
PHYSICAL REVIEW C 93, 024304 (2016)

Surface corrections to the moment of inertia and shell structure in finite Fermi systems
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The moment of inertia for nuclear collective rotations is derived within a semiclassical approach based
on the Inglis cranking and Strutinsky shell-correction methods, improved by surface corrections within the
nonperturbative periodic-orbit theory. For adiabatic (statistical-equilibrium) rotations it was approximated by
the generalized rigid-body moment of inertia accounting for the shell corrections of the particle density. An
improved phase-space trace formula allows to express the shell components of the moment of inertia more
accurately in terms of the free-energy shell correction. Evaluating their ratio within the extended Thomas-Fermi
effective-surface approximation, one finds good agreement with the quantum calculations.
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I. INTRODUCTION

Many theoretical approaches for nuclear rotations are based
on the Inglis cranking model and Strutinsky shell-correction
method (SCM) [1], extended to the rotational problems by
Pashkevich and Frauendorf [2,3]. For a deeper understanding
of the correspondence between classical and quantum physics
of such rotations, it is worth to analyze the shell components
of the moment of inertia (MI) within the periodic-orbit theory
(POT) [4–9]. In this context, one should refer to Ref. [6] for the
semiclassical description of the so-called “classical rotation”
as an alignment of the particle angular momenta along
the symmetry axis. The semiclassical extended-Gutzwiller
approach [5,6,10] also was applied successfully to the de-
scription of the magnetic susceptibilities in metallic clusters
and quantum dots as a Landau diamagnetic response [7] (see
also Refs. [11–14]). The perturbation expansion of Creagh [8]
has been used in the POT calculations of the MI shell
corrections for the spheroidal-cavity mean field [15]. The
semiclassical nature of the cranking model imposes conditions
of high angular momenta at larger nuclear deformations.
The nonperturbative Gutzwiller POT [4,5], extended to the
bifurcation phenomena at large deformations [9,16], was
applied [12] to adiabatic (statistical-equilibrium) collective
rotations around an axis perpendicular to the symmetry axis
in the case of the harmonic-oscillator mean field. The MI
for such rotations is described as the sum of the Extended
Thomas-Fermi (ETF) MI �ETF [14,17] and shell corrections
δ� [12,14]. By including self-consistency and spin effects into
the MI calculations, a more realistic description of collective
rotations is obtained within the ETF approach [17,18]. A
phase-space trace formula for the MI shell components δ�

was obtained [13] in terms of the free-energy shell corrections
δF , for integrable highly idealized Hamiltonians such as
the deformed harmonic oscillator [12] and the spheroidal
cavity [9,13,16]. Spin and pairing effects, as well as higher
order �

2 corrections were however neglected [13]. In the
present work, �

2 surface corrections to the ratio δ�/δF are
taken into account within the ETF model in the (leptodermous)
effective surface (ES) approach [19–22].

II. CRANKING MODEL AND SHELL STRUCTURE

Within the cranking model, the nuclear collective rota-
tion of an independent-particle Fermi system is associated
with an eigenvalue problem for the many-body Hamiltonian
(Routhian), Ĥω = Ĥ −ω�̂x , where �̂x is the operator for
the particle angular-momentum projection onto the x axis,
perpendicular to the symmetry z axis. The frequency ω and
the chemical potential λ, which are the Lagrange multipliers
of the constrained variational problem, are determined by the
angular momentum projection Ix onto this x axis and the
particle number conservation N . The MI �x can be considered
as a susceptibility (Refs. [7,11–14]):

�x = ∂〈�̂x〉ω/∂ω = ∂2E(ω)/∂ω2 , (1)

where E(ω) is the quantum average of the Hamiltonian Ĥ , i.e.,
the energy of the yrast line E(Ix,N ) resulting from these two
constraints. Using the coordinate representation for the MI �x

in terms of the one-body semiclassical Gutzwiller expansion
for the Green’s function, for the adiabatic statistically equilib-
rium rotations in the nearly local approximation one obtains
the MI phase-space trace formula [13]:

�scl ≈ ds m

∫
dε ε n(ε)

