
PHYSICAL REVIEW C 93, 024306 (2016)

Liquid-gas phase transition in strange hadronic matter with relativistic models
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Background: The advent of new dedicated experimental programs on hyperon physics is rapidly boosting the
field, and the possibility of synthesizing multiple strange hypernuclei requires the addition of the strangeness
degree of freedom to the models dedicated to nuclear structure and nuclear matter studies at low energy.
Purpose: We want to settle the influence of strangeness on the nuclear liquid-gas phase transition. Because of
the large uncertainties concerning the hyperon sector, we do not aim at a quantitative estimation of the phase
diagram but rather at a qualitative description of the phenomenology, as model independent as possible.
Method: We analyze the phase diagram of low-density matter composed of neutrons, protons, and � hyperons
using a relativistic mean field (RMF) model. We largely explore the parameter space to pin down generic features
of the phase transition, and compare the results to ab initio quantum Monte Carlo calculations.
Results: We show that the liquid-gas phase transition is only slightly quenched by the addition of hyperons.
Strangeness is seen to be an order parameter of the phase transition, meaning that dilute strange matter is expected
to be unstable with respect to the formation of hyperclusters.
Conclusions: More quantitative results within the RMF model need improved functionals at low density, possibly
fitted to ab initio calculations of nuclear and � matter.
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I. INTRODUCTION

It is well known that nuclear matter below saturation ex-
hibits a first-order phase transition belonging to the liquid-gas
(LG) universality class [1–9]. The study of the associated phase
diagram is not only a playground for many-body theorists, but
it is also of clear relevance for nuclear phenomenology, since
the very existence of atomic nuclei can be understood as a
finite-size manifestation of that phase transition. In a similar
way, one can ask whether the existence of hypernuclei as bound
systems implies the presence of a similar phase transition in
the extended phase diagram where strangeness represents an
extra dimension.

Since the first synthesis of � hypernuclei in the 1980s,
numerous nuclear matter studies including hyperons have
been performed [10–15]. These early studies assumed very
attractive couplings in the strange sector in order to justify the
extra binding measurements of double-� hypernuclei [16,17].
As a consequence, it was predicted that multistrange clusters
and even strangelets could be stable and possibly accessible in
heavy-ion collisions. In particular, in Ref. [14] the occurrence
of a thermodynamic phase transition in strange compressed
baryonic matter was predicted, which would lead to a new
family of neutron stars characterized by much smaller radii
than usually considered.

However, more recent analyses [18,19] of double-� hy-
pernuclei tend to suggest a very small attraction in the �-�
channel, and the stability of pure � matter seems to be
ruled out. Most hypernuclear matter studies are nowadays
essentially motivated by assessing the strange content of
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neutron star cores, and therefore concentrate on matter in β
equilibrium [20]. At β equilibrium, no hyperons appear below
baryonic densities of the order of 3ρ0 or more. For this reason,
the influence of strangeness on the low-density nuclear matter
phase diagram has never been studied, to our knowledge. Still,
the existence of single- and double-� hypernuclei, and the very
active research on multiply strange nuclei with the advent of
new dedicated experimental programs such as J-Parc in Japan
or PANDA at FAIR (Facility for Antiproton and Ion Research,
Darmstadt) [21–24] suggests that the nuclear liquid-gas phase
transition should be preserved by the consideration of the
strangeness degree of freedom [25].

In this paper, we explore the influence of strangeness on
the LG phase transition with popular relativistic mean-field
(RMF) models. Like in any other phenomenological effective
model, the couplings of the RMF are not fully known even at
subsaturation densities. In particular, neutron star physics has
taught us in the recent years that it is important to go beyond
a simple SU(6) or even SU(3) symmetry, and extra attractive
σ ∗ and repulsive φ mesons specifically coupled to the strange
baryons should be introduced [26–31], which leads to a poten-
tially uncontrolled multiplication of parameters. However, if
we limit ourselves to the simple system composed of neutrons,
protons, and � hyperons, nuclear and hypernuclear structures
provide some constraints that can be used to limit the parameter
space of the model. In this paper, we consider the simple
linear and nonlinear Walecka model for the np� system, and
discuss the modification of the nuclear matter phase diagram
under a wide variation of coupling constants, in the acceptable
parameter space constrained both from hypernuclear data and
ab initio calculations of hypernuclear matter. We show that in
the whole parameter space the LG phase transition is preserved
by the addition of strangeness, even if the extension of the
spinodal along the strange density direction is subject to large
uncertainties. The instability zone is globally quenched by
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strangeness, but the strange density is an order parameter
of the transition. This means that, from the thermodynamic
point of view, the formation of hyperclusters with multiple �’s
should be favored at low density [22–24], which has possible
implications in relativistic heavy-ion collisions [25].

The paper is organized as follows. Section II briefly
recalls the main equations of the Walecka model, in both
its linear and nonlinear versions, for the np� system with
inclusion of strange mesons. Section III defines the coupling
parameter space of the model, under the constraints of well
defined values for the � potential as required by the available
hypernuclear data. To further refine the domain of acceptable
parameters, Sec. IV compares the RMF functionals with recent
ab initio predictions of n� matter with the auxiliary field
diffusion Monte Carlo (AFDMC) technique [32]. In Sec. V
the general formalism for the analysis of spinodal instabilities
in multicomponent systems is revisited. The main results of
our work are presented in Sec. VI, which shows in detail the
instability properties of n� and np� matter with the different
choices for the couplings. Finally, Sec. VII summarizes the
paper.

II. FORMALISM

In this section, we present the hadronic equation of state
(EOS) used in this work. We describe matter within the
framework of relativistic mean field (RMF) models involving
the interaction of Dirac baryons mediated by the scalar and
vector mesons which are independent degrees of freedom
[33–40]. The scalar-isoscalar σ field mediates the medium-
range attraction between baryons, the vector-isoscalar ω field
mediates the short-range repulsion between baryons, the
strange scalar σ ∗ field mediates the medium-range attraction
between hyperons, the strange vector φ field mediates the
short-range repulsion between hyperons, and finally the ρ
meson field allows us to adjust isovector properties of nuclear
matter. In the present work, we used the nonlinear Walecka
model (NLWM) and the linear Walecka model (LWM),
which can be obtained by just turning off the nonlinear
terms, in the presence of the mesons listed above. Nonlinear
means that there are also self-interaction terms for the scalar
field σ in the Lagrangian density, as proposed by Boguta
and Bodmer [34,41], which provides better results than the
LWM [39]. The Lagrangian density reads

L =
∑

j

ψj [γ μ(i∂μ − gωjωμ − gφjφμ − gρj �τ · �ρμ) − m∗
j ]ψj + 1

2

(
∂μσ∂μσ − m2

σ σ 2
) − 1

3
bMN (gσNσ )3 − 1

4
c(gσNσ )4

+ 1

2

(
∂μσ ∗∂μσ ∗ − m2

σ σ ∗2
) − 1

4
�μν �μν + 1

2
m2

ω ωμωμ − 1

4
�μν�

μν + 1

2
m2

φφμφμ, − 1

4
�Rμν · �Rμν+1

2
m2

ρ �ρμ · �ρ μ, (2.1)

where m∗
j = mj − gσj σ − gσ ∗j σ ∗ is the baryon effective

mass and mj is the bare mass of the baryon j . The
terms �μν = ∂μων − ∂νωμ, �μν = ∂μφν − ∂νφμ, and �Rμν =
∂μ �ρν − ∂ν �ρμ − gρj ( �ρμ × �ρν) are the strength tensors, where
the up arrow in the last term denotes the isospin vectorial space
with the �τ isospin operator. The coupling constants are gij =
χijgiN , with the mesons denoted by index i = σ,ω,ρ,σ ∗,φ and
the baryons denoted by j . Note that χij is a proportionality
factor between gij and the nucleon coupling constants giN ,
with N = n,p. The couplings b and c are the weights of the
nonlinear scalar terms. The sum over j can be extended over
all baryons of the octet (n,p,�,�−,�0,�+,�−,�0).

