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Background: Although self-consistent multiconfiguration methods have been used for decades to address the
description of atomic and molecular many-body systems, only a few trials have been made in the context of
nuclear structure.
Purpose: This work aims at the development of such an approach to describe in a unified way various types of
correlations in nuclei in a self-consistent manner where the mean-field is improved as correlations are introduced.
The goal is to reconcile the usually set-apart shell-model and self-consistent mean-field methods.
Method: This approach is referred to as “variational multiparticle-multihole configuration mixing method.” It is
based on a double variational principle which yields a set of two coupled equations that determine at the same
time the expansion coefficients of the many-body wave function and the single-particle states. The solution of
this problem is obtained by building a doubly iterative numerical algorithm.
Results: The formalism is derived and discussed in a general context, starting from a three-body Hamiltonian.
Links to existing many-body techniques such as the formalism of Green’s functions are established. First
applications are done using the two-body D1S Gogny effective force. The numerical procedure is tested on the
12C nucleus to study the convergence features of the algorithm in different contexts. Ground-state properties as
well as single-particle quantities are analyzed, and the description of the first 2+ state is examined.
Conclusions: The self-consistent multiparticle-multihole configuration mixing method is fully applied for the first
time to the description of a test nucleus. This study makes it possible to validate our numerical algorithm and leads
to encouraging results. To test the method further, we will realize in the second article of this series a systematic
description of more nuclei and observables obtained by applying the newly developed numerical procedure with
the same Gogny force. As raised in the present work, applications of the variational multiparticle-multihole config-
uration mixing method will, however, ultimately require the use of an extended and more constrained Gogny force.
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I. INTRODUCTION

In the past decades, important progress has been achieved
toward a theoretical description of nuclear systems. Extensions
of existing many-body techniques, as well as developments of
novel approaches, have emerged. In particular, great effort is
now devoted to reaching an ab initio description of nuclei
[1–7]. However, owing to the high numerical costs, the most
exact approaches are still mainly applicable to light nuclei. To
tackle the rest of the nuclear chart, the more phenomenological
self-consistent mean-field (SCMF) method [8] and shell-
model (SM) [9] remain among the most used and powerful
approaches. The SCMF method and its extensions are based
on the determination of self-consistent orbitals, considering
the wave function of the nucleus as a particle-independent
state. The idea is to enrich the one-body picture to minimize
the effect of the residual interaction. An accounting for
missing correlations is usually achieved in a second step
via symmetry-breaking and restoration techniques [10–30].
The SM, however, usually uses a frozen oscillator basis to
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build a wave function that explicitly preserves symmetries.
The active nucleons determining the properties of the system
are restricted to a valence space and interact through a
renormalized interaction.

This work is taking part in the development of an alternative
approach to the nuclear many-body problem, namely the “vari-
ational multiparticle-multihole (MPMH) configuration mixing
approach,” which aims to take advantage of both previous types
of methods. The nuclear state is expanded on a set of configu-
rations, and both the mixing coefficients and the single-particle
orbitals used to build the Slater determinants are determined at
the same time via a variational principle. This procedure allows
a unified treatment of long-range correlations, preserving, at
best, the fundamental symmetries of the nuclear Hamiltonian.
Full self-consistency is obtained because the mean-field and
the orbitals evolve according to the correlation content of
the nucleus. The MPMH configuration mixing method is, in
fact, the adaptation to nuclear systems of techniques already
widely employed in the context of atomic physics and quantum
chemistry. In these domains, this type of approach is known as
the multiconfiguration Hartree-Fock (MCHF) [31,32] or mul-
ticonfiguration self-consistent field (MCSCF) method [33,34]
and leads to very successful results. In nuclear physics, the
lack of knowledge of the nuclear force as well as the presence
of two types of particles represent additional difficulties.

Pioneering work using a MCHF-type approach in the
context of nuclear physics was done a few decades ago [35,36].
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These first studies, restricted to simple analytical models, were
followed by realistic applications to the description of a few
nuclei of the sd shell in the intrinsic frame [37–41]. Owing
to the limited numerical means at the time, these analyses
were, however, restricted to a small number of configurations.
The construction of a generalized single-particle basis in the
context of the random-phase approximation (RPA) theory was
also mentioned in Ref. [42] and applied analytically to the
Lipkin model.

Recent applications of the MPMH configuration mixing
method have been realized using the D1S Gogny inter-
action [43]. However, these works did not apply the full
self-consistent formalism. For example, analyses of the spec-
troscopy of sd-shell nuclei [44,45] were performed using
frozen Hartree-Fock orbitals. An earlier work, which pre-
sented the complete formalism in the case of an effective
density-dependent nuclear interaction, applied the MPMH
configuration mixing approach to the description of pairing
correlations in the ground states of Sn isotopes making drastic
approximations in the equation determining the single-particle
states [46]. A prior study with a similar approximation was also
performed using the Skyrme SIII interaction for the mean-field
and a residual contact interaction to describe K isomers in the
178Hf mass region [47].

In the present work we apply for the first time the complete
formalism of the MPMH configuration mixing approach in
a realistic case [48]. In Sec. II we expose and analyze the
formalism of the method as a many-body theory. A focus on
the understanding of the equation determining the orbitals is
made and a connection to the formalism of Green’s functions
is established. For a precise analysis, and in the view of
eventual future applications with different interactions, we
consider in this formal part a general three-body Hamiltonian.
In Sec. III we expose in detail the numerical algorithm that
is used to solve the set of coupled equations. As in this
work the numerical calculations are performed using the
phenomenological density-dependent D1S Gogny force, a
focus is made on the rewriting of the equations and their
interpretation according to Sec. II. In Sec. IV the solution
procedure is applied to the description of the ground state
of a test nucleus, which we chose to be 12C. Two different
truncation schemes are employed to select the configurations
included in the wave function. We compare the convergence
features of both schemes, as well as results concerning
the properties of the ground state and the single-particle
spectrum. Particular attention is paid to the effect of the orbital
optimization. Finally, the first 2+ excited state is investigated,
and excitation energies as well as transition probabilities
B(E2) are calculated. In Sec. V we give conclusions and
perspectives to this work.

II. FORMALISM

In this section we derive the formalism of the MPMH
configuration mixing approach from a more general point of
view than the one adopted in Ref. [46]. This makes it possible
to emphasize the connection with well-known many-body
techniques, such as the Green’s functions formalism. To start
the discussion, we consider a general three-body nuclear

Hamiltonian,

Ĥ = K̂ + V̂ 2N + V̂ 3N

=
∑
ij

Kij a
†
i aj + 1

4

∑
ijkl

〈ij |Ṽ 2N |kl〉 a
†
i a

†
j alak

+ 1

36

∑
ijklmn

〈ijk|Ṽ 3N |lmn〉 a
†
i a

†
j a

†
kanamal, (1)

where K̂ is the kinetic energy operator and Ṽ 2N and Ṽ 3N are
the antisymmetrized two- and three-body nuclear interactions,
respectively. The two-body term V̂ 2N also includes the
Coulomb force.

