics of a deformed even-
even nucleus was proposed for the first time in Refs. [10,11] by
using a coherent state of quadrupole bosons. A generalization
to all types of low-energy collective motion was proposed in
Refs. [12,13] and was extensively developed in Refs. [14,15]
as the coherent state model (CSM). A review paper on this
topic is available in Ref. [16], as well as in the textbook [17].
Here, we will present in a concise manner the main ideas of the
model, and then extend them to the coupling of an additional
nucleon to the even-even core. The final goal is to describe a
rotational band built upon a given single-particle state of the
odd nucleon.

We begin by assuming that the intrinsic state of an
axially deformed even-even nucleus is given by a coherent
superposition of quadrupole bosons b

†
2μ with μ = 0,

|φg〉 = ed(b†20−b20)|0〉, (1)

where |0〉 is the phonon vacuum and the quantity d is called
deformation parameter [14].

The physical states that define the ground band are obtained
by angular momentum projection

∣∣ϕ(g)
JM

〉 = N (g)
J P J

M0|φg〉. (2)

P J
M0 is the projection operator which has the integral represen-

tation

P J
MK =

√
2J + 1

8π2

∫
dωDJ

MK (ω)R(ω) (3)

with ω the set of three Euler angles, DJ
MK (ω) a Wigner

function, and R(ω) the rotation operator.
N (g)

J is the norm of the projected state, given by the formula

N (g)
J = [

Ĵ 2I (0)
J (d)

]− 1
2 e

d2

2 (4)

with Ĵ = √
2J + 1 and I (0)

J (d) given by

I (0)
J (d) =

∫ 1

0
PJ (x)ed2P2(x)dx, (5)

in terms of the Legendre polynomial PJ .
For an odd-mass nucleus, the state of total angular momen-

tum I and projection M is given by projecting out the product
between the coherent state (1) and the single particle state ψjm,
where j is a shorthand notation for all of the quantum numbers
of the state, that is

	IM = P I
M0[ψjφg]. (6)

A straightforward calculation leads to the following result:

	IM =
∑

J

X
Jj
I

[
ϕ

(g)
J ⊗ ψjm

]
IM

(7)

with normalization coefficients X
Jj
I given by

X
Jj
I =

(N (g)
J

)−1〈jJ ; �0|I�〉√∑
J ′

(N (g)
J ′

)−2
(〈jJ ′�0|I�〉)2

, (8)

where the bra-ket product denotes a Clebsch-Gordan coef-
ficient and � is the fixed z projection of the single-particle
angular momentum j . More details on this procedure can be
consulted in Ref. [18].

The states built upon the band head I = j = � that follow
the sequence I = �,� + 1,� + 2, . . . constitute a rotational
band. In the Nilsson model, these states are labeled by the set
�π [Nnz
], where π is the parity, N is the principal quantum
number, nz the number of nodes of the radial wave function in
the z direction, and 
 is the projection of the single-particle
orbital angular momentum. The last three numbers act only as
labels, as the good quantum numbers are only � and π .

The simplest Hamiltonian that can describe such a rota-
tional structure consists of two terms [18]:

H = A1b
†
2 · b2 − A2r

2(b†2 + b̃2) · Y2. (9)

where by the center dot we denoted the scalar product. A1 is
a strength parameter required to fit experimental data and A2

is the strength of the particle-core QQ interaction. For a given
ladder operator al , we have

ãlμ = (−)μal−μ. (10)

For the description of the rotational band the only relevant
parameter is A1 due to the fact that the particle-core term is
common. Instead of solving the eigenvalue problem by a full
diagonalization procedure, a simpler approach, involving the
analytical expression for the diagonal matrix elements of the
Hamiltonian (9) in the basis of Eq. (7) suffices:

〈IM|H |IM〉 = A1d
2fj�I − d

(
N + 3

2

)
×〈j2; �0|j�〉〈j2; 1

2 0
∣∣j 1

2

〉
(11)

with fj�I given by

fj�I =
∑

J 〈Ij ; � − �|J0〉2I (1)
J (d)∑

J 〈Ij ; � − �|J0〉2I (0)
J (d)

, (12)

in terms of the function

I (1)
J (x) = d

dx
I (0)

J (x). (13)

The shape of such a spectrum is dependent both on the
deformation parameter and on the value of �, as can be seen
in Fig. 1.

While this approach is adequate for the purpose of this
paper, if a greater precision in the description of the nuclear
energy spectrum is required, then more terms can be added
to the Hamiltonian (9), as shown in Ref. [18]. Let us also
mention that the development presented here and expanded
upon in Ref. [18] is appropriate for any rotational band built
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FIG. 1. Normalized energy levels EI as function of deformation d , for different values of the single particle angular momentum
projection �.

upon an angular momentum projection � �= 1
2 . The special

case � = 1
2 requires a modification of the formalism and will

be treated in a future paper.