The values of the coupling constants of the nucleons with
mesons σ , ω, and ρ are obtained from the phenomenology.
These constants are tuned to the bulk properties of nuclear
matter. Some of these properties are not known exactly, just
within certain ranges, like the effective masses of the nucleons,
therefore there are many sets of parameters that describe
the bulk properties. The biggest uncertainties concern the
hyperon coupling constants, because the phenomenological
information from hypernuclei is not sufficient to completely
pin down the interaction in the strange sector [42,43]. The
hyperon couplings are chosen in different ways in the litera-
ture, either based on simple symmetry considerations [29,44–
48] or requiring an EOS in β equilibrium sufficiently
stiff to justify the observation of very massive neutron
stars [49,50].

Some different approaches, all affected by a certain degree
of arbitrariness, are listed here. (1) Some authors argue that
χσj = χωj = χρj = √

2/3 [45]. (2) In another work [46], the
authors claim that χσ� = χω� = χσ� = χω� = 2/3, χσ� =
χω� = 1/3, χρ� = 0, χρ� = 2 and χρ� = 0. (3) Based on
the experimental analysis of �-hypernuclei data, an alter-
native constraint is given by U�(nN = n0) = χω�(gωN ) −
χσ�(gσN ) = −28 MeV for the fixed χσ� = 0.75. This last
case can be extended to the whole baryonic octet, indexed by
j , setting χσj = 0.75; χωj is given by the above constraint
and χρh = 0, where h is the hyperon index [49]. (4) Another
approach is to take into account the resulting neutron star
maximum mass [49,50].

In the case of the inclusion of the strange mesons, σ ∗
and φ [26–28], we have to ensure that the nuclear matter
properties are preserved when these new mesons are included.
New mesons mean new interactions and also new constants,
therefore the arbitrariness introduced by these constants must
be eliminated by data whenever possible. In analogy with
what has been done with the gσ�, when constrained by the
hypernuclear potential UN

� via hypernuclear data [49], we can
try to tie the strange constants to the U�

� data available in
literature [18,19,47,51–58]. In the next section we develop
these ideas in detail.

Applying the Euler-Lagrange equations to the Lagrangian
density Eq. (2.1) and using the mean-field approximation
[37] (σ → 〈σ 〉 = σ0; ωμ → 〈ωμ〉 = δμ0 ω0; �ρμ → 〈�ρμ〉 =
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δμ0 δi3ρ3
0 ≡ δμ0 δi3ρ03; σ ∗ → 〈σ ∗〉 = σ ∗

0 ; φμ → 〈φμ〉 =
δμ0 φ0), we obtain the following equations of motion for the
meson fields at zero temperature:

(gσNσ0) = �σ

⎛
⎝∑

j

χσjρ
s
j − bMn(gσNσ0)2 − c(gσNσ0)3

⎞
⎠,

(gωNω0) = �ω

∑
j

χωjnj ,

(gρNρ0) = �ρ

∑
j

τ3jχρjnj ,

(gσNσ ∗
0 ) = �σσ ∗

∑
j

χσ ∗j ρ
s
j ,

(gωNφ0) = �ωφ

∑
j

χφjnj , (2.2)

where for simplicity we define the following factors: �σ =
( gσN

mσ
)2, �ω = ( gωN

mω
)2, �ρ = ( gρN

mρ
)2, �σσ ∗ = ( gσN

mσ∗ )2, �ωφ =
( gωN

mφ
)2; χσj , χσ ∗j , χωj , χρj , and χφj are ratios between coupling

constants and τ3j is the third component of the isospin
projection of the j baryon. The scalar and baryon densities
are given respectively by

ρs
j = γ

2π2

∫ kFj

0

m∗
j√

p2 + m∗2
j

p2dp (2.3)

and

nj = γ

2π2

∫ kFj

0
p2dp. (2.4)

The energy density of the baryons is given by

εB = γ

2π2

∑
j

∫ kFj

0
p2

√
p2 + m∗2

j dp, (2.5)

and for the mesons

εM = (gσNσ0)2

2�σ

+ (gωNω0)2

2�ω

+ (gρNρ0)2

2�ρ

+ (gσNσ ∗
0 )2

2�σσ ∗

+ (gωNφ0)2

2�ωφ

+ 1

3
bMn(gσNσ0)3 + 1

4
c(gσNσ0)4. (2.6)

Finally the total energy density is the summation

ε = εB + εM.

To obtain the chemical potential, one has to take the
derivatives of the energy density with respect to the baryon
density [39]. Note the dependence of the Fermi momenta
and the fields with the baryon density in the upper limit of
the integrals in Eqs. (2.5) and (2.6) respectively. Using the
derivative chain rule and the equation of motion for the σ
field, we obtain

μ∗
j = μj − χσj (gωNω0) − τ3jχρj (gρNρ0) − χωj (gφNφ0).

(2.7)
The total pressure is

p = pB + pM,

where pB is the baryonic pressure given by

pB = γ

2π2

∑
j

∫ kFj

0

p4√
p2 + m∗2

j

dp, (2.8)

and pM is the pressure of the mesons:

pM = − (gσNσ0)2

2�σ

+ (gωNω0)2

2�ω

+ (gρNρ0)2

2�ρ

− (gσNσ ∗
0 )2

2�σσ ∗

+ (gωNφ0)2

2�ωφ

− 1

3
bMn(gσNσ0)3 − 1

4
c(gσNσ0)4. (2.9)

III. LAMBDAS IN (HYPER)NUCLEAR MATTER

Inspired by the pioneer works on the role of the isospin
in the liquid-gas phase transition [3,5,7,59–63], along with
more recent works on the role of the strangeness in the phase
transition of dense neutron-star matter [64–67], in this work
we want to study the role of strangeness in the low-density
and zero-temperature LG phase transition, which can be
phenomenologically associated with multiple strange bound
hypernuclei [24,25].