The “exact” nuclear states |�ex〉 solutions of the
Schrödinger equation,

Ĥ |�ex〉 = E|�ex〉, (2)

can be expressed as a superposition of many-nucleon config-
urations |φα〉 built on a (complete) single-particle basis {i},

|�ex〉 =
∑

α

Aα|φα〉, (3)

with

|φα〉 =
∏
i∈α

a
†
i |0〉, (4)

where |0〉 denotes the true particle vacuum.
Each Slater determinant |φα〉 can also be expressed as

a multiple particle-hole excitation of a reference state |φ0〉
associated with a given mean field,

|φα〉 =
Mα∏
i

(
a
†
ip
aih

)|φ0〉, (5)

with

|φ0〉 =
A∏

i=1

a
†
i |0〉. (6)

In Eq. (5), the indices h (p) stand for “hole” (“particle”) and
denote occupied (unoccupied) orbitals in |φ0〉. Mα is called
the excitation order of the configuration |φα〉 and corresponds
to the number of p-h excitations applied to |φ0〉 to obtain |φα〉.
The reference state |φ0〉 characterized by Mα = 0 is included
in expansion (3). Finally, any A-nucleon configuration |φα〉
is a direct product of proton (π ) and neutron (ν) Slater
determinants so that

|φα〉 = |φαπ
〉 ⊗ |φαν

〉

=
Mαπ∏

i

(
a
†
ipπ

aihπ

)|φ0π
〉 ⊗

Mαν∏
j

(
a
†
jpν

ajhν

)|φ0ν
〉, (7)

and

|φ0〉 = ∣∣φ0π

〉 ⊗ ∣∣φ0ν

〉
=

Z∏
i=1

a
†
iπ
|0〉 ⊗

N∏
j=1

a
†
jν

|0〉. (8)
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FIG. 1. Separation of the many-body space S spanned by the
finite single-particle basis, into P ⊕ Q.

In theory, the single-particle basis is infinite so that the exact
state |�ex〉 does not depend on the nature of the orbitals, and
the only unknown parameters to be determined are the mixing
coefficients {Aα}. Practically, however, one has to work with
finite spaces. Because nuclei are known to be very collective
systems, the single-particle basis has to be large enough to
approximate the exact solution to a good accuracy. Because
the number of configurations grows combinatorially with the
number of particles and single-particle states and is drastically
increased by the presence of two types of nucleons, it is
most often impossible to perform exact calculations in the
full configuration space S spanned by the (finite) one-body
basis. Consequently, one is forced to restrict expansion (3) to
configurations belonging to a subspace P of S = P ⊕ Q. This
truncation is schematically represented in Fig. 1.

Thus, the approximate nuclear state |�〉 that one considers
reads, in fact,

|�〉 =
∑
α∈P

Aα|φα〉. (9)

Naturally, the subspace P should be chosen to contain
the physically most relevant many-body states. Different
truncation schemes can be adopted: a “SM-type” truncation
dividing the single-particle space into a frozen filled core, an
active valence space, and remaining empty orbits; a selection
of the Slater determinants according to their excitation order
Mα (1p-1h, 2p-2h, ...) or according to their excitation energy
E∗

α = Eα − E0 from the uncorrelated ground state |φ0〉. Com-
binations of these criteria can also be applied, but special care
always needs to be taken in the choice of the configurations to
ensure as much as possible the preservation of the fundamental
symmetries of the nuclear Hamiltonian, as, for example, the
rotational or the time-reversal invariances. In any case, such a
drastic truncation now renders the wave function significantly
dependent on the nature of the single-particle basis. The
strategy of the MPMH configuration mixing approach is
thus to determine the optimal set of single-particle states to
be used to construct the selected many-body configurations.
By enriching the restricted subspace P , this procedure is
expected to minimize the role of its orthogonal space Q on
the calculation of observables.

Consequently, the two sets of unknown parameters to be
determined are the mixing coefficients {Aα} and the single-
particle orbitals {ϕiτ ,τ = (π,ν)} used to build the many-body
states. These quantities are obtained by applying a variational

principle to the energy functional E[�] = 〈�|Ĥ |�〉 of the
system. The equation determining the weights {Aα} of the
configurations is obtained by requiring E[�] to be stationary
with respect to infinitesimal variations δA∗

α of the coefficients,
while the orbitals are kept fixed. Similarly, the orbitals are
optimized by fixing the coefficients and minimizing E[�] with
respect to the single-particle states {ϕiτ }. This leads to a system
of coupled equations,

δAE[�] = 0, (10)

δϕE[�] = 0, (11)

where δA and δϕ denote the variations with respect to the
mixing coefficients and the orbitals, respectively.

A. First variational equation: The mixing coefficients

Differentiating the energy with respect to the mixing
coefficients, one finds the first extremum condition (10) to
be equivalent to the eigenvalue equation∑

β∈P
〈φα|Ĥ |φβ〉Aβ = λAα. (12)

Equation (12) is common to configuration interaction (CI)
methods like the SM and represents the diagonalization of the
Hamiltonian matrix in the many-body space P . The nuclear
states |�〉 correspond to the eigenvectors of Ĥ , while the
eigenvalues λ give the total energy of the system.

Equation (12) introduces explicit correlations in the nuclear
state |�〉. As already largely discussed in Ref. [46], these corre-
lations are of different physical types. Indeed, if, for instance,
one neglects the three-body part of the residual interaction,
the matrix elements 〈φα| : V̂ 2N : |φβ〉 can be represented by
different types of vertices, as shown in Fig. 2. According
to the difference in excitation orders �M = |Mα − Mβ | of
the two Slater determinants, these vertices can correspond
to pairing correlations, RPA-type correlations which generate
collective vibrations of the system, or particle-vibration-type
correlations which couple the collective states to the single-
particle motion. Although they are treated on the same footing,
these correlations are restricted to the subspace P only, so that
at this stage the subspace Q has been left completely ignored.

To partly make up for this truncation, the idea is now to find
the set of single-particle orbitals which render P as physically
relevant as possible.

B. Second variational equation: The single-particle orbitals

We now minimize the energy functional E[�] with respect
to the single-particle states. A variation of the creation opera-
tors {a†

i } can be obtained from a general unitary transformation,

a
†
i → eiT̂ a

†
i e

−iT̂ = a
†
i + i[T̂ ,a

†
i ] − 1

2 [T̂ ,[T̂ ,a
†
i ]] + · · · ,

(13)
where T̂ is an infinitesimal Hermitian one-body operator and
[,] denotes the commutator. The resulting first-order variation
of the wave function reads

|δ�〉 = iT̂ |�〉, (14)
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FIG. 2. Diagrams representing the matrix elements 〈φα| : V̂ 2N :
|φβ〉, according to the difference in excitation orders �M = |Mα −
Mβ |.

so that the extremum condition (11) finally becomes

〈�|[Ĥ ,T̂ ]|�〉 = 0. (15)

This condition is often referred in the literature as a “gener-
alized Brillouin equation” [49,50]. Equation (15) can also be
recast conveniently into the following general inhomogeneous
mean-field equation:

[ĥ[ρ,σ ],ρ̂] = Ĝ[ρ,σ,χ ]. (16)

In Eq. (16) ρ is the one-body density matrix of the correlated
state:

ρij = 〈�|a†
j ai |�〉. (17)

The eigenbasis of ρ is called “natural” basis, and its eigenval-
ues {ni} are occupation numbers.

The quantities σ and χ denote the two- and three-body
correlation matrices, respectively. They are defined by

〈�|a†
1a

†
2a2′a1′ |�〉 = (1 − P12)ρ1′1ρ2′2 + σ11′,22′ , (18)

and

〈�|a†
1a

†
2a

†
3a3′a2′a1′ |�〉 = (1 − P12 − P13)(1 − P23)ρ1′1ρ2′2ρ3′3

+ (1 − P12 − P13)ρ1′1σ22′,33′

+ (1 − P12 − P23)ρ2′2σ11′,33′

+ (1 − P13 − P23)ρ3′3σ11′,22′

+χ11′,22′,33′ , (19)

where the set of Pij represents two-nucleon exchange opera-
tors.