B. Electromagnetic transitions

The B(E2) values of electric quadrupole transitions follow
from both collective and single particle contributions:

B(E2; I2 → I1) =
[

1

Î2

〈
I1

∣∣∣∣qc
0Q

c
2

∣∣∣∣I2
〉

+ 1

Î2

〈
I1

∣∣∣∣qsp
0 Q

sp
2

∣∣∣∣I2
〉]2

,

(14)

where qc
0 and q

sp
0 are effective charges.

The collective quadrupole transition operator has both
harmonic and anharmonic contributions:

Qc
2μ = b

†
2μ + b̃2μ + aq[(b†2 ⊗ b

†
2)2μ + (b2 ⊗ b2)2μ] (15)

with aq the anharmonic strength. Its reduced matrix elements
on the states of the core are

〈
ϕ

(g)
J1

∣∣∣∣qc
0Q

c
2

∣∣∣∣ϕ(g)
J2

〉 = qeffd

Ĵ2N (g)
J1

N (g)
J2

〈J12; 00|J20〉

× [
Ĵ 2

1

(N (g)
J1

)2 + Ĵ 2
2

(N (g)
J2

)2]
(16)

with qeff given by a linear formula in d

qeff = qc
0

(
1 −

√
2

7
aqd

)
. (17)

The single particle quadrupole transition operator has the
occupation number representation

Q
sp
2μ =

∑
j1j2

1

2̂
〈j1||r2Y2||j2〉

(
c
†
j1
c̃j2

)
2μ

. (18)

Explicit expressions for the matrix elements of these operators
over the states of the odd-mass nucleus follow from the above
results and the use of standard angular momentum algebra.
For our particular case of fixed j , the final formulas are

〈
I1

∣∣∣∣qc
0Q

c
2

∣∣∣∣I2
〉 =

∑
J1J2

X
J1j
I1

X
J2j
I2

Î1Î2(−)j−I1 (19)

×W(I1J1I2J2; j2)
〈
ϕ

(g)
J1

∣∣∣∣qc
0Q

c
2

∣∣∣∣ϕ(g)
J2

〉
,

〈
I1

∣∣∣∣qsp
0 Q

sp
2

∣∣∣∣I2
〉 =

∑
J1

X
J1j
I1

X
J1j
I2

Î1Î2(−)j+I2 (20)

×W(I1jI2j ; J12)
〈
j
∣∣∣∣qsp

0 r2Y2

∣∣∣∣j 〉
with W a Racah coefficient.

All reduced matrix elements are defined in the usual
convention

〈lm|Tλμ|l′m′〉 = 1

l̂
〈l′m′; λμ|lm〉〈l||Tλ||l′〉. (21)

C. α emission in the coupled channels approach

The decay phenomenon of interest connects the ground
state of the parent nucleus of angular momentum IP to an
excited state of angular momentum I of the daughter and an
α particle of angular momentum l, in such a way that the total
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angular momentum IP is conserved:

P (IP ) → D(I ) + α(l). (22)

An important remark is that both the initial state of the parent
and the final state of the daughter are built upon the same single
particle orbital j . This is known as a favored α transition, due to
the fact that it usually has a large branching ratio. The situation
where the initial and final single particle orbitals are different
is known as an unfavored α transition. For the favored case,
the transition from the ground state to the band head built atop
the j orbital in the daughter nucleus generally has the highest
decay width, and transitions on excited states of the band form
the fine structure of the spectrum.

The total wave function of the α-daughter system can
be assumed to be separable in radial and angular parts and
expanded in the angular momentum basis

�(b†2,R) =
∑
I l

fI l(R)

R
ZI l(b

†
2,ω), (23)

where the angular components are given by the coupling to
good angular momentum between a wave function for the
odd-mass daughter nucleus and a spherical harmonic for the α
particle

ZI l(b
†
2,ω) = [	IM (b†2) ⊗ Ylm(ω)]IP MP

. (24)

Here, R = (R,ω) is the relative vector between the two
fragments. Each pair of angular momentum values defines
a decay channel

(I,l) = c. (25)

The function � must satisfy the stationary Schrödinger
equation

H�(b†2,R) = Qα�(b†2,R) (26)

with Qα the Q value of the decay process. The Hamiltonian

H = − �

2μ
∇2

R + HD(b†2) + V (b†2,R) (27)

features a kinetic operator depending on the reduced mass μ
of the system

μ = mN

4AD

4 + AD

, (28)

a term describing the motion of the daughter HD(b†2) and
an α-daughter interaction with monopole and quadrupole
components

V (b†2,R) = V0(R) + V2(b†2,R). (29)

A detailed study of this potential can be found in Ref. [4]. There
it is shown that the monopole component has a pocket-like
shape,

V0(R) = vaV̄0(R),R > Rm

= a(R − Rmin)2 − v0, R < Rm, (30)

obtained through the matching of a harmonic oscillator to the
nuclear plus Coulomb potential V̄0 obtained by the method
of the double folding procedure of the M3Y particle-particle

interaction with Reid soft core parametrization (Refs. [19–21]
and the book [1] for computational details).