Because of the huge uncertainties in the strange sector
we do not aim at having quantitative predictions on that
phase transition, but would like to get qualitative statements
and avoid as much as possible the model dependence of the
results. For this reason we shall explore as widely as possible
the largely unconstrained parameter space of the hyperon
couplings. In this section we detail the criteria employed to
fix the size of the parameter space.

Concerning the nucleon sector, we used the GM1
parametrization for the NLWM [45] and the original
Walecka [37] parametrization for the LWM. The two sets of
parameters, denoted by NLWM and LWM respectively, are
shown in Table I with the fitted nuclear bulk properties.

It is well known that the value of the symmetric nuclear mat-
ter incompressibility does not qualitatively influence the phase
diagram, nor do the uncertainties on the other parameters. We
therefore consider the NLWM couplings as sufficiently well
settled and do not play with them in the following. To fully

TABLE I. Sets of parameters used in this work and corresponding
saturation properties.

NLWM LWM

n0 (fm−3) 0.153 0.17
K (MeV) 300 554
m∗/m 0.70 0.54
B/A (MeV) −16.3 −15.95
Esym (MeV) 32.5 39.22
L (MeV) 94 127.22
�σ (fm2) 11.785 13.670
�ω (fm2) 7.148 10.250
�ρ (fm2) 4.410 4.410
�σσ∗ (fm2) 3.216 3.769
�ωφ (fm2) 4.212 6.040
b 0.002947 0.000
c −0.001070 0.000
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explore the phenomenology of the model in the strange sector,
the hyperon couplings are considered as free parameters,
which, however, have to fulfill minimal requirements in terms
of the potential and the hypernuclei data. To be clear with the
notation in the following, the general function associated with
the � potential is the three-variable function U�(nn,np,n�).
For symmetric matter nn = np we have a two-variable function
U�(nN,n�). The one-variable �N potential is denoted by
UN

� (nN ) ≡ U�(nN,n� = 0), and finally for the �� potential
we have U�

� (n�) ≡ U�(nN = 0,n�), where nN = nn + np

is the nucleon density. For simplicity sometimes we omit
the dependence of the potential function with respect to the
density variables. The χ� couplings tell us how attractive or
repulsive the U� can be. For the hyperon coupling constants,
it is difficult to fix these phenomenological parameters due to
the scarcity of data available, especially for the multihyperon
nuclei. Hence when the σ ∗ and φ are taken into consideration
we need some data from single-� and double-� nuclei. Based
on data on single � produced in (π+,K+) reactions, the
presently accepted value of the single � in symmetric nuclear
matter at saturation density UN

� (n0) is ≈ −28 MeV [54,55].
For multiple hyperons there are available data just for the
double-� light nuclei, such 10

��Be, 13
��Be, and 6

��He, and the
measurements are related to the �� bond energy. This energy
can be estimated from the binding energy difference between
double-� and single-� hypernuclei denoted by �B��. In this

work we consider the value �B�� = 0.67 MeV [18,19,56–
58]. The �B�� can be interpreted as a rough estimation of
the U�

� potential at the average � density 〈n�〉 ∼ n0/5 inside
the hypernucleus [55], where n0 is the saturation point of
symmetric nuclear matter in Table I. Hence, the UN

� (n0) =
−28 MeV potential data can be used to tie the χω� to the
χσ�. For strange mesons, using U�

� (n0/5) = −0.647 MeV
we intend to link the χφ� to the χσ ∗�. The general form of the
� potential U� in the RMF models considered is given by

U�(nN,n�) = χω�(gωNω0) + χφ�(gωNφ0)

− χσ�(gσNσ0) − χσ ∗�(gσNσ ∗
0 ), (3.1)

where the dependence on the densities is given by the equations
of motion of the meson fields, and nN is the symmetric
nuclear matter density. Nucleons and �’s exchange σ and
ω mesons with each other, the first one being attractive while
the second acts repulsively. These two mesons have no strange
quantum number. The additional strange mesons are similar
to the ordinary σ and ω but they see just the strange baryons,
namely hyperons. The attractive force is due to the scalar
meson σ ∗ and the repulsive is due to the strange vector meson
φ. For simplicity we can define ω = (gωNω0), φ = (gωNφ0),
σ = (gσNσ0), and σ ∗ = (gσNσ ∗

0 ) to rewrite Eq. (3.1) in terms
of the densities instead of the fields:

U�(nN,n�) = χω�

(
gωn

mω

)2

nN − χσ�

(
gσn

mσ

)2

ρs
N (σ ) +

[
1 +

(
χφ�

χω�

)2(
mω

mφ

)2](
gωn

mω

)2

(χω�)2n�

−
[

1 +
(

χσ ∗�

χσ�

)2(
mσ

mσ ∗

)2](
gσn

mσ

)2

(χσ�)2ρs
�(σ,σ ∗) − χσ�

(
gσn

mσ

)2

[−bmnσ
2 − cσ 3]. (3.2)

We can look for one-dimensional potential UN
� (nN ), which

is just the � potential for a � in nuclear symmetric matter, and
this potential is a single-variable function in nucleon density.
It reads

UN
� (nN ) = χω�

(
gωN

mω

)2

nN − χσ�

(
gσN

mσ

)2

×[
ρs

N (σ ) − bmnσ
2 − cσ 3

]
. (3.3)

Here we can use the data for UN
� (n0) = −28 MeV. Solving the

above expression for χω� and using the equation of motion of
the fields we have

χω� = χσ�σ |N=n0 − 28 MeV

ω|N=n0

. (3.4)

The χσ� is left to be a free parameter in the RMF models.
Figure 1 shows the relation between χσ� and χω� when we
consider Eq. (3.4). For each choice of the χσ�, a particular
potential is obtained in such a way that it is constrained to
UN

� (n0; χσ�) = −28 MeV. The linear dependence obtained
means that in the framework of the (N)LWM a strong attraction
at low densities is always correlated to a strong repulsion at
high densities. It is interesting to remark that the same is true
in non-relativistic models [64–66].

Figure 2 shows the family of potentials constrained by
Eq. (3.4) in LWM and NLWM. We can see that a very
wide variety of behaviors is compatible with the hypernuclei
constraint, which explains why dedicated RMF works to
hypernuclear structure have been able in the literature to
reasonably fit the available single-particle levels with a large
variety of choices for the couplings. We can also observe that
the LWM and NLWM models produce very similar behaviors
for this potential. The main difference between the two models,
for large χσ�, is that the UN

� potential in NLWM is deeper at
low densities than the LWM due to the nonlinear terms and
the parametrization chosen.

Now, we turn our attention to the U�
� (n�) potential:

U�
� (n�) =

[
1 +

(
χφ�

χω�

)2(
mω

mφ

)2]
(χω�)ω − α(χσ�)�,

(3.5)

where we have defined α = 1 + (χσ∗�

χσ�
)2( mσ

mσ∗ )2 and

� = σ −
(

gσN

mσ

)2(
α − 1

α

)
(−bmnσ

2 − cσ 3). (3.6)
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FIG. 1. Relations between parameters in RMF.