∫
drdp

(2π�)3

r2
⊥
ε

×gscl(r,p; ε) = �ETF + δ�scl , (2)

where m is the nucleon mass, n(ε) the occupation number,
ds the spin (spin-isospin) degeneracy, and r2

⊥ =y2 + z2 in
Cartesian coordinates. Starting from the Wigner distribution
function f (r,p), one defines the one-body density g(r,p,ε) in
the phase space r,p and energy ε as the derivative of f (r,p)
with respect to ε [see Eq. (A12)]. This density g can be written,
like traditionally done, as [12–14]

gscl(r,p,ε) = gETF(r,p,ε) + δg(r,p,ε) , (3)

where gETF(r,p,ε) is the ETF component and δg(r,p,ε) the
shell correction (see Ref. [13] for the relation of gscl(r,p; ε)
to the Gutzwiller Green’s function expansion over classical
trajectories).
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In what follows we shall take advantage of the strong
resemblance of the MI (2) with the semiclassical single-
particle energy. The only difference is that an additional factor
mr2

⊥/ε appears in Eq. (2). The same subdivision in terms of the
ETF and shell components is obtained at finite temperatures
T after a statistical averaging in Eq. (2) where

δ�scl ≈ m 〈r2
⊥/ε〉 δFscl ,

δFscl = Re
∑
PO

πtPOT/�

sinh(πtPOT/�)
δEPO . (4)

Brackets 〈· · · 〉 indicate an average over the variables r, p, and
ε with a weight ε, i.e.,

〈
r2
⊥
ε

〉
=

∫
dε ε n(ε)

∫
dr dp r2

⊥
ε
gscl(r,p,ε)∫

dε ε n(ε)
∫

dr dp gscl(r,p,ε)
. (5)

In Eq. (4), δFscl is the semiclassical free-energy shell correction
and δEPO the periodic-orbit (PO) component of the energy
shell correction,

δE ≈ δEscl = Re
∑
PO

δEPO with

δEPO = �
2

t2
PO

exp

[
i

�
SPO(λ) − iπ

2
μPO

]
. (6)

The period tPO, and the action SPO(ε) for the particle motion
along the PO are taken at the chemical potential ε=λ≈εF (at
ω=0 and T =0) where εF is the Fermi energy [8,9,14]. The
Maslov phase μPO is determined by the number of the caustic
and turning points along the PO. POs appear by the improved
stationary phase method (ISPM) through integrations over
the phase space variables [9,13,14,16]. For the phase-space
average 〈r2

⊥/ε〉 in Eq. (5) one again obtains approximately
a decomposition into ETF and shell-correction contributions
through the distribution function gscl(r,p; ε).

III. SURFACE CORRECTIONS

Using the inverse Laplace transformation (A12) one arrives
at an expansion up to order �

2 of the smooth semiclassical
one-body distribution function (Appendix A),

gETF(r,p,ε) ≈ gTF(r,p,ε) + gS(r,p,ε) , (7)

with the TF and surface components,

gTF(r,p,ε) = δ(ε − Hcl(r,p)) , (8)

gS(r,p,ε) = �
2

{
− ∇2V

4m

∂2δ(ε − Hcl(r,p))
∂ε2

+
[

(∇V )2

6m
+ (p∇)2V

6m2

]
∂3δ(ε − Hcl(r,p))

∂ε3

− (p∇V )2

8m2

∂4δ(ε − Hcl(r,p))
∂ε4

}
. (9)

Here Hcl(r,p)=p2/(2m)+V (r) is the classical Hamiltonian
with the mean-field potential V (r). Gradients of the potential
V in the surface correction gS of order �

2 can be expressed,

within the ETF method [8,18], to the same �
2 order, in terms of

gradients of the TF particle density [see Eqs. (A10) and (A11)],

ρTF = ds[2m(λ − V (r))]3/2/(6π2
�

3) . (10)

From Eqs. (3), (7)–(9), and (5) one obtains, for the
spheroidal cavity, within the ETF ES approximation up to
�

2 corrections,

〈r2
⊥/ε〉ETF ≈ a2 + b2

3λ

1 + �S/�TF

1 + ES/ETF
, (11)

where a and b are the semi-axes of the spheroid. Imposing
volume conservation requires that a2b = R3, where R is the
radius of the equivalent sphere. ETF, �TF and ES, �S are
the TF and �

2 ETF surface components, respectively [8]. The
surface energy ES =σS=bSN

2/3 with the spheroid area S
and surface energy constant bS = 4πr2

0 σ is determined by the
surface tension σ of the capillary pressure. Within the ETF
model, σ is defined by the �

2 correction to the kinetic energy
(Appendix B),

σ = �
2

72m

∫ ∞

−∞

dξ

ρTF

(
∂ρTF

∂ξ

)2

, (12)

where ξ is locally the distance from a given point r to the
ES [8,14,19]. The surface corrections in Eq. (11) are given by

ES

ETF
= 5bSS

12πη2/3a2λ N1/3
and

�S

�TF
= 5bS

η2I0 + π (1 − 2η2)I1

π2η2/3(1 + η2)λ N1/3
, (13)

where

I0 = 1 + η2 arctan
√

η2 − 1√
η2 − 1

and

I1 = 2η

3
√

η2 − 1
[(2η2 − 1)E(

√
η2 − 1/η) − K(

√
η2 − 1/η)]

(14)

with E(κ) and K(κ) being the complete elliptic integrals [23].
The deformation parameter is given by η = b/a. In units of
the classical rigid-body (TF) MI, �TF =m(a2 + b2)N/5, one
finally obtains

δ�x

�TF
= 5(1 + �S/�TF)

1 + ES/ETF

δF

3Nλ
. (15)

IV. DISCUSSION OF RESULTS

Figures 1 and 2 show a comparison between the semi-
classical ISPM MI shell corrections (4) obtained with (index
+) surface terms and the quantum-mechanical (QM) result.
The latter is determined through the ETF average (11) for
〈r2

⊥/ε〉 with a realistic surface energy constant bS ≈ 20 MeV
whereas the energy shell correction δE (equal δF at zero
temperature T ) is calculated by the SCM using the quantum
spectrum. A large supershell effect appears in δ�x , especially
for larger deformations in the PO bifurcation region (Fig. 2).
The effect of the surface correction, Eq. (13), is analyzed in
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FIG. 1. MI shell components δ�x (in TF units) as function of N1/3

at deformation η = b/a = 1.2 obtained in a quantum-mechanical
(QM) and a semiclassical calculation, including surface corrections
(ISPM+) for smaller [upper part (a)] and larger [lower part (b)]
particle numbers.

Figs. 3 and 4 that show, together with the result of the quantum
calculation, the shell components δ�x/�TF obtained with
(ISPM+) and without (ISPM−) these surface corrections. The
difference between both curves is seen to be more important
for small particle numbers, which can be easily understood
since the surface corrections decreases as N−1/3 as seen from
Eq. (13). The contribution of the shorter three-dimensional
orbits bifurcated from the equatorial ones are dominating in
the case of large deformations (Figs. 2 and 4), in contrast to
the small deformation region where the meridian orbits are
predominant (Figs. 1 and 3), in accordance with Refs. [9,16].
One also observes that the surface corrections become more
significant with increasing deformation of the system.
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FIG. 2. Same as Fig. 1 but for a deformation of η = 2.0.
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FIG. 3. Comparison between the MI shell components δ�x (in
TF units) obtained with (ISPM+) and without (ISPM−) surface
corrections as function of N1/3. For comparison the quantum result
(black solid line) is also shown. The deformation is η = 1.2.

For small temperatures one has δFscl ≈δEscl, and there-
fore, a remarkable interference of the dominant short three-
dimensional and meridian orbits is shown in Refs. [9,13,16].
Their bifurcations in the superdeformed region give essential
contributions to the MI through the (free) energy shell
corrections. With increasing temperature the shorter equatorial
orbits become dominating, as seen analytically from the expo-
nentially decreasing temperature-dependent factor in Eq. (4).