The number va acts as a quenching factor of the nuclear
force. va = 1 implies an α particle existing with certainty, and
a value va < 1 is required in order to simulate the formation
of the α particle on the nuclear surface. Since branching ratios
tend to have a weak dependence on this parameter [4], it
can be adjusted in order to reproduce the total decay width
 [22]. Another possibility is to leave the interaction potential
unquenched and to consider the spectroscopic factor

S = exp

theor
, (31)

as a measure of the particle formation probability, as in
Ref. [23].

The repulsive core on the second line of Eq. (30) simulates
the Pauli principle, namely the fact that the α particle can exist
only on the nuclear surface. Its parameters can be adjusted
so that the first resonance in the potential corresponds to the
experimental Q value.

The matching radius Rm and the point Rmin at which the
oscillator potential attains the lowest value are found through
the method of Ref. [4], which requires the equality between
the external attraction and internal repulsion together with
their derivatives. This makes the total interaction continuous
and dependent on the repulsive strength a and potential depth
v0. In our study, a has a fixed value of 50 MeV for all nuclei
and v0 is fitted in each case through the experimental Q value.

The second term of Eq. (29) is the QQ interaction

V2(b†2,R) = −C0(R − Rmin)
dV0(R)

dR

×
√

5[Qc
2 ⊗ Y2(ω)]0 (32)

with C0 serving as an α-nucleus coupling strength.
The angular functions entering the expansion of Eq. (23)

are orthonormal. Using this, one obtains in a standard way the
system of coupled differential equations for radial components

d2fI1l1 (R)

dρ2
I1

=
∑
I2l2

AI1l1;I2l2 (R)fI2l2 (R) (33)

with the coupling matrix having the expression

AI1l1;I2l2 (R) =
[
l1(l1 + 1)

ρ2
I1

+ V0(R)

Qα − EI1

− 1

]
δI1l1;I2l2

+ 1

Qα − EI1

〈ZI1l1

∣∣V2(b†2,R)
∣∣ZI2l2

〉
, (34)

in terms of the reduced radius

ρI = κIR, κI =
√

2μ(Qα − EI )

�2
. (35)

Notice that κI has the same value for all the channels of fixed
I , so the supplementary l index can be omitted both for the
wave number and reduced radius.
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FIG. 2. Hamiltonian strength parameter A1 versus deformation
d for rotational bands built atop different values of the odd nucleon
angular momentum projection �.

The coupling term of the matrix is found by the same
methods as in the previous sections to be

〈ZI1l1

∣∣V2(b†2,R)
∣∣ZI2l2

〉
=

∑
J1J2

X
J1j
I1

X
J2j
I2

〈
ϕ

(g)
J1

∣∣∣∣Qc
2

∣∣∣∣ϕ(g)
J2

〉〈l1||Y2||l2〉Î 2
P Î1Î2ĵ

× (−)I2−IP +l2W(I1l1I2l2; IP 2)

⎧⎨
⎩

J1 I1 j
J2 I2 j
2 2 0

⎫⎬
⎭, (36)

where the curly brackets denote a 9j symbol. Since the reduced
matrix element between the states of the core is a linear
function of the deformation [15], one can express this linearity
in terms of an effective α-nucleus coupling strength having a
different anharmonic parameter aα

C = C0

(
1 −

√
2

7
aαd

)
. (37)

D. Resonant states

The measured α-decay widths are by many orders of
magnitude smaller than the Q value. Thus, an α-decaying
state is almost a bound state, this being the main reason why
the stationary approach is a very good approximation of the
emission process. The state can be identified with a narrow
resonant solution of the system of equations (33), containing
only outgoing components. In order to solve this system of
equations we first define the internal and external fundamental
solutions which satisfy the boundary conditions:

RI l,L(R)
R→0−→ δI l,LεI l,

H(+)
I l,L(R) ≡ GI l,L(R) + iFI l,L(R)

R→∞−→ (38)

δI l,LH
(+)
l (κIR) ≡ δI l,L[Gl(κIR) + iFl(κIR)],

where εIl are arbitrary small numbers. Here, the channel
indexes label the component and L the solution, Gl(κIR)
and Fl(κIR) are the standard irregular and regular spherical
Coulomb functions, depending on the momentum κI in the
channel c, defined by Eq. (35).
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FIG. 3. Experimental energy level ratios EI+1
EI

as a function of the deformation parameter d together with the theoretical curves, separately
for each value of the single particle angular momentum projection �.
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TABLE I. Band-head spin and parity, deformation and Hamiltonian strength parameters, experimental and predicted excited energy levels,
B(E2) values for the transition � + 2 → � for rotational bands in daughter nuclei where favored α-transitions occur.

n D(I ) �π d A1 Eexp Efit B(E2)�+2→� n D(I ) �π d A1 Eexp Efit B(E2)�+2→�

keV keV keV W.u. keV keV keV W.u.