The other chosen data is U�
� ( n0

5 ) = −0.67 MeV. Therefore,
solving Eq. (3.5) for χφ�, we obtain

χφ� =
(

mφ

mω

)

×
√√√√U�

�

(
n0
5

) + αχσ��|n�= n0
5

− χω�ω|n�= n0
5

χω�ω|n�= n0
5

χω�.

(3.7)

The above expressions are valid for the NLWM, and the
LWM expression is obtained for b = c = 0, when the � is
reduced to the σ field. Figure 3 shows the three-dimensional
(3D) parameter space χσ� × χσ ∗� × χφ� where we consider
Eq. (3.7). Note that in Eq. (3.7) there are combinations
of χσ� and χσ ∗� that do not result in real solutions. This
gives a first trivial limitation for the parameter values. The
residual parameter space, shown in Fig. 3 for the NLWM,
is still extremely large. Minimal constraints can be added
requiring that convergent solutions are obtained in hyperonic
stellar matter (with all the baryon octet, electrons, and muons
included) in β equilibrium. χρ = 1.5 is fixed, so that we
guarantee that �’s are the first hyperons to appear and the
(unconstrained) couplings to � do not play a major role.
The gray points in Fig. 3 are related to divergent solutions,
where the � effective mass goes to zero at some finite density.
The red points yield possible solutions and, in some cases,
the maximum masses can reach two solar masses with a finite
Y� [29,30].

This study is only done with the NLWM because it is well
known that the LWM leads to unrealistic results for high-
density matter. Of course the LWM and NLWM give different
EOS even at low density, but for now it is enough to restrict
our parameter space substantially to start the study of possible
instabilities in hypernuclear matter at low density. Later, we
see how drastic our choice for the χσ� parameter is when

(a)

(b)

FIG. 2. UN
� curves (constrained by data UN

� (n0) = −28 MeV,
denoted by the black point) for some values of χσ� in (a) LWM and
(b) NLWM.

we discuss the instabilities. A very similar reasoning without
strange mesons was proposed in Ref. [36], where experimental
values of the UN

� were used to restrict the hyperon-meson
coupling constants. In that paper, the resulting maximum
stellar masses were also analyzed. Adding this condition

FIG. 3. Relations between parameters in the NLWM. 3D param-
eter space for for χφ� constrained by the U�

� potential. Gray points
refer to parameters with which there is no numerical convergence in
hyperonic stellar matter.
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(a) (b)

(c) (d )

FIG. 4. The black points in each of these figures denote U�
� (n0/5) = −0.67 MeV. Panels (a) and (b) show the U�

� potential without strange
mesons for some values of χσ� in LWM and NLWM respectively. Panels (c) and (d) show U�

� potential constrained to pass through the black
point for some pairs of values of χσ� and χσ∗� in LWM and NLWM respectively.

still leaves us with a wide two-dimensional parameter space,
which corresponds to an almost unconstrained model. A major
simplification would be obtained if we do not introduce extra
strange mesons. Indeed, if we put χφ� = χσ ∗� = 0 we are
left with two equations and two unknowns, leading to a
unique parameter choice for each of the models. This choice
might sound appealing, especially if we recall that historically
strange mesons were added [13] to provide extra binding in
the �-� channel based on an analysis of hypernuclear data
which nowadays appears questionable [31].

The families of U�
� potential curves without strange mesons

obtained with the LWM and the NLWM are shown in Figs. 4(a)
and 4(b). We can see that the only possibility of having the
very small extra binding suggested by experimental data, at
the low densities explored in hypernuclei, is to have a potential
which is unrealistically attractive at higher densities. This is
due to the linear correlation between χσ� and χω� observed
in Fig. 1. Consequently, the resulting EOS of stellar matter is
clearly too soft. One can object that summarizing hypernuclear
data to two values for the � potential in infinite matter is a

very crude approximation, which is certainly true. However, it
is well known from very different approaches that dedicated
fits of hypernuclear data require some extra repulsion at higher
density [10,68], in qualitative agreement with our oversimpli-
fied nuclear matter reasoning. This discussion implies that a
realistic RMF model should probably include strange mesons,
or alternatively more complex nonlinear couplings, even if this
is done at the price of considerably enlarging the parameter
space. In particular in this paper, our motivation being to
extract a phase diagram as general as possible, we prefer
considering a parameter space which is too large to one which
is too narrow. We will therefore stick to the parameter space
defined by Fig. 3.

Figures 4(c) and 4(d) display the LWM and NLWM U�
�

potential with the inclusion of strange mesons, and with the
extra requirement of fulfilling Eq. (3.7). We can see that a
wide range of behaviors is still possible. Figures 4(c) and 4(d)
are globally similar, although in (d) the potential is slightly
deeper than in (c) at very low density, i.e., n� < n0/5. For
high densities, we can clearly see that all curves in Fig. 4(d)
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are steeper than those in 4(c); i.e., for the parameters chosen,
the U�

� is more attractive with the NLWM than with the
LWM. If one observes the values of the coupling constants,
it is obvious that, as the χσ� and χσ ∗� values related to the
attractive interactions increase, so do the χω� and χφ� values,
related to the repulsive interaction.

IV. RESULTS FROM AFDMC

In recent years, ab initio models based on the Brueckner
or Dirac-Brueckner theory [69–71] or on different quantum
Monte Carlo simulation techniques [32,72–76] have been
applied to (hyper)nuclear matter. Such models provide in the
pure neutron sector—in the low -density regime where the
underlying interactions are well known from scattering data,
and three-body effects are not expected to be important—a
very essential constraint to phenomenological mean field
models, which starts to be routinely applied in order to fix some
of the unknown couplings. Calculations including hyperons
are still very scarce [32,69–71]. We here compare our results
to the very recent AFDMC model [32], which has been
satisfactorily compared to hypernuclear data [68] and allows
producing very massive neutron stars in agreement with the
observations [32], though with negligible strangeness fraction.
This model is based on a phenomenological bare interaction
inspired by the Argonne-Urbana forces [77], with the addition
of a purely phenomenological three-body term. One of the
advantages of the model is that the authors provide simple
parametrizations of their numerical results for the neutron-�
energy functionals, allowing both an easier comparison with
our RMF results and a straigthforward calculation of the
instability properties of hypermatter as predicted by an ab
initio model. This latter point is discussed in the next section.
The fit of the energy density of the neutron-� mixture is given
by [32]

εtotal(nn,n�) =
[
a

(
nn

n0

)α

+ b

(
nn

n0

)β]
nn

+ 1

2m�

3

5
n�(3π2n�)2/3

+ (mnnn + m�n�) + c′
1n�nn + c′

2n�n2
n.

(4.1)

In this expression, the first term represents the energy density
of pure neutron matter, where the parameters a, α, b, and β are
listed in Table II and n0 is the saturation point of symmetric
nuclear matter. The second term highlights the kinetic energy

TABLE II. Set of parameters used in the AFDMC ab initio model
for PNM, from [32].

PNM

n0 (fm−3) 0.16
a (MeV) 13.4
α 0.514
b (MeV) 5.62
β 2.436

TABLE III. Set of parameters used in the ab initio AFDMC model
including two- and three-body forces, from [32].