The shell corrections (4) to the MI are relatively much
smaller than the classical rigid-body (TF) component. This
is similar to the (free) energy shell corrections δE (or δF )
as compared with the ETF volume and surface energy.
However, many important physical effects, such as fission
isomerism and high spin physics depends basically on the
shell effects. Our nonperturbation results for the MI shell
corrections can be applied for larger rotational frequencies
and larger deformations η∼1.5–2.0 where the bifurcations
play the dominating role.
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FIG. 4. Same as Fig. 3 but for η = 2.0.
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V. SUMMARY AND CONCLUSIONS

Within the nonperturbative Gutzwiller POT we derived
the MI shell component δ� in terms of the free-energy
shell correction δF for any mean-field potential by taking
into account the ETF �

2 corrections in the effective surface
approximation. For the deformed spheroidal cavity, we found
a good agreement between the semiclassical POT and quantum
results for δ� at several deformations and temperatures. The
surface corrections become more significant with increasing
deformations and decreasing particle numbers. With increas-
ing temperature, one finds the generally observed exponential
decrease of the shell effects. For large deformations and small
temperatures, one observes some remarkable supershell effects
due to the interference of three-dimensional and meridian
orbits bifurcating from the equatorial orbits.

For future research in this field, it would be valuable
to include the neutron-proton asymmetry [20–22] and the
spin degrees of freedom into the semiclassical MI shell
calculations [14]. The latter lead to the well-known spin-orbit
splitting which significantly changes the nuclear shell structure
and accounts for spin paramagnetic effects [14]. The MI
expressions obtained analytically at the present stage have
therefore only a somewhat restricted values for the use in
real nuclei, but could be directly applied to the magnetic
susceptibility for metallic clusters and quantum dots [7]. The
extension of the POT to the MI shell correction calculations
with the inclusion of the spin degree of freedom would
constitute an essential progress in understanding the relation
between the nuclear MI and the free-energy shell corrections.
For a more realistic study, let us also mention the inclusion
of pairing correlations, especially far from deformed magic
nuclei and nonadiabatic effects. The work along these lines is
in progress.
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APPENDIX A: THE WIGNER-KIRKWOOD METHOD

The Wigner-Kirkwood method starts with the Gibbs opera-
tor [8], Ĉβ =exp(−βĤ ), where Ĥ is the quantum-mechanical
Hamiltonian. In the case that Ĥ is time independent, the
coordinate-space representation of the Gibbs operator, the
so-called Bloch density matrix, is given by

C(r1,r2; β) =
∑

i

ψ∗
i (r1) exp(−β εi) ψi(r2), (A1)

where ψi and εi are the eigenfunctions and eigenvalues of the
Hamiltonian (Ĥψi =εiψi). Therefore, after formally replacing
β = it/�, the Bloch density matrix C(r1,r2; β) is seen to be

nothing but the one-body time-dependent propagator (Green’s
function) K(r1,r2; t) and one can use the corresponding
Schrödinger equation for the calculation of C(r1,r2; β) [8].
Note that the POT in the extended Gutzwiller version starts
with the solution of this equation for the propagator K(r1,r2; t)
in terms of the Feynman path integral. Its calculation by the
stationary phase method leads to the semiclassical expression
for K(r1,r2; t), and then, one can get the semiclassical
expansion of the Green’s function, G(r1,r2; ε), and its traces,
namely the level density, g(ε), and the particle density ρ(r)
(at r1 →r2 =r). The shell components of these densities can
be expressed in terms of the closed trajectories (see the main
text for the case of the oscillating level-density part written in
terms of POs). Thus, the POT can be developed for the Bloch
density matrix C(r1,r2; β) itself.

In order to solve semiclassically the Schrödinger equation
for the Bloch function C(r1,r2; β), one can make a transfor-
mation, first from r1 and r2 to the center-of-mass and relative
coordinates, r= (r1+r2)/2 and s=r2−r1, and then, by the
Fourier transformation to the phase-space variables, {r,p},
what corresponds to a Wigner transformation from C(r1,r2; β)
to CW (r,p,β),

CW (r,p,β) =
∫

ds
(2π�)3

C(r − s/2,r + s/2; β)exp(ips/�) .