The one-body mean-field Hamiltonian h[ρ,σ ] is defined as

h[ρ,σ ]ij

≡ Kij + �2N [ρ]ij + �3N [ρ,σ ]ij

= Kij +
∑
kl

Ṽ 2N
ikjlρlk + 1

4

∑
klmn

Ṽ 3N
ikl,jmn〈�|a†

ka
†
l anam|�〉

= Kij +
∑
kl

Ṽ 2N
ikjlρlk + 1

2

∑
klmn

Ṽ 3N
ikl,jmnρmkρnl

+ 1

4

∑
klmn

Ṽ 3N
ikl,jmnσkm,ln. (20)

The eigenstates of h[ρ,σ ] constitute the “canonical” basis, and
its eigenvalues {εμ} are single-particle energies.

Finally, the source term G[ρ,σ,χ ] contains the effect
of two- and three-body correlations beyond the mean-field
h[ρ,σ ]. It is an anti-Hermitian quantity which can be written
as

G[ρ,σ,χ ] = F [ρ,σ,χ ] − F †[ρ,σ,χ ], (21)

with

F [ρ,σ,χ ]ij = F 2N [σ ]ij + F 3N [ρ,σ,χ ]ij

= 1

2

∑
klm

σki,lmṼ 2N
kl,jm + 1

2

∑
klmnq

σki,mnṼ
3N
klm,nqjρql

+ 1

12

∑
klmnq

χkn,lq,mi Ṽ
3N
klm,nqj . (22)

In fact, one can show that the orbital equation (16)
can alternatively be derived from the formalism of Green’s
functions at equal times and more precisely, from the equation
of motion relating the one-body propagator to the two-body
propagator (see the Appendix). An identification with the
Dyson equation shows that the average potential �[ρ,σ ] ≡
�2N [ρ] + �3N [ρ,σ ] in Eq. (20) corresponds to the time-
independent part of the full one-nucleon self-energy. It is
represented in Fig. 3 in the case of a two-body interaction
only. Additionally, the source term G[ρ,σ,χ ] can be related to
the dynamical part of the self-energy through a certain equal
time limit (see the Appendix). This source term contains the
resummation of many diagrams related to the various types
of correlations contained in the correlated wave function |�〉,
as illustrated in Fig. 4. Moreover, because the configuration
mixing is performed in such a way to preserve important
symmetries of the nuclear Hamiltonian, as the ones associated
with the particle number, the total angular momentum, or the

FIG. 3. Diagrammatic representation of the direct (left) and
exchange (right) parts of the average potential �2N [ρ]. The double
line denotes the correlated one-body density.
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FIG. 4. Resummation of ring (top) and ladder (bottom) diagrams
in G2N [σ ].

time-reversal invariance, the source term G[ρ,σ,χ ] also con-
tains the correlations related to these symmetry preservations.

This analysis confirms that, whenever the densities are
calculated with the exact wave function of the system, Eq. (16)
is automatically fulfilled. The mean field defined in Eq. (20)
is the most general mean field that can be constructed
considering a three-body Hamiltonian (1). The part �2N [ρ]
implicitly couples back to the correlations of the system
by averaging the two-body interaction over both hole and
particle states, contrary to a Hartree-Fock field which averages
over orbits under the Fermi level only. Moreover, the part
�3N [ρ,σ ] introduces an explicit dependence on the two-body
correlation matrix by averaging the three-body force with the
full two-body density. It has been extensively discussed in
Refs. [51,52] that the eigenvalues of such a general mean-field
constitute the most unambiguous definition of single-particle
energies and physically correspond to centroids of one-nucleon
separation energies. The theory of the general mean field has
also been widely exposed in Ref. [53] from the point of view of
perturbation theory. The authors emphasize the importance of
consistency between mean field and correlations for the theory
to be variational.

1. Role and interpretation of the orbital equation

In practice, when truncations are applied to the wave
function |�〉, the orbital equation (16) not only makes
it possible to achieve consistency between mean-field and
correlation content; it is also expected to help compensate
(partly) for these truncations. Let us justify this point.

The nuclear state |�〉 resulting from the diagonaliza-
tion (12) of the many-body Hamiltonian is restricted to a
selected subspaceP of the full Hilbert space, i.e., |�〉 = P̂ |�〉,
where P̂ is the projector onto P . The variation |δ�〉 that was
obtained from the transformation (13) of single-particle states
can be divided into a part in P and a part which belongs to the
orthogonal subspace Q as

|δ�〉 = P̂ |δ�〉 + Q̂|δ�〉 ≡ |δ�〉P + |δ�〉Q. (23)

Thus, the corresponding variation of the energy can also be
written as

δϕE[�] = 〈�|Ĥ |δ�〉 + 〈δ�|Ĥ |�〉
= 〈�|Ĥ |δ�〉P + P〈δ�|Ĥ |�〉

+ 〈�|Ĥ |δ�〉Q + Q〈δ�|Ĥ |�〉

= 〈�|P̂ Ĥ P̂ |δ�〉 + 〈δ�|P̂ Ĥ P̂ |�〉
+ 〈�|P̂ Ĥ Q̂|δ�〉 + 〈δ�|Q̂Ĥ P̂ |�〉. (24)

One notices that this first-order variation does not make it
possible to account for terms in ĤQQ ≡ Q̂Ĥ Q̂ representing
propagation in the subspace Q. However, couplings between
P and Q appear through ĤPQ ≡ P̂ Ĥ Q̂ and ĤQP ≡ Q̂Ĥ P̂ .

Another argument can be made by considering the optimal
single-particle states solution of Eq. (16). Starting from an
initial arbitrary set of single-particle states {a†}, one can define
an initial subspace P , denoted as P (i), according to a certain
truncation scheme. The orbital equation then leads to a new
set {b†} that can be expressed as

b
†
i = ei�̂a

†
i e

−i�̂ =
∑

j

a
†
j (ei�̂)ji ≡

∑
j

a
†
j θji , (25)

where the sum runs over all states j (of same symmetry than i

in a symmetry-conserving approach) and �̂ = ∑
kl �kla

†
kal is

the one-body operator parametrizing the unitary transforma-
tion. Under this transformation, the many-body configurations
therefore vary as

|φα〉 → |φ′
α〉 = ei�̂|φα〉 = |φα〉 + i

∑
ij

�ij a
†
i aj |φα〉

− 1

2

∑
ijkl

�ij�kla
†
i aj a

†
kal|φα〉 + · · · . (26)

Mixing the single-particle states thus amounts to creating
MPMH excitations on top of the existing configurations. These
MPMH excitations extend to the whole (finite) single-particle
basis one is considering and are not restricted to a certain
valence space or to a maximum excitation order. Of course,
the contribution of configurations with high excitation order
or high excitation energy are expected to be small if the initial
single-particle states and selection scheme are physically
relevant. The role of the optimization of orbitals is to produce
an optimal final space P (f ), a combination of the initial P (i)

and Q(i), so that the influence of Q(f ) on the description of the
nuclear state is minimized (see Fig. 5). In Sec. IV, we see to
what extent the two initial spaces are mixed, according to the
correlation content of the system under study. Let us emphasize
that, because it acts at the one-body level, the transformation
of single-particle states does not create additional correlations.
� being a one-body operator, the excitations in Eq. (26) are
always built as products of 1p-1h excitations. Thus, one should
not expect that the orbital equation will fully make up for the
truncation of the wave function.