�N

c1 (MeV) − 71.0
c2 (MeV) 3.7
�N + �NN (I )
c1 (MeV) − 77.0
c2 (MeV) 31.3
�N + �NN (II )
c1 (MeV) − 70.0
c2 (MeV) 45.3

density of pure � matter, and the last two terms, obtained
from the fitting of the Monte Carlo results for different Y� =
n�/nB fractions, provide an analytical parametrization for the
difference between Monte Carlo energies of pure � and pure
neutron matter. Notice that �-� interactions are neglected in
Ref. [32], which explains why pure � matter (nn = 0) behaves
as a Fermi gas of noninteracting particles. This means that the
extrapolations to high � densities have to be considered with
a critical eye. The constants c′

1 ≡ c1/n0 and c′
2 ≡ c2/n2

0 with
c1 and c2 are given in Table III. Using Eq. (4.1), the chemical
potentials become

μn(nn) = a(α + 1)

(
nn

n0

)α

+ b(β + 1)

(
nn

n0

)β

+mn + c′
1n� + 2c′

2n�nn, (4.2)

and

μ�(n�) = 1

2m�

(3π2n�)2/3 + m� + c′
1nn + c′

2n
2
n. (4.3)

From thermodynamics we can also write the total pressure as
follows:

ptotal(nn,n�) =
{
αa

(
nn

n0

)α

+ βb

(
nn

n0

)β}
nn + 1

5m�

n�

×
(

6π2n�

2s� + 1

)2/3

+ c′
1nnn�+2c′

2n�n2
n. (4.4)

In Table III we show the sets of parameters proposed by
the authors of Ref. [32] when only two-body forces are taken
into account (�N ), and also with the consideration of three-
body forces that yield two different parametrizations �NN
(I) and �NN (II). In the case of pure neutron matter, in the
AFDMC approach the binding energy has no free parameters,
and we can compare this result with the binding energy coming
from our phenomenological RMF models. When we include
a � fraction in the system, the ab initio model itself needs
phenomenological inputs and is associated with theoretical
error bars. This is due to the need of three-body forces in order
to properly reproduce hypernuclear data [68]. The interval of
predictions between �NN (I) and �NN (II), obtained using
two different prescriptions for the three-body force, will be
interpreted in the following as the present theoretical error bar
on ab initio models, such that a phenomenological model like
our RMF should lie between these two extreme cases.
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Λ

Λ

FIG. 5. Binding energy obtained with three different models, AFMDC, LWM, and NLWM, for different � fractions shown in (a)–(d).

In Fig. 5 we plot the binding energy for different values
of the � fraction present in Ref. [32] for AFDMC and for
representative RMF models. Figure 5(a) shows the binding
energy for pure neutron matter. It has been known for a long
time that RMF models are systematically too stiff at high
neutron density in comparison to ab initio models. However,
we can see that, for the subsaturation densities of interest
for the present paper, the LWM agrees very well with the
AFDMC, better than the NLWM, which in principle should be
more sophisticated. This remains true for finite � fraction, as
shown in Figs. 5(b) and 5(c), if this fraction is small enough.
In this regime, the values of the � coupling do not play an
important role, and the same level of reproduction is obtained
for different choices of χσ�,χσ ∗�.

The effect of three-body forces increases with increasing �
fraction, and consequently the three versions of the AFDMC
calculation start to considerably deviate from each other at the
highest � fraction considered by the authors of [32] [Fig. 5(d)].
In this condition, the AFDMC (�N ) becomes very bound,
due to the attractive feature of the �N potential, while the
three-body force in AFMDC (I) and (II) insures the necessary
repulsion to sustain massive neutron stars. We can see that

at high � fraction NLWM better reproduces the ab initio
results, and the best reproduction is obtained for χσ� � χσ ∗�.
We have observed that U�

� is more sensitive to changes in
χσ� than χσ ∗� as seen in Figs. 4(c) and 4(d). No matter
how much we change these parameters, we do not notably
change the degree of agreement between the RMF models and
the AFDMC. In this sense the orange and green curves in
Fig. 5(d) represent extreme choices for the RMF couplings in
the two versions, LWM (full lines) and NLWM (dashed lines).
To conclude, the inclusion of strange mesons is necessary to
produce a RMF energy functional compatible with ab initio
results at low baryonic density. For very low � fractions, as
is the case in hypernuclei, the sensitivity to the � couplings
is very small, and the LWM surprisingly leads to a very good
agreement to the AFDMC parametrization. However, neither
the linear nor the nonlinear version of the WM is satisfactory, if
one wants to describe matter with a non-negligible proportion
of �’s, and a dedicated fit with density dependent couplings
should be done to reduce the parameter space. For the purpose
of the present paper we will continue with both models in
our further analysis, keeping in mind that LWM results well
reproduce ab initio pure neutron matter, while NLWM with
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low values of χσ� ≈ 0.2–0.5 should give a reasonably realistic
description of symmetric and asymmetric matter with an
important contribution of strangeness.

V. SPINODAL AND CURVATURE MATRIX

In the present section we focus on the calculation of the
instabilities in a system with neutrons, protons, and �’s at
T = 0 [64–67].

A first-order phase transition is signaled by an instability
or concavity anomaly in the mean-field thermodynamic total
energy density. The total energy density of a three-component
system is a three-variable function of the densities. Therefore,
we need to introduce the curvature matrix C associated with the
scalar function ε at a point denoted by P ∈ (nn × np × n�).
Since our benchmark ab initio model only contains neutrons
and �’s, we consider first a two-component system case, where
P ∈ (nn × n�), and later we comment about three-component
systems [65,67] which are more relevant for hypernuclear
physics. If ε is smooth, or at least twice continuously
differentiable, C is symmetric. The curvature matrix elements
are just second derivatives of the total energy density with
respect to each independent variable. In our case the curvature
matrix is just a 2 × 2 matrix with elements [78]

Cij =
(

∂2ε(ni,nj )

∂ni∂nj

)
, (5.1)

where i,j = n,�. As this matrix is self-adjoint, we can
associate with it one bilinear form and one quadratic form
at point P . So, the characteristic equation is

Det(C − λ12) = 0, (5.2)

where 12 is 2 × 2 identity matrix. In another way,

λ2 − Tr(C)λ + Det(C) = 0. (5.3)

The eigenvalues and eigenvectors of C have geometric mean-
ing if P is a critical point. We can solve their roots explicitly:

λ1 = 1
2 (Tr(C) +

√
Tr(C)2 − 4Det(C)) (5.4)

and

λ2 = 1
2 (Tr(C) −

√
Tr(C)2 − 4Det(C)), (5.5)

where Det(C) = λ1λ2 and Tr(C) = λ1 + λ2. The uni-
tary eigenvectors are given by n̂1 = (δn1

n,δn
1
�) and n̂2 =

(δn2
n,δn

2
�). For further analysis we define the direction by the

ratios

tan θ1 = δn1
�

δn1
n

= λ1 − Cnn

Cn�

and

tan θ2 = δn2
�

δn2
n

= λ2 − Cnn

Cn�

,

(5.6)

where θ1 and θ2 are angles measured counterclockwise from
the positive nn axis. If P is a critical point and hence C is just
a Hessian matrix so the determinant term is exactly the Gauss
curvature and the trace is twice the mean curvature [78],

K = λ1λ2 and H = 1
2 (λ1 + λ2). (5.7)

The stability properties of the system depend on the signs of the
curvatures, K and H , at each point P ∈ (nn × n�) [5,7,64]:

(1) If K > 0 and H > 0, the system is stable.
(2) If K > 0 and H < 0, the system is unstable, both

eigenvalues are negative, and two independent order
parameters should be considered, meaning that more
than two phases can coexist.