1 Ra225
88 5+ 3.804 475.876 236.25 3 – 124.244 8 U 237

92 5+ 3.775 489.617 159.962 14 – 122.096
7+ 267.92 5 285.044 7+ 204.17 7 210.550
9+ 321.76 8 336.732 9+ 260.93 12 264.578
11+ 390.0 4 399.098 11+ 327.3 10 329.739
13+ 487 3 471.662 13+ 409.8 10 405.515
15+ – 554.036 15+ 501.4 12 491.493
17+ – 645.556 17+ 607.7 12 586.958

2 Ac223
89 5− 2.496 181.721 0 – 49.855 9 Np235

93 5− 3.824 463.486 49.10 5 – 125.739
7− 42.4 1 43.582 7− 91.6 3 95.349
9− 90.7 1 89.180 9− 146.8 7 145.150
11− 141 5 141.602 11− – 205.255
13− – 197.948 13− – 275.213
15− – 260.189 15− – 354.654
17− – 323.633 17− – 442.954

3 Ac225
89 5+ 3.066 305.552 155.65 7 – 76.802 10 Np237

93 5− 3.817 496.159 59.54092 22 – 125.214
7+ 199.85 9 203.667 7− 102.959 3 108.698
9+ 257.04 16 255.341 9− 158.497 3 162.212
11+ – 316.518 11− 225.957 16 226.791
13+ – 385.988 13− 305.050 3 301.948
15+ – 463.502 15− 395.53 4 387.283
17+ – 547.239 17− 497.01 5 482.120

4 Th229
90 5+ 3.716 458.930 0 – 117.801 11 Np239

93 5− 3.738 472.328 74.6640 10 – 119.391
7+ 42.4349 2 49.150 7− 117.715 40 123.468
9+ 97.13595 24 101.467 9− 173.086 18 176.660
11+ 163.2542 7 164.504 11− 241.312 24 240.775
13+ 241.546 19 237.728 13− 317.4 15 315.282
15+ 327.8 3 320.725 15− – 399.767
17+ – 412.752 17− – 493.493

5 Th231
90 7− 3.589 490.657 387.836 1 – 79.654 12 Pu239

94 5− 3.704 478.740 285.460 2 – 116.939
9− 452.176 15 457.046 7− 330.124 4 336.658
11− 530.24 5 528.029 9− 387.42 2 391.599
13− – 610.351 11− 462 3 457.784
15− – 703.366 13− – 534.646
17− – 806.423 15− – 621.748
19− – 918.846 17− – 718.299

6 Pa231
91 5+ 3.984 702.273 183.4962 17 – 138.117 13 Pu241

94 7+ 3.502 434.114 175.0523 14 – 75.420
7+ 247.320 5 246.436 9+ 231.935 9 238.742
9+ 304.5 4 315.768 11+ 301.172 16 304.665
11+ 406.1 3 399.615 13+ 385 3 380.962
13+ – 497.451 15+ – 466.987
15+ – 608.810 17+ – 562.094
17+ – 732.964 19+ – 665.617

7 Pa233
91 5+ 3.700 587.036 237.89 13 – 116.653 14 Am241

95 3− 3.449 432.807 471.812 9 – 141.463
7+ 300.50 3 298.987 5− 504.451 9 510.215
9+ 365.84 8 366.507 7− 550.4 4 556.342
11+ – 447.840 9− 625.2 5 616.164
13+ 589 4 542.285 11− 682.1 6 684.941
15+ – 649.306 13− 787.2 6 768.880
17+ – 767.923 15− 863.8 7 856.494
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TABLE I. (Continued.)

n D(I ) �π d A1 Eexp Efit B(E2)�+2→� n D(I ) �π d A1 Eexp Efit B(E2)�+2→�

keV keV keV W.u. keV keV keV W.u.