We end this section with a final remark about the interpreta-
tion of the orbital equation. Equation (16) is a generalization of
the Hartree-Fock equation when correlations are introduced.
In the limit where only the reference state is included in

FIG. 5. Modification of the subspaces P and Q via the optimiza-
tion of orbitals.
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expansion (3), i.e., when |�〉 = |φ0〉, one gets back the usual
Hartree-Fock equation [h[ρ0],ρ0] = 0, where ρ0 = 〈φ0|ρ̂|φ0〉
is a step function. Such a commutation property ensures
the existence of a basis diagonalizing both h[ρ0] and ρ0.
This eigenbasis defines the Hartree-Fock single-particle states
one seeks. In the general case where a configuration mixing
is introduced, [h[ρ],ρ] = G[σ ] �= 0. The “canonical” and
“natural” bases do not coincide anymore and one cannot define
states with definite single-particle energies and occupation
numbers at the same time. The question of which one is
the optimal basis then arises. In this approach we look
for the single-particle states that are used to construct the
configurations included in the (truncated) expansion of |�〉.
While the mean-field is rather related to the energy of the
system, the density contains direct information about the
content of the wave function. Therefore, it seems legitimate to
choose the natural orbitals as optimal orbitals. In this way,
the reference state |φ0〉, which is then obtained by filling
the orbitals with the higher occupations ni , will incorporate
a greater content of the wave function and will approximate at
best the correlated state |�〉. Hence, the natural basis satisfying
Eq. (16) is expected to minimize the correlations in the sense
that the weight of the reference state |A0|2 in the configuration
mixing should be maximized.

III. APPLICATIONS WITH THE D1S GOGNY FORCE

Although we derived the formalism in a general context,
the applications in this work are performed without an explicit
three-body force. We use instead the two-body D1S Gogny
interaction [43]. This phenomenological force contains a
density-dependent term which effectively accounts for many-
body effects, as well as short-range correlations. Let us
note that this interaction was originally created to perform
mean-field calculations or reasonable extensions, such as
RPA or generator coordinate method (GCM), for which it
has shown globally successful results [10–18,22,23]. Nothing
guarantees, however, that it will be adapted to the simultaneous
treatment of all types of long-range correlations, in the various
spin(S)-isospin(T) channels. The results obtained will depend
on that. Moreover, the question of which density is to be
used in the interaction remains open when going to correlated
systems. In the following we use the density built with the
correlated state |�〉. This is a prescription which has the
advantage of simplifying the variational equations. However,
because the phenomenological nature of the Gogny force
makes impossible to disentangle which effects are already
included in the interaction, uncontrolled overcounting effects
are likely to occur. Finally, we are fully aware that, in an
ultimate step, this kind of approach requires a fully finite-range
Gogny interaction. Work is done in this direction [54,55].

A. Variational equations

Because the D1S Gogny force is density dependent, the
variational principle does not reduce to the equations of the
previous section obtained by putting the terms in V 3N to zero.
In fact, new derivatives appear [46] and it is easily shown that

the two variational equations to be solved become∑
β

Aβ〈φα|Ĥ[ρ,σ ]|φβ〉 = λAα, ∀ α, (27)

[ĥ[ρ,σ ],ρ̂] = Ĝ[σ ]. (28)

In Eq. (27), the Hamiltonian matrix to be diagonalized has
been modified and now reads

Ĥ[ρ,σ ] = Ĥ 2N [ρ] + R̂[ρ,σ ]

= K̂ + V̂ 2N [ρ] + R̂[ρ,σ ], (29)

where

R̂[ρ,σ ] =
∫

d3r〈�|δV̂
2N [ρ]

δρ(
r)
|�〉ρ̂(
r)

= 1

4

∫
d3r

∑
klmn

〈kl|δṼ
2N [ρ]

δρ(
r)
|mn〉

× 〈�|a†
ka

†
l anam|�〉ρ̂(
r)

= 1

4

∫
d3r

∑
klmn

〈kl|δṼ
2N [ρ]

δρ(
r)
|mn〉

× (ρmkρnl − ρmlρnk + σkm,ln)ρ̂(
r). (30)

The operator R̂[ρ,σ ] is called “rearrangement term” and
represents the response of the system to a variation of density.
Although a one-body operator, R̂[ρ,σ ] depends on the two-
body correlation matrix σ and thus requires the computation of
this complicated quantity. The dependence of H on the one- and
two-body densities of the system renders Eq. (27) nonlinear.
A solution of this equation cannot be obtained via a single
diagonalization anymore but requires an iterative procedure.
Moreover, the eigenvalues λ of H[ρ,σ ] no longer correspond
to the energies of the system under study. In fact, we have
E[�] = 〈�|Ĥ 2N [ρ]|�〉 = λ − 〈�|R̂[ρ,σ ]|�〉. We also note
that, in Eqs. (27) and (28), all the direct and exchange terms
owing to the Pauli principle are treated exactly.

In the orbital equation (28), the mean-field Hamiltonian is
modified as

hij [ρ,σ ] = hij [ρ] + Rij [ρ,σ ]

= Kij + �ij [ρ] + Rij [ρ,σ ]

= Kij +
∑
kl

〈ik|Ṽ 2N [ρ]|j l〉ρlk + Rij [ρ,σ ]. (31)

Expressing the rearrangement term as

Rij [ρ,σ ] = 1

4

∑
klmn

〈kl|∂Ṽ 2N [ρ]

∂ρji

|mn〉〈�|a†
ka

†
l anam|�〉, (32)

one notes the similarity between R[ρ,σ ] and the potential
�3N [ρ,σ ] appearing in the mean field (20) that was derived
from an explicit three-body Hamiltonian. Thus, one can
say that the ρ dependency of the two-body force makes it
possible to simulate the part of the three-body interaction
that is averaged on two particles. Of course, the D1S force
being phenomenological, higher many-body effects are also
implicitly accounted for and no formal link can be made.
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The source term of the orbital equation now reads

G[σ ]ij = 1

2

∑
klm

σki,lm〈kl|Ṽ 2N [ρ]|jm〉

−1

2

∑
klm

〈ik|Ṽ 2N [ρ]|lm〉σjl,km. (33)

Comparing (33) to the source term (21) derived in the previous
section, we note that only the part derived from the two-body
interaction is reproduced. While it is important for the mean-
field description, neglecting the three-body part of the residual
interaction is usually a reasonable approximation.

Finally, because the Gogny force has been fitted to exper-
imental data, it empirically accounts for part of the subspace
Q that was discussed in Sec. II. Therefore, the division of the
many-body space in terms of P and Q is not clear when using
such a density-dependent interaction, and the rearrangement
terms are likely to reduce the effect of the orbital equation.

B. Numerical algorithm

Because the choice of orbitals {ϕi} influences the mixing
coefficients {Aα}, and vice versa, Eqs. (27) and (28) are
coupled. A fully self-consistent solution can therefore be
obtained via an iterative procedure where both equations are
solved successively at each step of the process. More precisely,
the global scheme that is adopted in this work is the following.