(3) If K < 0, the system is unstable, meaning that the order
parameter of the transition is always one-dimensional,
similar to the nuclear liquid-gas phase transition at
subsaturation densities.

(4) If K = 0 and H > 0, the system is stable.
(5) If K = 0 and H < 0, the system is unstable.

In geometric terms the first and second conditions tell us that
P represents an elliptic point, the third a hyperbolic point, and
the fourth and fifth a parabolic point. For a three-component
system we have to calculate numerically the equation

Det(C − λ13) = 0, (5.8)

where 13 is a 3 × 3 identity matrix. In terms of the polynomials,

λ3 − Tr(C)λ2 + 1
2 [Tr(C)2 − Tr(C2)]λ − Det(C) = 0, (5.9)

where we have to analyze the signs of three eigenvalues. The
remarkable feature of the liquid-gas phase transition is that one
of all eigenvalues is negative, and the associated eigenvector
gives the instability direction [67], which means that the energy
surface is of a hyperbolic kind. Therefore, in the case of the
simpler n� system for a negative eigenvalue, the ratio (5.6)
becomes

δn−
�

δn−
n

= λ− − Cnn

Cn�

. (5.10)

The next equation will be useful in the discussion about the
ratio for np� system with symmetric condition nn = np:

δn−
�

δn−
N

= λ− − CNN

CN�

. (5.11)

From a physical viewpoint, the direction of instability defined
by Eqs. (5.10) and (5.11) corresponds to the direction of
spontaneous amplification of density fluctuations. In the
case of the ordinary LG phase transition, it comes out that
this direction is also very close to the direction of phase
separation [5]. This is due to the short time scale associated
with the spinodal dynamics. As a consequence, at any density
point inside the spinodal, the density and composition of the
two coexisting phases issued from the phase transition can be
approximately inferred from the intersection of the unstable
eigenvector direction and the spinodal contour.

In the next section we comment on our results.

VI. RESULTS

In order to understand the instabilities possibly present
in the models discussed in Secs. III and IV, we need the
analysis done in the preceding section. We have calculated
the curvature matrix with the ab initio and RMF models. The
whole density space is a three-dimensional space, and the
spinodal region, when it occurs, is a three-dimensional volume
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FIG. 6. Borders of the spinodal instability domains in the neutron and � density plane for AFMDC (left panel) with �N + �NN (I) and
�N + �NN (II), and for NLWM with (central panel) and without (right panel) strange mesons.

that represents a geometric locus associated with the presence
of at least one negative eigenvalue. It is well known that, in two-
component systems with neutrons and protons, the liquid-gas
phase transition occurs. The corresponding two-dimensional
spinodal zone appears below the saturation density. So, in this
system, one of the eigenvalues is negative. For a more complex
system, with neutrons, protons and �’s for example, we can fix
the �-fraction to see how the two-dimensional spinodal region
in the neutron-proton plane changes when �’s are added. In all
the models analyzed, for any proton fraction, and with all the
different choices of couplings, we have systematically found
one and only one negative eigenvalue in a finite-density space
defining a spinodal region. The only exception is given by the
n� system studied with the LWM, which does not present
any instability. However the instability is there in the ab initio
model, and it appears in the LWM as soon as a non zero proton
fraction is added to the system, meaning that the result of the
LWM n� mixture appears rather marginal.

Therefore we can conclude that a transition exists in the
subsaturation nuclear matter including � hyperons, and this
transition belongs to the liquid-gas universality class. In the
following, we turn to study the characteristics of this transition
in further detail.

In Fig. 6 we plot the spinodal areas in a system containing
only neutrons and �’s. In Fig. 6(a) two spinodal zones for
the two different parametrizations of the ab initio model
including three-body forces are shown. The behavior at high �
density should be considered with caution, since the AFDMC
calculations were only done for Y� < 0.269. In Fig. 6(b),
different spinodal zones are shown for the NLWM taking
into account different values of the strange mesons coupling
constants. Two more spinodal curves for neutron-� matter
without strange mesons are also displayed in Fig. 6(c). Note
that none of these shapes touch the horizontal or vertical axis,
even if they look very close to the nn axis for some of the
models. This result is due to the fact that pure neutron and
pure � matter are unbound. Indeed the spinodal instability at
zero temperature leads to a phase transition where the system
splits into two phases, the dense one representing the bound
ground state. In the absence of a bound ground state, it is

thus normal that the instability disappears. In the following,
whenever the spinodal zone does not touch the axis it is clear
that the reason underlying this behavior is an unbound system.
It is interesting to observe that the widest extension of the
instability is obtained with the most repulsive model.

This counterintuitive result probably stems from the fact
that the highest repulsion at high density is correlated to a
stronger attraction at low density also in the ab initio model.
The behavior of the unstable eigenvector, shown in Figs. 7(a)
and 7(b) for the two RMF parameter sets that better reproduce
the ab initio EOS, is also interesting. We can see that it is
close to the isoscalar direction nn + n� as it is in the standard
LG [7]. This simply means that the transition is between
a dense and a diluted phase. In finite systems, the dense
phase corresponds to a hypernucleus and the dilute phase to
a (hyper)gas (which at T = 0 corresponds to zero density,
and which would exist and would be in equilibrium with the
hypernucleus at finite temperature). Figure 7(c) shows the
ratio δn−

�/δn−
n as a function of Y� for some couplings and

baryon densities for Yp = 0.0. We can see that, for very low
� fractions, the direction of phase separation is steeper than
the constant �-fraction line. This means that the dense phase
is more symmetric than the dilute phase. We also depict the
line that represents n�/nn, so that it becomes visually easy to
compare it with the direction of the eigenvectors.

The instability direction can be better spotted from Fig. 7(c),
which displays the unstable eigenvector as a function of
the � fraction. We can see that the instability eigenvectors
are almost independent of the baryonic density. This means
that the proportion of � in the dense phase following the
spinodal decomposition is the same whatever the timescales
and dynamics in the spinodal zone, and is well defined by
the direction of the instability eigenvectors. This proportion
monotonically increases with the � fraction, but never reaches
equality between neutrons and �. This feature is due to the
mass difference between the two baryonic species, as well as to
the reduced attraction in the � channel. It is at variance with
the ordinary nuclear liquid-gas which is associated with the
fractionation or distillation phenomenon [3,7], with the dense
phase being systematically more symmetric than the dilute
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FIG. 7. Spinodal instability domains in the neutron and � density plane with eigenvectors for NLWM. From (a) to (b) we vary χσ� with
fixed χσ∗� = 1.0. (c) Ratio δn−

�/δn−
n as a function of the Y� for some couplings and baryon densities for Yp = 0.0.

phase (see Fig. 9). The optimal proportion of � increases with
increasing scalar coupling, as can be intuitively expected.