(A2)

This reduces one complicated Schrödinger equation to an
infinite system of much simpler first-order ordinary differential
equations (at each power of �, see Ref. [8]) which can be
analytically integrated.

The advantage of the Wigner-Kirkwood method is ob-
viously to generate smooth quantities averaged over many
quantum states to smooth out quantum oscillations like shell
effects. The POT on the contrary is aimed at the derivation of
analytical expressions for the shell components of the partition
function, and thereby of the level and particle densities. In the
Wigner-Kirkwood method, the main term of the expansion
of CW (r,p,β) is proportional to the classical distribution
function fcl(r,p), and � corrections can be obtained by
solving a simple system of differential equations at each
power of �. Strictly speaking there is no convergence of this
asymptotical expansion because of presence of the � in the
rapidly oscillating exponents. Therefore, to get the convergent
series in � of the ETF approach, one first has to use local
averaging in the phase space variables and then, expand smooth
quantities in a � series, in contrast to the shell-structure POT.
In this way, the simple ETF � expansions of local quantities
such as the particle density ρ(r), kinetic energy density τ (r),
and level density g(ε) are obtained.

The canonic partition function Z(β) is obtained by in-
tegrating over the whole space the diagonal Bloch matrix
C(r,r; β)=C(r,β),

Z(β) =
∫

dr C(r,β) =
∑

i

exp(−βεi) . (A3)

The trace, Z=Tr{exp(−βĤ )}, can be taken for any complete
set of states. For the semiclassical expansion involving an
integral over the phase space, it is more convenient to take
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plane waves as the complete set. We may then write

Z(β) =
∫

dr dp
(2π�)3

e−ipr/� e−βĤ eipr/� . (A4)

As the kinetic operator in Ĥ does not commute with the
potential V (r), it is convenient to use the following repre-
sentation [8]:

e−βĤ eipr/� = e−βHcl eipr/� w(r,p; β) , (A5)

where Hcl is the classical Hamiltonian that appears in Eqs. (8)
and (9). Solving the Schrödinger equation for the function
w with the boundary condition limβ→0w(r,p; β)=1, one
assumes that w(r,p; β) can be expanded in a power series
in �:

w = 1 + �w1 + �
2w2 + · · · . (A6)

Equating terms of the same power in � from both sides of this
differential equation, one obtains the � corrections:

w1 = − iβ2

2m
p∇V (A7)

and

w2 = − β2

4m
∇2V + β3

6m
(∇V )2

− β4

8m2
(p · ∇V )2 + β3

6m2
(p∇)2V . (A8)

The semiclassical series for the partition function takes then
the form

Z(β) =
∫

dr dp
(2π�)3

e−ipr/� e−βHcl (1 + �w1 + �
2w2 + · · · ) .

(A9)

Differentiating the TF particle density ρTF (10) and solving
the obtained linear system of equations for the gradients of the
potential, one finds

(∇V )2 =
(

π2
�

2

m(3π2ρ)1/3

)2

(∇ρ)2, (A10)

∇2V = π2
�

2

m(3π2ρ)1/3

[
(∇ρ)2

3ρ
− ∇2ρ

]
, (A11)

where the subscript TF on the density has been omitted. These
expressions are more convenient to use in the more general
case, including billiard systems, in particular, the spheroidal
cavity.

For calculations of the semiclassical distribution function
g(r,p,ε), one can apply the inverse Laplace transformation:

g(r,p,ε) = ∂f (r,p)

∂ε
= 1

2πi

∫ βr+i∞

βr−i∞
dβ

×exp[β(ε − Hcl)](1 + �w1 + �
2w2), (A12)

where w1 and w2 are the semiclassical corrections of Eqs. (A7)
and (A8). The integration in the complex β plane in Eq. (A12)
has to be taken along the imaginary axis, at a distance βr

such that all singularities are located at its left. The linear
term in �, i.e., the term w1 that is linear in p, does not

contribute to the phase-space (momentum) integral for the
energy E and for the MI � in Eq. (2). Calculating the integral
in Eq. (A12) using Eq. (A8), one arrives, after some simple
algebraic transformations, at Eq. (9).