(1) Start by assuming a single-configuration wave function
|�(0)〉 = |φ0〉 so that no correlations are present, i.e.,
σ (0) = 0 and ρ(0) = ρ0 = 〈φ0|ρ̂|φ0〉 = ρ2

0 . Solve the
corresponding Eq. (28): [h[ρ(0)],ρ(0)] = 0. This is a
standard Hartree-Fock calculation that leads to a first
set of orbitals {ϕ(0)

i }.
(2) Construct the many-body configurations {φ(0)

α } on these
initial orbitals and solve Eq. (27) to obtain a first set of
ground-state components {A(1)

α }. The correlation matrix
σ (1) can then be calculated from these.

(3) Keeping σ (1) fixed, solve Eq. (28), i.e., solve
[h[ρ(1),σ (1)],ρ(1)] = G[σ (1)], to obtain the one-body
density ρ(1). The new single-particle states {ϕ(1)

i } are
taken as eigenvectors of the solution ρ(1).

(4) Go back to step 2 using these new orbitals, and repeat
the procedure until convergence is reached.

This process is illustrated in Fig. 6. In principle, conver-
gence of both orbitals and mixing coefficients—or equivalently
of both one- and two-body densities—must be checked. In the
present work, however, the convergence criterion is set only on
the one-body density ρ. Convergence is assumed to be reached
when variations of the density matrix �ρij = |ρ(N)

ij − ρ
(N−1)
ij |

between two consecutive iterations N − 1 and N are smaller
than 1 × 10−4. In practice, we observe that when convergence
on ρ is reached, σ has converged to a similar accuracy.

1. Solution of the first variational equation (27)

Solving the eigenvalue equation (27) already represents
a very difficult task in the context of SM methods because
it involves the diagonalization of huge matrices. Moreover,

FIG. 6. Convergence procedure of the MPMH configuration
mixing method.

the implementation of proton-neutron contributions increases
the computational challenge. Here, because of the ρ and σ
dependence of the matrix H[ρ,σ ] to diagonalize, Eq. (27) is, in
addition, nonlinear. A converged solution of this equation (with
fixed orbitals) can, in principle, be achieved by iterating the
diagonalization of H[ρ,σ ] until the mixing coefficients {Aα}
have converged. However, when the size of the matrix is big,
this numerical procedure can become very time consuming.
Because Eq. (28) will modify the orbitals and thus the mixing
coefficients, it is not worth converging the coefficients {Aα}
to a precise accuracy at this intermediate stage. Therefore,
in concrete terms, we choose not to perform this subiterative
process and to move to Eq. (28) after one single diagonal-
ization. Ultimately, convergence will be reached through the
global procedure. The diagonalization of the large Hamiltonian
matrix is achieved using the numerical techniques developed
by Caurier for large-scale SM calculations [9].

2. Solution of the second variational equation (28)

Solving the orbital equation (28) is far from being straight-
forward, and one could imagine different approaches. The
idea followed in this work is to express the source term
G[σ ] as a commutator with ρ to obtain an homogeneous
equation. Following this path, one can show that Eq. (28)
can equivalently be expressed as

[ĥ[ρ,σ ] − Q̂[ρ,σ ],ρ̂] = 0, (34)

where we have defined what we call a “correlation field”
Q[ρ,σ ]. In the natural basis ρ̂|i〉 = ni |i〉 this correlation field
is given by

Qij [ρ,σ ] =
{

Gij [σ ]
nj −ni

if ni �= nj ,

0 otherwise.
(35)
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Equation (34) now resembles some sort of Hartree-Fock
equation where the mean-field h[ρ,σ ] is modified by the
effect of two-body correlations through Q[ρ,σ ]. The optimal
single-particle basis that we seek is the one diagonalizing
h̃ ≡ h − Q and ρ simultaneously. Because h̃[ρ,σ ] depends
on the solution ρ, this is, of course, a nonlinear problem which
can again be solved iteratively. Equation (34) is solved with
a fixed correlation content σ [output of Eq. (27)], using the
following algorithm.

(1) Start from an initial correlated one-body density ρ =
ρinit and diagonalize it to obtain occupation numbers
{ni}.

(2) Calculate and diagonalize h̃[ρ,σ ] = h[ρ,σ ] −
Q[ρ,σ ]. The resulting eigenvectors constitutes new
single-particle states.

(3) Redistribute the particles on this new basis to obtain a
new density ρ.

(4) Go back to step 2, . . . , and so on until the ρ matrix
has converged in a given basis to the desired accuracy,
1.0 × 10−4 in this work. We note that in some cases,
however, there is no need to—or it is even better
not to—completely converge this microprocess before
going back to the first equation.

We remind the reader that this subconvergence process
takes place in a global iterative procedure. To differentiate both
types of iterations, we call “macroiteration” (N ) an iteration

FIG. 7. Detailed convergence procedure of the MPMH configu-
ration mixing method.

of the global procedure and “microiteration” (n) an iteration
of the process for solving Eq. (28) [or (34)] with fixed σ . The
detailed global convergence procedure is shown in Fig. 7.

The initial density ρ
(N)
init , starting point of the microconver-

gence procedure, is taken as the density calculated from the
solution of Eq. (27), i.e., calculated as

ρ
(N)
init,ij =

∑
αβ

A∗
αAβ〈φα|a†

j ai |φβ〉. (36)

Ultimately, when full self-consistency is reached, the densities
ρ

(N)
init and ρ(N), output of Eqs. (27) and (28), respectively,

become identical. We therefore set the following convergence
criteria for the global process: |ρ(N−1)

init − ρ
(N)
init | ≤ 1 × 10−4,

|ρ(N−1) − ρ(N)| ≤ 1 × 10−4, and |ρ(N) − ρ
(N)
init | ≤ 1 × 10−4.

IV. RESULTS FOR 12C

The iterative procedure discussed in the previous section
is now applied to a test nucleus: 12C. At the mean-field
level, this nucleus is predicted to be deformed and soft. For
information, we show in Fig. 8 the potential energy curve
(PEC) and potential energy surface (PES) provided by triaxial
Hartree-Fock-Bogoliubov (HFB) calculations performed with
the D1S Gogny force. Two minima appear. In particular, the
ground-state exhibits an oblate shape characterized by an axial
deformation parameter β ∼ −0.40. Although spherical sym-
metry is explicitly preserved in our approach (i.e., calculations
are performed at β ∼ 0.0 inducing states |�〉 of good angular
momentum J ), the deformation properties of this nucleus
should reflect in the correlation matrix σ .

The small number of particles contained in the 12C nucleus
makes it possible to test different types of truncation schemes
of the wave function. Here we compare the following.

(1) A SM-type truncation, dividing the single-particle
space into three blocks: a filled core of 4He, a 0p
valence shell, and remaining empty orbitals. In this
scheme, all possible nucleon excitations in the valence
space are explicitly introduced in the configuration
mixing: |�〉 = ∑

α∈model space Aα|φα〉. In this way, ex-
citations up to four particles-four holes (4p-4h) can be
generated. The maximum value of the excitation order
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nucleus.
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(a) Scheme 1 (b) Scheme 2

FIG. 9. Schematic representation of the two truncation schemes.

for both protons and neutrons, is Mαπ
= Mαν

= 2.
This truncation scheme is represented in Fig. 9(a).
In the following we see how the blocks of orbitals
(core, valence space, and empty states) are being mixed
through the transformation of single-particle states and
thus how none of these initial spaces remain frozen.