15 Am243
95 3− 3.465 409.433 265 10 – 142.950 21 Bk247

97 3− 3.281 332.176 0 – 126.436

5− 300 2 301.257 5− 29.88 11 33.443

7− 345 1 344.467 7− 71.60 13 72.792

9− – 400.496 9− 125.5 4 123.949

11− – 464.992 11− – 181.849

13− – 543.654 13− – 253.117

15− – 625.919 15− – 325.800

16 Am245
95 7+ 3.389 467.904 327.428 8 – 70.148 22 Bk249

97 7+ 3.667 358.729 0 – 83.581

9+ 395.870 2 399.236 9+ 41.805 8 50.471

11+ 475.52 3 475.021 11+ 93.759 8 100.203

13+ 563.1 3 562.466 13+ 155.854 10 157.973

15+ – 660.747 15+ 229.242 12 223.360

17+ – 769.069 17+ 311.857 23 295.932

19+ – 886.603 19+ – 375.243

17 Cm243
96 7+ 3.040 281.795 114 20 – 55.439 23 Bk251

97 7+ 3.771 312.780 ∼35.5 – 89.011

9+ 164 3 169.285 9+ 70 3 78.934

11+ 228 3 225.576 11+ ∼124 119.950

13+ – 289.679 13+ – 167.687

15+ – 360.773 15+ – 221.829

17+ – 438.184 17+ – 282.046

19+ – 521.137 19+ – 347.998

18 Cm245
96 9− 3.667 395.789 388.181 13 – 63.542 24 Cf247

98 9− 3.600 328.578 480.40 9 – 61.000

11− 442.918 21 453.613 11− 531.99 21 538.111

13− 508.87 3 516.475 13− 595 4 592.167

15− 587.9 10 587.652 15− – 653.285

17− 672 3 666.679 17− – 721.042

19− – 753.084 19− – 795.013

21− – 846.399 21− – 874.780

19 Cm249
96 7+ 3.511 460.624 48.76 4 – 75.851 25 Cf251

98 7+ 3.874 565.534 106.309 18 – 94.611

9+ 109.49 9 115.521 9+ 166.303 23 174.178

11+ 182.77 16 185.116 11+ 239.33 3 244.459

13+ 268.8 3 265.682 13+ 325.29 3 326.389

15+ – 356.540 15+ 423.92 4 419.477

17+ – 457.015 17+ – 523.204

19+ – 566.406 19+ – 637.027

20 Bk241
97 3− 3.433 380.147 51 4 – 139.986 26 Cf253

98 9+ 3.274 447.757 241.01 8 – 49.612

5− 82 6 85.570 11+ 321.21 22 326.500

7− 128 7 126.486 13+ 417 5 414.539

9− – 179.561 15+ – 513.164

11− – 240.500 17+ – 621.496

13− – 314.926 19+ – 738.703

15− – 392.457 21+ – 863.988
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Each component of the solution is built as a superposition
of N independent fundamental solutions. We impose the
matching conditions at some radius R1 inside the barrier and
obtain

fIl(R1) =
∑
L

RI l,L(R1)MIl,L =
∑
L

H(+)
I l,L(R1)NIl,L,

(39)
dfIl(R1)

dR
=

∑
L

dRI l,L(R1)

dR
MIl,L =

∑
L

dH(+)
I l,L(R1)

dR
NIl,L,

where NIl,L are called scattering amplitudes. One thus arrives
at the following secular equation:∣∣∣∣∣

R(R1) H(+)(R1)
dR(R1)

dR
dH(+)(R1)

dR

∣∣∣∣∣ ≈
∣∣∣∣∣
R(R1) G(R1)
dR(R1)

dR
dG(R1)

dR

∣∣∣∣∣ = 0. (40)

The first condition is fulfilled for the complex energies of
the resonant states. They practically coincide with the real
scattering resonant states, due to the fact that the imaginary
parts of energies are much smaller than the corresponding
real parts, which implies vanishing regular Coulomb functions
Fl inside the barrier. The roots of Eq. (40) do not depend
upon the matching radius R1, because both internal and
external solutions satisfy the same Schrödinger equation. The
unknown coefficients MIl,L and NIl,L are obtained from the
normalization of the wave function in the internal region

∑
I l

∫ R2

R0

|fIl(R)|2dR = 1, (41)

where R2 is the external turning point.
From the continuity equation, the total decay width can be

written as a sum of partial widths

 =
∑
I l

I l =
∑
I l

�vI lim
R→∞

|fIl(R)|2

=
∑
I l

�vI |NIl|2 (42)

with vI the center-of-mass velocity at infinity in the given
channel

vI = �κI

μ
. (43)

III. NUMERICAL APPLICATION

All the experimental data with which we have tested the
model has been provided by the ENSDF data set maintained by
BNL [24]. In this paper we have studied favored transitions in
26 odd-mass α emitters where the rotational band in which the
parent decays is built atop a single particle orbital of angular
momentum projection � �= 1

2 . Additionally, this band must
be described in the formalism of an odd nucleon coupled to
good angular momentum with a CSM core. The deformation
parameter d was obtained by fitting available energy levels
relative to the band head. A number of about 4 levels is required
for the determination of a reliable deformation. As can be
seen from Fig. 1, there exists a deformation range where a
large shift of the parameter’s value has little impact on the
energy levels. Because of this, when fewer energy levels are

-1

-0.5

0

 0.5

1

5 6 7 8 9  10  11  12  13  14  15

f Il

R (fm)