Now we would like to see how this affects the spinodal
zone calculations in the three-component system, which is
more relevant for nuclear physics applications. Figure 8 shows
the three-dimensional spinodal volumes for particular cases:
χσ� = 0.2 and χσ ∗� = 1.0 in the NLWM. The behavior shown
in both figures does not depend on the couplings used. The
general pattern is always the same. In Fig. 8(a) the blue contour
and dots are the surface of the spinodal volume and the red
shapes mean the slices in the orthogonal planes of this volume.
Shape 1 represents the neutron-� spinodal area, 2 th proton-�
spinodal area, and 3 the neutron-proton spinodal area. The red
dashed curve 4 shows the vertical plane that cuts the volume
passing by nn = np. Figure 8(b) is similar to 8(a), but in this
case the black dashed lines represent constant Y� cuts. Y� =
0.5 is the special value we choose for further analysis and is
highlighted in red.

Analogous pictures for the LWM are quite similar, apart
from the fact that the size is a little bigger and no instability

regions exist for (n,�) and (p,�) systems. Hence, in the
following when we report different cuts of three-dimensional
spinodal picture in RMF models, we assume that Fig. 8 is
useful to illustrate the cases using LWM and NLWM.

A first interesting cut is at constant � fraction, because
it leads to the same representation as for the usual LG phase
transition, which is obtained in the limit Y� = 0. This is done in
Fig. 9, which shows the spinodal region in the neutron-proton
plane obtained with the NLWM model. It is important to
remark that only NLWM gives reasonable properties for
symmetric matter in the absence of hyperons, and for LWM we
omitted the corresponding results here. Figure 9(a) shows the
NLWM spinodal for Y� = 0 and corresponding eigenvectors
that define the region of instability, analogous to the one
represented by shape (3) in Fig. 8(a). In Fig. 9(b) the ratios
δn−

p /δn−
n are plotted as a function of the proton fraction for

the same fixed baryon densities shown in Fig. 9(a).
In Fig. 10(a) the gray curve is the frontier of the spinodal

for Y� = 0.0 and the colored curves are the spinodal frontiers
obtained for Y� = 0.5 and different strange meson coupling

FIG. 8. Three-dimensional spinodal surfaces in the NLWM for a particular choice of coupling constrained parameters. In (a) the numbers
denote cuts on the surface: (1) neutron-� spinodal area, (2) proton-� spinodal area, (3) neutron-proton spinodal area, and (4) the frontier of
the spinodal area when we cut the three-dimensional spinodal volume by a vertical plane passing by nn = np . Panel (b) shows the slices when
we fix Y�; the red shaded one is a special case.
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FIG. 9. (a) Spinodal for neutron-proton matter with eigenvectors
in NLWM. (b) The ratio δn−

p /δn−
n plotted as a function of the proton

fraction for Y� = 0.

constants in the NLWM. These colored shapes are the
projections of the spinodal curves in the neutron-proton plane
for Y� = 0.5 [see Fig. 8(b)]. We recall from Sec. IV that at
low density the LWM is more realistic for the case Y� = 0
(left side), while the NLWM is in better agreement with the
ab initio model for important � fractions (right side). In any
case we can see that the phase diagrams of the two models are
very similar, the NLWM instability zone being only slightly
narrower.

Panels (a) and (b) of Fig. 9 recall the usual characteristics
of the nuclear liquid-gas phase transition [5,7]. As is well
known, the instability covers a huge part of the subsaturation
region and has an essentially isoscalar character. The instability
eigenvectors point toward a direction which is intermediate
between the isoscalar direction (observed only for symmet-
ric matter nn = np) and the direction of constant isospin.
As a consequence, the dense phase is systematically more
symmetric than the dilute phase. Indeed, at zero temperature
the dilute phase is a pure gas of neutrons (protons) if the
system is neutron (proton) rich [7]. From panels (a) and (c)
of Fig. 10 we additionally learn that the LG instability is
clearly preserved by the addition of strangeness. However, the
transition is quenched for strongly coupled hyperons. Indeed,
we can clearly see that when χσ� increases the spinodal
area decreases. Considering that the most realistic value lies
around χσ� ≈ 0.2–0.5, this quenching is small. On the other
side, when χσ ∗� increases, the modification of the spinodal
is very small. This is expected, since the strange mesons are
only coupled to strange baryons and are therefore expected
to affect essentially the � density, which is not represented
here. Due to the weak effect of χσ ∗� in the spinodal frontier,
we select the value χσ ∗� = 1.0 to study the eigenvectors in
the neutron-proton plane displayed in the next figures. For
the NLWM spinodal area shown in Fig. 10(b), the vectors
represent the projection of the instability eigenvectors on the
neutron-proton plane. In Fig. 10(c) the ratios δn−

p /δn−
n are

plotted as a function of the proton fraction. No difference can
be seen with respect to the normal LG: whatever the percentage

FIG. 10. (a) Spinodal frontiers in the neutron and proton density plane for Y� = 0.0 and Y� = 0.5 and several sets of coupling constants in
NLWM. (b) Frontier of the spinodal instability domain of the (n,p,�) mixture with Y� = 0.5 for χσ� = 0.5 and χσ∗� = 1.0 with eigenvectors
in NLWM. (c) The ratio δn−

p /δn−
n plotted as a function of the proton fraction. The isospin ratio np/nn is also represented.
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FIG. 11. Spinodal in the nucleon and � density plane (keeping
nn = np). Colors contours are sliced shapes from the 3D spinodal in
density space and varying χσ� and χσ∗� in NLWM. The gray dotted
line represents the nN = n� line.

of �’s, the neutron-proton composition of the dense phase
(i.e., the hypernucleus) is unmodified, even if the density is
reduced.

This finding might seem in contradiction with recent studies
in multiply strange hypernuclei [22–24], where it is seen that
the driplines are modified by the � fraction. However, these
modifications are essentially due to shell and Coulomb effects,
which are not accounted for in this infinite-matter calculation.
If we change our perspective from the neutron-proton plane
to imagine the general three-dimensional spinodal locus, and
instead of fixing Y�, as before, we fix the symmetric matter
condition nN = 2nn = 2np, the resulting plane slice crossing
this three-dimensional volume is similar to the curve denoted
by number 4 in Fig. 8(a). The related spinodal areas for the
NLWM and many choices of the coupling parameters are
shown in Fig. 11.