(2) A truncation based on the excitation order of the many-
body configurations. Here we include all possible
proton and neutron excitations up to 2p-2h in the full
single-particle space. This generates A-body states up
to 4p-4h. In this way, we are able to quantify the full
effect beyond the restricted valence space. No use of
a core is made in this scheme, so that all particles
are explicitly active at all times. This is sketched in
Fig. 9(b).

One of the goals of this illustrative study is to validate the
algorithm described previously, as well as to appreciate and
compare the effect of the orbital optimization according to
the content of the wave function. Moreover, this primordial
study will provide us with new information on the D1S Gogny
interaction when it is used within such kind formalism, with
various truncation schemes.

A. Numerical details

In the present calculations, the single-particle states are
expanded on axially deformed harmonic oscillator states, so
that the many-body configurations are explicitly characterized
by a good projection K ≡ Jz of the angular momentum J (the
so-called m scheme). The calculations are done at the spherical
point (β = 0); that is, the perpendicular and longitudinal
oscillator frequencies are taken to be equal: ω⊥ = ωz ≡ ω.
In this way, the two truncation schemes employed here
generate rotationally invariant many-body spaces and thus
produce a correlated state |�〉 with a definite value of J .
The self-consistent property of the spherical symmetry ensures
its preservation along the convergence process. This feature
allowed us to check the accuracy of our numerical code. The
values of the oscillator frequency ω, as well as the number of
major shells N0, are optimized at the Hartree-Fock level, lead-
ing to �ω = 15.50 and N0 = 5 shells. Sections IV B to IV D
being dedicated to the study of the ground state of the even-
even nucleus 12C, we have J = K = 0. The configurations
|φα〉 = |φαπ

〉 ⊗ |φαν
〉 are classified into blocks of projections

(Kαπ
,Kαν

= K − Kαπ
) and organized by increasing excitation

orders (0p-0h, 1p-1h, 2p-2h, . . . ). Time-reversal invariance
makes it possible to deduce the configuration blocks with
(Kαπ

> 0) from the ones characterized by (Kαπ
< 0). The

former are therefore never explicitly built and the size of
the matrix H[ρ,σ ] to diagonalize is drastically reduced (by
a factor ∼2).

With these conventions, the number of configurations
obtained with truncation scheme 1 is equal to 38, whereas
it reaches 26 401 700 when using truncation scheme 2.
Global convergence with the criteria on the one-body density
mentioned in the previous section is reached in 15 and 14
macroiterations when using schemes 1 and 2, respectively.

Finally, we note that the center-of-mass motion is corrected
only at the one-body level; i.e., the kinetic energy in Eq. (29)
is multiplied by the factor (1 − 1

A
). Although two-body

corrections should also be taken into account, they are not
implemented in this work.

B. Evolution of correlations and densities along
the convergence process

In this next section, we discuss the results obtained with
schemes 1 and 2. They are represented on the various figures
in green and blue, respectively.

1. Two-body correlation matrix σ

The first step of the method is to diagonalize the many-
body matrix H[ρ(0),σ (0)] to obtain the ground-state expansion
coefficients {A(1)

α }. From these we can calculate the two-body
correlation matrix σ (1). We show on the left-hand sides
of Figs. 10(a) and 10(c) the neutron correlation matrices
calculated at macroiteration N = 1 with truncation schemes
1 and 2, respectively. Because 12C has N = Z, the results
for protons are very similar to the one obtained for neutrons
and thus are not shown here. The proton-neutron correlation
matrices calculated at N = 1 with schemes 1 and 2 are shown
on the left-hand sides of Figs. 10(b) and 10(d), respectively.
All nonzero elements |σijkl| are plotted in absolute value
to appreciate the strength of correlations in each case. The
horizontal axis is a linear index I corresponding to a certain
quadruplet of single-particle indices I ≡ (i,j,k,l). Let us note
that these correlation matrices are not recoupled in total
angular momentum; it is, therefore, difficult to compare the
intensity of the couplings between different shells and only
qualitative remarks can be made here.

Comparing the two truncation schemes, we clearly note
the higher fragmentation of the correlation matrices when
the full single-particle space is active. Many more matrix
elements of smaller intensity appear, which is expected to
reveal a higher collectivity. About 50 nonzero elements of the
neutron (or proton) correlation matrix can be calculated with
a p-shell valence space, whereas they amount to more than
150 000 when all orbitals are active. In both cases, correlations
between protons and neutrons seem to dominate in number
and intensity. One obtains about 150 nonzero elements with
truncation scheme 1 and more than 700 000 with truncation
scheme 2. This type of correlation is usually very important
to explain the deformation mechanism in nuclei. Moreover,
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FIG. 10. Correlation matrices. (a) Neutron correlations obtained with scheme 1 at macroiteration N = 1 (left) and N = 15 (right). (b)
Proton-Neutron correlations obtained with scheme 1 at macroiteration N = 1 (left) and N = 15 (right). (c) Neutron correlations obtained with
scheme 2 at macroiteration N = 1 (left) and N = 14 (right). (d) Proton-Neutron correlations obtained with scheme 2 at macroiteration N = 1
(left) and N = 14 (right).

in N = Z nuclei, because both types of nucleons occupy the
same orbitals, the T = 0 residual interaction is expected to
be enhanced. We note that in all cases, the peaks with the
highest magnitude correspond to correlations of pairing type,
reflecting the scattering of pairs of particles around the Fermi
level.

We discuss now in a qualitative way the intensity of
the correlation matrices calculated at the end of the con-
vergence procedure. We show on the right-hand sides of
Figs. 10(a) and 10(c) the neutron correlations obtained when
global convergence has been reached, for schemes 1 and
2, respectively. To appreciate to what extent the new basis
has “absorbed” part of the correlations, the quadruplet I
now represent states (i,j,k,l) of the optimized self-consistent
single-particle basis. Similarly, the proton-neutron correlations
obtained after convergence are shown on the right-hand sides
of Figs. 10(b) and 10(d). Concerning the p-shell calculation
[Figs. 10(a) and 10(b)], the correlation content does not
seem much modified by the optimization of mean-field and
orbitals. In fact, we find that the sum of all nonzero elements
increases slightly from

∑ |σ ν
ij,kl| = 2.11 at iteration N = 1

to 2.27 at iteration N = 15 for the neutron correlations and
from

∑ |σπν
ij,kl| = 4.58 to 5.02 in the case of proton-neutron

correlations. A possible explanation could be that not enough
information was explicitly introduced in the wave function,
so that the correlation content is not important enough for the
orbital equation to respond. When the full single-particle space
is active [Figs. 10(c) and 10(d)], we note a decrease of some
elements of the correlation matrices of same isospin (e.g., peak
at I = 6). In fact, the sum

∑ |σ ν
ij,kl| of all elements of neutron

type goes from 17.81 at iteration N = 1 to 14.68 at N = 14.
At first glance, correlations of proton-neutron type seem to
have increased after the convergence procedure. However, we
find that the sum

∑ |σπν
ij,kl| also decreases from 89.57 to 74.40.

This behavior is coherent with the interpretation of the role
of the orbital equation. The mean field is indeed supposed to
absorb as much effect of the correlations as possible and thus
reduce the intensity of the latter. Although decreased, we note
that the residual correlations remain important. Let us remind
the reader that the spherical symmetry is explicitly preserved
in our approach, and it is likely that more correlations could
be absorbed by the mean-field if one allowed for deformation.
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Hence, it would be very informative to perform the same study
by working in the intrinsic frame of the nucleus. The main
drawback of such an approach would, however, be the need to
project the final solution to obtain a state characterized by a
good angular momentum J .