Il=5/2 0
Il=7/2 2
Il=9/2 2

Il=11/2 4
Il=5/2 1
Il=7/2 1
Il=9/2 3

Il=11/2 3

FIG. 4. Solutions to the system (33) for the favored decay process
U233

92 → Th229
90 + α4

2 . Solid lines represent radial functions of even
orbital angular momentum l while dashed lines represent radial
functions of odd l. The sets of functions of fixed parity are obtained
simultaneously for the same reaction energy and QQ coupling
strength.

available, the fit becomes unreliable. In these circumstances
we have determined the deformation parameter by studying
the systematics of energy levels and deformations for the
neighboring nuclei with good experimental data. A quadratic
trend is observed in the dependence of the Hamiltonian
strength parameter A1 on the deformation, as evidenced in
Fig. 2, where we assign the nuclei with separate symbols for
each value of �. The fitting formula is

A1(d) = 55.583d2 − 119.283d + 150.409,

σ = 68.410, (44)

agreeing qualitatively with the similar treatment made for the
ground bands of even-even nuclei in Ref. [5].

The agreement between the ratio of experimental energy
levels assigned to the deformation parameter d and the

 0.02

 0.04

 0.06

 0.08

 0.1

 0.12

 0.14

 2.4  2.6  2.8 3  3.2  3.4  3.6  3.8 4

C

d

FIG. 5. Effective α-nucleus coupling strength C versus deforma-
tion parameter d .
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reduced width γ 2

�0 for α transitions to the band head.

theoretical ratio EI+1

EI
is shown in Fig. 3, with separate panels

for different values of �.
On the topic of electromagnetic transitions, one notices a

surprising lack of measured B(E2) values for odd-mass α
emitters. Only one such value can be found in the database,
for the transition 9

2
+ → 5

2

+
in the ground band of Th229. It is

given by

B
(
E2; 9

2
+ → 5

2

+) = 170 30 W.u. (45)

Using the systematics for the collective effective charge qc
0

as function of d established in Ref. [5] our model predicts a
value

B
(
E2; 9

2
+ → 5

2

+) = 117.8 W.u. (46)

The difference up to the experimental value can be obtained
by tweaking the value of the single particle effective charge
q

sp
0 , which in this case must be equal to q

sp
0 = 7.004 (W.u.)

1
2 .

Due to the lack of experimental data, a systematics of single
particle effective charges cannot currently be made, but we
present predictions for B(E2; � + 2 → �) values based on
the systematics of the collective effective charge from Ref. [5],
together with results concerning energy levels in Table I.

To study α transitions, we make use of the so-called decay
intensities

ϒIl = log10
�0

Il

, (47)

and we will employ the notation ϒi, i = 1,2,3 to refer to
decay intensities for the transitions to the first, second, and
third excited states, respectively, in any rotational band of
band-head angular momentum projection � �= 1

2 . Notice that,
in principle, each intensity ϒi is given by the sum

ϒi =
∑

l

ϒIl, (48)

where I is fixed by the angular momentum of the daughter
nucleus in that particular state and l follows from the triangle
rule for the coupling to total angular momentum IP . However,
it is sufficient to consider only one l value for each state. This

0

 0.5
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FIG. 7. Intensities of the favored α transitions ϒi to the first three excited states in rotational bands as function of the index number n in
the first column of Tables I and II. Open circles denote the experimental data, filled circles are the values predicted by the coupled channels
method with a particle + CSM core structure model and dark triangles show the barrier penetration estimates.
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TABLE II. Sequence of l values that reproduces the fine structure of the emission spectrum, QQ coupling strength between α particle and
odd-mass daughter nucleus, Q value for the g.s.→ �0 transition, experimental and predicted logarithm of the total half-life in the α channel,
experimental and predicted values for the favored decay intensities to the first three excited states of each rotational band.

n D(I ) lg.s.→� lg.s.→�+1 lg.s.→�+2 lg.s.→�+3 C Qg.s.→� log10 T exp
α log10 T pred

α ϒ
exp
1 ϒ

pred
1 ϒ

exp
2 ϒ

pred
2 ϒ

exp
3 ϒ

pred
3

(MeV) (s) (s)