APPENDIX B: THE ES METHOD

For independent nucleons bound in a potential well, the
energy density E(ρ) of symmetric nuclear matter (N =Z=
A/2) is found to be [19–22]

E(ρ) = −bVρ + ρε(ρ) + � (∇ρ)2/(4ρ) , (B1)

where bV is the separation energy per particle, ε(ρ)≈
[K/18ρ2

∞](ρ−ρ∞)2, and where K and ρ∞ are the incom-
pressibility modulus and the particle density of infinite nuclear
matter, and �=�

2/(18m). For simplicity we neglect spin-orbit
and asymmetry terms. A variation of the energy functional,
E=∫

dr E[ρ(r)] with the energy density (B1) leads to the
Lagrange equation [19]:

�

2ρ
�ρ − �

4ρ2
(∇ρ)2 − d

dρ
[ρ ε(ρ)] + � = 0 , (B2)

where � = λ+bV is the correction to the separation energy
−bV in the chemical potential λ. This correction is proportional
to a small leptodermous parameter a/R∼A−1/3 for heavy
nuclei. Introducing a local orthogonal-coordinate system with
a coordinate ξ that defines the distance from a given point r to
the effective surface (ES), one gets for the particle density ρ0,
in leading order in the leptodermous parameter a/R, a simple
ordinary differential equation

dρ0/dξ = −2ρ0 ε1/2(ρ0)/�1/2 . (B3)

This equation can be solved analytically for the quadratic
approximation to ε(ρ). Transforming the differential equa-
tion (B3) to one for the dimensionless particle density,

w(x) = ρ(ξ )/ρ∞ with x = ξ/a ,

ε(w) = (18/K) ε(ρ) = (1 − w)2 , (B4)

one finds

w′(x) = −ζw
√

ε(w) , (B5)

where ζ =2a
√

K/(18�). Differentiating once more and using
the fact that, by definition, w′′(x)=0 at the ES, one gets the
boundary condition for w0 =w(x = 0):

2ε(w0) + w0ε
′(w0) = 0 . (B6)

With Eq. (B4) for ε(w), one finds the solution w0 =1/2.
Integrating Eq. (B5) using the boundary condition (B6), one
obtains the explicit solution

w(x) = [1 + exp(ζx)]−1 , (B7)

which tends asymptotically (for x →∞) to w(x)→exp(−ζx).
Therefore, one can define the diffuseness parameter a from the
usual condition, ζ =1 so that the particle density w(x) will be
decreasing at large x as exp(−x):

a =
√

9�/(2K) =
√

�2/(4mK) . (B8)
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Another limiting case of finite constants of the potential
part of the energy density [in front of (∇ρ)2], including the
spin-orbit and asymmetry terms but neglecting the kinetic
energy term proportional to � in Eq. (B1), was investigated in
Refs. [20–22].

For the energy E with Eq. (B1), one has

E = −bVA +
∫

dr
[
�

4

(∇ρ)2

ρ
+ ρε(ρ)

]

= EV + ES , (B9)

where EV =−bVA is the volume and ES =σS the surface
component with the surface-tension coefficient

σ = �

2

∫ ∞

−∞

dξ

ρ0

(
∂ρ0

∂ξ

)2

. (B10)

For the calculation of the surface energy ES from Eq. (B9),
one needs the particle density ρ ≈ρ0 at leading order in the
leptodermous parameter a/R. Due to the spatial derivatives in
its integrand, and the definition of ε(w) [Eq. (B4)], this surface
integration gives, in addition to the integrand, the contribution
of order a/R. Therefore, according to the Lagrange equation
at this order, Eq. (B3), the two terms in square brackets in the
integral in Eq. (B9) turn out to be identical. Thus, we arrived at
Eq. (B10). Using Eqs. (B3) and (B10) for the surface-tension
coefficient, one finds (after transforming to dimensionless
quantities and changing the integration variable from x to w)
the analytical result

σ = (�ρ∞/36)
√

K/m . (B11)

Other limit cases are considered in Refs. [20–22].
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