2. Source term

The previous correlation matrices are now used to calculate
the source term G[σ ] appearing in the orbital equation (28).
Let us first look more closely at the analytical expression of
this term:

G[σ ]ij = 1

2

∑
klm

σki,lm〈kl|Ṽ 2N [ρ]|jm〉

− 1

2

∑
klm

〈ik|Ṽ 2N [ρ]|lm〉σjl,km. (37)

We note that G[σ ]ij is nonzero if there exists at least one
triplet (k,l,m) of single-particle states such that σki,lm �= 0
or σjl,km �= 0. Because σ reflects the correlations that have
been explicitly introduced in the wave function, σki,lm �= 0 if
(k,i,l,m) are all explicitly active. When the use of a valence
space is made, the source matrix G[σ ]ij , therefore, has at least
one external index (i or j ) in this space. The second index being
attached to the matrix element of the interaction Ṽ 2N [ρ], it can
belong to the whole single-particle basis. The source term is
therefore able to couple the active shell to the rest of the orbitals
that were previously considered as inert. Thus, it has the role of
propagating the effect of correlations on the full single-particle
basis by establishing a communication between the three
blocks (core/valence/empty single-particle states). Because of
the explicit symmetry preservations imposed in this study, the
source term can only couple states of same parity π and angular
momentum j . When using truncation scheme 1, it therefore
couples the 0p3/2 and 0p1/2 subshells to the 1p3/2 and 1p1/2

subshells, respectively. This is illustrated in Fig. 11, which
represents the neutron source term at the beginning and the end
of the convergence procedure. More precisely, because states
i = (αi,mi) of the same spherical subshell αi = (ni,li ,ji) lead
to identical couplings |Gν[σ ]i,j | = |Gν[σ ]αi ,αj

|δji ,jj
δmi ,mj

, we
only plotted the values |Gν[σ ]αi ,αj

| for the different subshells.
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FIG. 11. Absolute value of the neutron source term in MeV,
obtained with scheme 1 at macroiterations N = 1 (left) and N = 15
(right).
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FIG. 12. Absolute value of the neutron source term in MeV,
obtained with scheme 2 at macroiterations N = 1 (left) and N = 14
(right).

At iteration N = 1, the basis {i} denotes the Hartree-Fock
states, whereas it denotes optimized states at iteration N = 15.

Similarly, we show in Fig. 12 the source term calculated
with scheme 2. Because all orbitals participate in the configura-
tion mixing, many more couplings appear in the source matrix
Gij than in the previous case, where a restricted valence space
was considered. Also, the values of the couplings between
the 0p and 1p shells have drastically changed: The coupling
between the states of the p3/2 subshells is now equal to ∼1.44
MeV, while it was only ∼0.21 MeV with truncation scheme
1. On the contrary, the coupling between the orbitals of the
p1/2 subshells has been decreased from ∼0.42 to ∼4.8 ×
10−3 MeV.

Let us now comment on the evolution of G[σ ] along the
convergence procedure. This source term reflects the residual
correlations beyond the mean field h[ρ,σ ]. Because the latter
absorbs the average effect of the correlation content of the
system and thus becomes more and more refined, one could
expect the intensity of G[σ ] to decrease. However, as seen
from the right-hand sides of Figs. 11 and 12, the results
obtained are not so straightforward. In both cases, some kind
of “harmonization” of the different couplings seems to appear:
The strongest ones decrease while the weakest ones increase.
Concerning scheme 1, the sum

∑
αi<αj

|Gν
αiαj

[σ ]| varies from
0.669 MeV at iteration N = 1 to 0.663 MeV at iteration
N = 15, while the average value of the couplings varies from
0.335 to 0.332 MeV. The effect is slightly more important
when using scheme 2: The sum of the couplings decreases
from 2.809 to 2.634 MeV, while the average evolves from
0.401 to 0.376 MeV.

3. One-body density

A first manifestation of the effect induced by the orbital
equation can be seen on the evolution of the one-body density
matrix ρ. Before looking at the results, it is important to
recall the following. In the previous section, we mentioned the
density ρ init calculated from the output of the first variational
equation (27), i.e., calculated as

ρ init
ij =

∑
αβ

A∗
αAβ〈φα|a†

j ai |φβ〉,
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FIG. 13. Evolution of the neutron one-body density along the
convergence process. The difference between the correlated density
and a pure Hartree-Fock density �ρ = |ρ − ρHF| is represented in a
matrix form in the original Hartree-Fock basis. Truncation scheme 1.
See text for explanation.

and the density resulting from the second variational equa-
tion (28), i.e., solution of [h,ρ] = G. Formally, these two
densities should correspond to the same quantity. However,
at the beginning of the procedure, when convergence has not
been yet reached, they are not identical. This is illustrated in
Figs. 13 and 15, where we show the evolution of the neutron
density along the convergence process, for truncation schemes
1 and 2, respectively. Again, because N = Z the proton density
shows a similar behavior. To emphasize the effect of the orbital
equation, we plotted the difference between the correlated
density and the density of a pure Hartree-Fock state, in
the original Hartree-Fock basis: �ραi,αj

≡ |ραi,αj
− ρHF

αi ,αj
| =

|ρij − ρHF
ij |, ∀ mi = mj = −ji, . . . ,ji .

We start with 0�� truncation scheme 1. In Fig. 13(a) we
show the matrix �ρ obtained at the first macroiteration N =
1, resulting from the solution of the first equation (27) only
(i.e., when the mixing coefficients have been calculated with
the initial Hartree-Fock orbitals). As expected, the density is
modified only in the valence space, where explicit correlations
have been introduced.

In Fig. 13(b) is represented �ρ obtained at N = 1 after
solving the orbital equation (28). We see that optimizing the
single-particle states has modified the density in the whole
basis and introduced nondiagonal elements ραiαj

. Couplings
between positive-parity states also appear. Even though they
have not been introduced in the configuration mixing, and
thus are not affected by G[σ ], they are transformed through
[ĥ[ρ,σ ],ρ̂] = 0 by the fact that the mean-field h[ρ,σ ] is much
richer than a pure Hartree-Fock field, because it is polarized
by the residual interaction. These states are indeed influenced
by the two-body correlations in two ways: indirectly, through
the fact that the average potential is built with the correlated
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FIG. 14. Comparison between the neutron density matrices given
by the first and second variational equations (27) and (28), respec-
tively, at different stages of the convergence process. Truncation
scheme 1.

one-body density ρ, and directly, through the rearrangement
terms R[ρ,σ ] that introduce an explicit dependence on the
two-body correlation matrix σ .

In Fig. 13(c) we show �ρ at the macroiteration N = 2 after
solving the first variational equation (27). At this stage we
redefined the p-shell valence space on the new single-particle
basis. We note that the density kept trace of the orbital mixing
and is starting to look similar to the density resulting from
the orbital equation (28). In fact, as expected, we observe
that the density matrices from both equations converge to the
same quantity at the end of the procedure. This is shown in
Fig. 14, where we plotted both densities at different stages
of the convergence process. We see that they tend to align
themselves on the y = x line after a few iterations.