1 Ra225
88 0 2 3 4 0.107 4.931 11.362 10.477 0.780 0.779 1.748 1.672 2.669 2.820

2 Ac223
89 0 1 2 3 0.073 6.580 3.432 1.819 0.620 0.319 1.284 1.287 2.097 2.424

3 Ac225
89 0 1 2 3 0.085 5.679 7.433 6.168 0.627 0.342 1.326 1.324 – 2.455

4 Th229
90 0 2 3 4 0.133 4.909 12.669 11.677 0.810 0.809 1.720 1.720 3.301 2.795

5 Th231
90 0 2 3 4 0.112 4.290 16.342 16.291 1.301 1.301 2.574 2.402 – 3.990

6 Pa231
91 0 2 3 4 0.052 5.011 12.117 11.392 1.234 1.231 2.079 2.124 – 3.815

7 Pa233
91 0 2 3 4 0.061 4.720 13.833 13.394 1.238 1.238 2.262 2.226 – 3.804

8 U 237
92 0 2 3 4 0.114 4.980 13.264 12.095 0.840 0.841 1.773 1.747 3.442 2.847

9 Np235
93 0 2 3 4 0.107 5.874 8.633 7.206 0.778 0.777 1.623 1.589 – 2.552

10 Np237
93 0 2 3 4 0.104 5.578 10.146 8.831 0.815 0.814 1.699 1.647 3.753 2.714

11 Np239
93 0 2 3 4 0.083 5.364 11.362 10.046 0.898 0.898 1.793 1.736 4.036 2.932

12 Pu239
94 0 2 3 4 0.115 5.883 8.964 7.583 0.784 0.783 1.659 1.599 3.386 2.656

13 Pu241
94 0 2 3 4 0.069 5.447 11.431 9.997 1.270 1.267 2.463 2.114 4.270 3.736

14 Am241
95 0 2 2 4 0.033 5.983 8.554 7.337 1.196 1.201 1.388 1.170 – 3.789

15 Am243
95 0 2 3 4 0.061 5.623 10.643 9.447 0.808 0.811 1.477 1.639 – 2.799

16 Am245
95 0 2 3 4 0.042 5.198 12.286 11.997 1.653 1.655 – 2.656 – 4.669

17 Cm243
96 0 2 3 4 0.070 6.400 7.505 5.699 1.279 1.283 – 2.003 – 3.587

18 Cm245
96 0 2 3 4 0.093 5.908 10.041 8.278 1.242 1.241 2.437 1.956 4.075 3.477

19 Cm249
96 0 2 3 4 0.065 6.077 8.696 7.274 1.253 1.250 – 2.055 – 3.625

20 Bk241
97 0 2 3 4 0.052 7.858 2.217 0.125 0.784 0.786 1.421 1.524 – 2.624

21 Bk247
97 0 2 3 4 0.042 6.597 7.079 5.161 0.935 0.930 1.390 1.703 – 3.008

22 Bk249
97 0 2 3 4 0.055 6.739 6.255 4.486 1.135 1.136 2.025 1.978 3.025 3.179

23 Bk251
97 0 2 3 4 0.078 6.401 7.929 6.095 0.953 0.952 1.547 1.639 – 2.727

24 Cf247
98 0 2 3 4 0.075 6.945 5.978 4.061 1.258 1.259 2.296 1.900 – 3.339

25 Cf251
98 0 2 3 4 0.044 7.133 4.857 3.161 1.270 1.265 2.176 2.020 2.927 3.553

26 Cf253
98 0 2 3 4 0.059 6.622 6.940 5.382 1.672 1.674 2.496 2.554 – 4.528

is due to the fact that the standard penetrability PIl through
the Coulomb barrier, defined by the factorization

Il = 2PIl(R)γ 2
I l(R), (49)

decreases by one order of magnitude for each increasing
value of l. Therefore, one would expect to be able to make
a reasonable prediction of the fine structure of the α-emission
spectrum using a basis of just four states, one state for the band
head and an additional state for each excited energy level. In
the cases where experimental data concerning the energy of the
last state was not available, we used the CSM core + particle
prediction provided by the fit of the lower energies.

It turns out however that the basis suggested above needs to
be enlarged, due to the fact that the parity of a resonance is fixed
by whether the l values involved are even or odd. Since the
interaction (29) conserves parity, one must construct separate
resonances of fixed even or odd parity. The even one follows the
sequence of minimal l values in each channel as l = 0,2,2,4,
while the odd one follows the sequence l = 1,1,3,3. Thus,

each basis of four states having a given parity constructs a
separate resonant solution of the system (33). It is important
that both resonances are found at the same reaction energy Qα

and same QQ coupling strength C. It is possible to achieve this
for the potential of Eq. (30) by adjusting the depth v0 so that
both resonances generated at the same C match in terms of the
reaction energy. Using this, one can then tweak the effective
coupling strength C of Eq. (37) to simultaneously generate
different sets of even and odd resonances for each α-decay
process of energy Qα , in an attempt to fit experimental data.
One will thus obtain a total of eight radial functions in the
solution, four in each resonance, as can be seen in Fig. 4 for
the decay process

U233
92 → Th229

90 + α4
2 . (50)

We have observed that for 23 decay processes out of the
total of 26 studied, C can be tweaked in order to match
the experimental value of ϒ1 for a decay width with l = 0
corresponding to the α transition to the band head and the
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FIG. 8. Logarithm of the hindrance factor HFi versus neutron number N − 126, separately for each excited state i = 1,2,3.

first decay width having l = 2 obtained in the even resonance
corresponding to the α transition to the first excited state.
Simultaneously, the ratio between decay widths corresponding
to the same l = 0 for the decay to the band head and the
first value of l = 3 for the decay to the second excited state
obtained in the odd resonance yielded a very good estimate
of ϒ2, while the ratio between decay widths corresponding
to l = 0 for the band-head decay and l = 4 for the decay
to the third excited state found in the even resonance have
given a reasonable value for ϒ3. One of the exceptions is
the decay to the daughter nucleus Am241