The comparison to the ab initio model of Sec. IV suggests
that the most realistic phase diagram should be between
the ones corresponding to χσ� = 0.2 and 0.5, which gives
an energy functional intermediate between the two AFDMC

parametrizations of three-body forces. We can see that the
coupling to the strange meson χσ ∗� has a bigger effect in
this plane as expected. Still, its influence on the spinodal is
small. This means that the wide uncertainty on the strange
mesons has a negligible influence on the phase transition. The
biggest uncertainty concerns the extension of the spinodal zone
along the n� axis. It is, however, important to stress that this
situation nN < n� < n0 does not correspond to any known
physical system. Every shape shown touches the horizontal
axis when Yp = 0.5, as should occur considering that the np
system is bound. At this point we can refer to Fig. 3 to see that
our restriction of χσ� does not affect much the spinodal zone
analysis, because when we increase χσ� up to 1.3 the spinodal
zone tends to become flatter in the �-density direction. Even if
the calculation might be not realistic for very high � fraction,
we can conclude that the LG phase transition is still present in
multistrange systems.

Finally, Figs. 12(a) and 12(b) show the projections of the
instability eigenvectors in the nucleon and � density plane. We
can see that a non-negligible component of the order parameter
lies along the n� direction, meaning that the � density is an
order parameter of the phase transition, or in other words that
the dense phase is also the phase with the higher strangeness
content. These eigenvectors are almost parallel to each other,
and considerably deviate with respect to the direction of the
constant �-fraction lines as seen in Fig. 12(c). Interestingly, in
a large portion of the spinodal zone the instability direction is
approximately constant, δn−

�/δn−
N ≈ 0.2, for both parameter

sets. Only for very small and very high � fraction is a
deviation observed, which is expected because by construction
the instability must tend toward the nonstrange direction in the
absence of strangeness.

We recall that the direction of instability can be used as
an approximate estimator of the density and composition of
the two coexisting phases issued from the phase transition. In
particular, since the gas density is always much smaller than
the density of the liquid, we can infer the composition of the
dense (L) phase as nL

�/nL
N ≈ δ−n�/δ−nN . We can see that,

in the case of the N -� phase diagram, the instability points
toward an “optimal” composition nL

� ≈ 0.2nL
N , whatever the

FIG. 12. Spinodals in nucleon and � density plane (nn = np) with eigenvectors in NLWM. From (a) to (b) we vary χσ� with fixed
χσ∗� = 1.0. (c) Ratio δn−

�/δn−
N .
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baryonic density, coupling constants, and � fraction. It will
be very interesting to verify if such an optimal composition
is obtained in calculations of multiple-strange hypernuclei.
As in the case of the simpler n-� system, the fact that
the instability always points toward �-poor systems is at
variance with the distillation phenomenon, characteristic of
the fluid and nuclear LG phase transition with more than one
component [3,7]. In a one-component-like thermodynamics,
which occurs in the case of classical indistinguishable particles
with identical couplings, the direction of phase separation is
given by the constant composition line (here, Y� = const).
In the case of distillation, the direction is tilted toward the
isoscalar direction corresponding to equal composition. This
happens in simple fluids when isovector couplings are more
attractive than isoscalar ones [79,80], and in the proton-neutron
system, even without any isospin breaking effect, because of
the fermionic nature of the particles [7]. In this exotic mixture,
neither of the two situations applies. The symmetry breaking
between nucleons and �’s comes from the difference in the
bare mass of the particles and the less attractive couplings. Still,
for low-� fractions Y� � 0.2, the direction of phase separation
is steeper than the constant-�-fraction line. This means that
the dense phase is more symmetric than the dilute phase. This
thermodynamic finding is compatible with the observation in
Ref. [25] that the �’s produced in heavy-ion collisions should
stick to the clusters (i.e., the dense phase) rather than being
emitted as free particles (i.e., the gas).

VII. SUMMARY AND CONCLUSIONS

We have investigated the phase diagram at subsaturation
density, for baryonic matter including neutrons, protons, and
� hyperons, within a RMF approach. For the nucleonic EOS,
we have considered the GM1 parametrization of NLWM,
together with the simpler LWM. Strange mesons were included
to allow a wide exploration of the possible phenomenology
for the (still largely unknown) hyperon-nucleon and hyperon-
hyperon couplings, with minimal requirements on the potential
depths extracted from hypernuclear data. Imposing these
requirements leads to a strong linear correlation between the
attractive and the repulsive couplings, for both the normal
and the strange mesons. These constraints leave us with
a two-dimensional parameter space, which we have varied
widely in order to pin down generic features of the phase
diagram.

Our main focus was the understanding of the instabilities in
the hypernuclear matter, and specifically the influence of �’s
in the well known liquid-gas phase transition of nuclear matter.
The existence of an instability as a signature of a first-order
phase transition was identified by analyzing the curvature of
the thermodynamic potential with respect to the nucleonic
and strange densities. In all our studies, one and only one
negative eigenvalue has been found, showing that the phase

transition still exists in the presence of strangeness and is
still of LG type, even if its extension in the density space
shrinks with increasing strangeness. The negative eigenvalue
corresponds to the direction in density space, in which density
fluctuations get spontaneously and exponentially amplified in
order to achieve phase separation. This eigenvalue is seen
to systematically have a non-negligible component in the
direction of the strange density. This means that strangeness
can be viewed as an order parameter of the transition.

Less expected is the fact that the instability direction
systematically points to an almost fixed proportion of �’s
in the dense phase, at variance with the phenomenon of
distillation typical of binary mixtures. This proportion was of
the order of 20% in the models we considered; this means
that, in a dilute system with a small contribution of �’s,
these �’s will preferentially belong to the dense clusterized
phase. These conclusions are general and appear largely model
independent. In contrast, the specific shape of the phase
diagram would obviously depend on the choice of the free
χσ ∗� and χφ� couplings. Some hints of a more quantita-
tive estimation of the thermodynamics were obtained from
the analysis of the simpler n� phase diagram extracted
from the ab initio AFDMC calculation of Ref. [32]. The
characteristics of the phase transition are confirmed in the
ab initio model, even if the phase diagram extension depends
on the three-body force model in an important way.

The comparison of the RMF with the AFDMC also reveals
some limitations of the phenomenological model at low
density. Indeed the popular GM1 model is shown to compare
very poorly to the ab initio calculation of pure neutron matter,
even at the low densities considered in the present study.
Unexpectedly, the simpler LWM is in very good agreement
with the ab initio predictions at low density. Concerning the n�
mixture, the energy functional is within the theoretical error
bars if 0.2 � χσ� < 0.5. Other parametrizations could change
the quantitative results that we have presented in this paper. In
particular, a recent work [81] shows that the scalar-isovector
δ meson also plays an important role in satisfying both
nuclear bulk and stellar properties constraints. The use of
another parameter set and/or the inclusion of this new degree
of freedom requires a complete calculation from the very
beginning because the nucleon-� potential, Eq. (3.3), has to
be readjusted. However, the qualitative results will be certainly
similar, since the whole 3D parameter space associated with
strangeness was spanned. As a perspective for future work, it
will be very interesting to analyze the instability behavior of a
density-dependent coupling RMF model, directly fitted to the
ab initio calculation.
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