95 , where the available
data concerning ϒi,i = 1,2 suggest a doublet structure in the
emission spectrum that can be reproduced by employing the
same l = 0 width for the band-head transition and the two
decay widths with l = 2 obtained in the even resonance. The
other exception concerns the two Ac isotopes in our data set.
In these cases, the decay width of angular momentum l = 0
and the second l = 2 width obtained in the even resonance can
be used to reproduce the value of ϒ2, situation in which the
l = 0 width and the second width of angular momentum l = 1
in the odd resonance (which corresponds to the transition to
the first excited state) will reproduce ϒ1 reasonably.

When plotted against the deformation parameter, the values
of C obtained from the above fit follow the prediction of
Eq. (37) by exhibiting a linear trend with respect to d, as
seen in Fig. 5. The parameters of the linear fit are

C0 = −0.088, aα = 0.971, σ = 0.023. (51)

This coupling strength can be interpreted as a measure of α
clustering. To see this, we use the reduced width γ 2

�0 introduced
in Eq. (49). It turns out that C shows a linear correlation
with γ 2

�0 with a positive slope, as can be seen in Fig. 6. The

parameters are given by

C = 10.096γ 2
�0 + 0.037,

σ = 0.021. (52)

In Fig. 7 we present in separate panels the values of the
intensities ϒi, i = 1,2,3 obtained by the method presented
above, versus the index number n found in the first column
of Tables I and II. With open circles we show experimental
data and with filled circles we give the values predicted by the
coupled channels method with a particle + CSM core structure
model. Dark triangles present the crudest barrier penetration
calculation, where the intensities follow from the ratios of
penetrabilities computed at the same values of l as in the
coupled channels approach

ϒi = log10
P�0

PIl

. (53)

All emission data are presented in Table II.
As we mentioned, the spectroscopic factor defined by

Eq. (31) accounts for clustering effects. One can define partial
spectroscopic factors for each channel and the logarithm of the
hindrance factor as

log10 HFI l = log
S�0

SIl

= ϒ
exp
I l − ϒ theor

I l . (54)

This quantity shows the importance of the extra clustering in
the decay process to excited states that is not considered within
our model. In Fig. 8 we have plotted these logarithms versus the
neutron number. It is clearly shown that coupling an α particle
to the daughter nucleus with the required strength needed to
reproduce one intensity (usually ϒ1, with the exception of
Ac isotopes where ϒ2 is reproduced) allows one to predict the
values of the other intensities within a factor usually less than 3.

024313-11



A. DUMITRESCU AND D. S. DELION PHYSICAL REVIEW C 93, 024313 (2016)

 0.5

1

 1.5

2

 2.5

3

 3.5

4

 4.5

 20  40  60  80  100  120  140  160  180  200  220

Υ
i

Ei (keV)
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We note that the universal decay law treated in Refs. [23]
and [25] is once again manifested in the dependence of
the decay intensities on excitation energies. In Fig. 9 we
have represented all of the ϒi values as function of the
corresponding excitation energy Ei relative to the band head
for each collective structure analyzed in this paper. We observe
a universal linear correlation with parameters

ϒi = 0.017Ei + 0.169,σ = 0.316. (55)

As a final remark, the logarithm of the spectroscopic factor
of Eq. (31) can be represented as a function of neutron number,
as in Fig. 10. This quantity shows a decreasing trend with
the neutron number, meaning that the unquenched potential
predicts shorter half-lives for heavier nuclei than what is
observed experimentally.

IV. CONCLUSIONS

We analyzed the available experimental data for favored
α transitions to rotational bands built upon a single particle
angular momentum projection � �= 1

2 . The nuclear structure
was modeled as an odd-nucleon coupled to a coherent state
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FIG. 10. Logarithm of the spectroscopic factor S versus neutron
number N − 126.

even-even core, the energy levels of each band being fitted
through the use of a deformation parameter d and Hamiltonian
strength parameter A1 that is related to the deformation through
a quadratic dependence. B(E2) values can be predicted using
the systematics of the collective effective charge as function
of deformation established in Ref. [5]. In the absence of
experimental data that allows the study of the single particle
effective charge contribution, it is expected that these predicted
values are smaller than what will be observed in reality.

The fine structure of the α-emission spectrum was studied
using the coupled channels method, through a QQ interaction
tweaked by a coupling strength that behaves linearly with
respect to the deformation parameter and reduced width for
the g.s.→ � transition. The predicted values of the intensities
are in reasonable agreement with experimental data, usually
within a factor less than 3. With additional developments in
the structure part, it is expected that the model will be useful
for the study of the case � = 1

2 as well.
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