Finally, we show in Fig. 13(d) the matrix �ρ obtained at the
end of the convergence procedure (at macroiteration N = 15).
We see that the difference to the Hartree-Fock density has
generally increased. Let us note that mixing the orbitals not
only makes it possible to introduce nondiagonal couplings in
the density [which in this case would be nonexistent if only the
first equation (27) was solved]; it also modifies the diagonal el-
ements of ρ. More precisely, it allows, in principle, to partially
empty the core and populate the initially empty states. In this
test case, the biggest effect concerns the initial Hartree-Fock
0s shell of the core which is emptied by 2.86 × 10−3 particles
in the case of protons and 2.96 × 10−3 in the case of neutrons.
The initially empty 1s shell is populated by 2.44 × 10−3 and
2.54 × 10−3 particles, respectively. In this test case, the effect
is thus quite weak and not visible on the figures.

Let us now look at the evolution of the density matrix
obtained when all single-particle states are active (scheme
2). The results are shown in Fig. 15, which is organized
in the same way as Fig. 13. Because no use of a valence
space is made, the correlated density calculated as output of
the first variational equation (27) at macroiteration N = 1
already contains nondiagonal couplings. Still it is modified
after solving the orbital equation (28). Again, the densities
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FIG. 15. Evolution of the neutron one-body density along the
convergence process. The difference between the correlated density
and a pure Hartree-Fock density �ρ = |ρ − ρHF| is represented in a
matrix form in the original Hartree-Fock basis. Truncation scheme 2.
See text for explanation.

obtained via both variational equations tend to resemble each
other along the convergence procedure. In fact, they become
identical up to ∼10−4, as seen from Fig. 16. It is important
to state that this also means that the nondiagonal elements
of the density ρ calculated via the first equation in the final
optimal basis go to zero. Finally, a stronger modification of
the diagonal elements of the density is induced by the orbital
optimization, compared to the previous truncation scheme.
We show in Table I the evolution of the “occupations” of
the Hartree-Fock spherical subshells (diagonal elements of
the density in the HF basis) at the beginning and end of the
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FIG. 16. Comparison between the neutron density matrices given
by the first and second variational equations (27) and (28), respec-
tively, at different stages of the convergence process. Truncation
scheme 2.

TABLE I. Evolution of the “occupations” of the original Hartree-
Fock spherical subshells for truncation scheme 2. Results for
neutrons.

Original Hartree-Fock Occupation at Occupation at
subshell macroiteration macroiteration

N = 1 N = 14

0s 1.94 1.86
0p3/2 3.60 3.08
0p1/2 0.074 0.184
0d5/2 0.126 0.318

procedure. Identical behaviors are obtained for both protons
and neutrons. We observe a depopulation of the 0s shell that is
of the order of 0.08 particles. More importantly, 0.52 particles
leave the 0p3/2 subshell to populate higher shells.

C. New single-particle energies

The single-particle energies (SPEs) εμ are defined as
eigenvalues of the mean field h[ρ,σ ]. To appreciate the
modification induced by the correlations on the single-particle
spectrum, we plotted in Fig. 17 the difference between these
SPEs and SPEs taken as eigenvalues of the pure Hartree-Fock
field. Results obtained with schemes 1 and 2 are shown on
the left- and right-hand sides of Fig. 17, respectively. Proton
and neutron SPEs are on the top and the bottom of the figure,
respectively.

We note that the account for correlations in the mean field
leads to a global compression of the single-particle spectrum in
all cases. Similar results are obtained for protons and neutrons.
The energy difference between the lowest shell (0s) and the
highest one (1d3/2 in this case) is decreased by ∼2.5 MeV
when using truncation scheme 1 and by more than 6 MeV
with truncation scheme 2. The most drastic effect concerns
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FIG. 17. Difference �ε = εHF − ε[ρ,σ ] in MeV between SPEs
taken as eigenvalues of the Hartree-Fock field and SPEs taken as
eigenvalues of the improved mean field h[ρ,σ ]. Results obtained
with truncation schemes 1 (left) and 2 (right) for protons (up) and
neutrons (down). The Fermi levels are marked by a dashed line.
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the 0s1/2 shell, which is shifted up by more than 2 MeV with
scheme 1 and 6 MeV with scheme 2. Moreover, the gap at the
Fermi level (represented by a vertical dashed line) between
the 0p3/2 and 0p1/2 subshells is reduced by ∼913 KeV for
protons and ∼740 KeV for neutrons when using truncation
1. It is reduced by ∼2 MeV when using truncation 2. These
values are to be compared to the initial gap value of ∼8.15
MeV in the Hartree-Fock calculation. Such a reduction of the
gap is expected to favor excitations around the Fermi level
and thus to induce modifications on the structure of the wave
function. This is analyzed and discussed in the next section.

D. Ground-state properties

We now look at the effect caused by the orbital optimization
on the energy and the composition of the ground-state wave
function. For a complete comparison and to isolate the effect
of the orbital equation (28), we calculate these quantities at
two levels:

(i) after solving the first variational equation (27) with
frozen Hartree-Fock orbitals, i.e., by iterating the
diagonalization of the many-body matrix H[ρ,σ ] =
H [ρ] + R[ρ,σ ];

(ii) after the complete self-consistent procedure, when both
variational equations (27) and (28) are simultaneously
satisfied.

1. Ground-state energy

We first show in Table II the ground-state energies obtained
in these two cases for the 12C nucleus. Using the D1S Gogny
force, the energy of the spherical Hartree-Fock state is found
to be EHF ∼ −92.88 MeV and already lies at the experimental
value Eexp ∼ −92.16 MeV [56]. The additional correlations
brought by the MPMH approach therefore inevitably lead
to an overbinding of this nucleus. Using the first truncation
scheme, this overbinding is found to be reasonable with a
value of ∼7 MeV. It can also be informative to compare the
MPMH energies in Table II with the ones obtained in the
HFB framework. Contrary to our case, the PEC shown in
Fig. 8 has been obtained by including two-body center-of-mass
corrections but without including the exchange term in the
Coulomb field. Although the latter only modifies the energy
by a few hundred keV, the inclusion of the two-body terms in
the center-of-mass corrections can change the binding energy
by several MeV. In this case, the axial HFB energy is brought
down from −87.54 to −92.45 MeV when excluding these
corrections and again lies at ∼7 MeV above the MPMH result
obtained with the first scheme. Let us stress that the axial HFB
total energy differs from the spherical HFB energy only by
∼400 keV. This shows that the correlations added by MPMH
go beyond the ones related to the axial deformation. Finally,

TABLE II. Ground-state energies in MeV.

Scheme Eq. (27) Eqs. (27) and (28)

1 −99.10 −99.44
2 −154.65 −155.42

comparing the second and third columns of Table II we note
that the use of optimal orbitals compared to Hartree-Fock ones
makes it possible to gain additional 340 keV. Although the
effect is small, the variational aspect of the orbital equation
is indeed found on these results. With the second truncation
scheme, the energies have now decreased by more than 50
MeV compared to the first scheme. Again, this overbinding
is not surprising because the D1S Gogny interaction has
not been fitted to reproduce binding energies at the MPMH
configuration mixing level. Beyond the missing two-body
center-of-mass corrections, which are expected to unbind the
nucleus by a few MeV, the huge total energy obtained when
enlarging the valence space could be the result of different
factors. First, we note that the diagonalization of the many-
body matrix H[ρHF,σHF = 0] = H [ρHF] + R[ρHF,σHF = 0],
using the pure Hartree-Fock density as a parameter in the
Gogny interaction, leads to a binding energy E = −139.61
MeV. Using the density of the correlated state thus brings
an additional ∼15 MeV. The remaining overbinding could
have two origins: (1) The density-dependent and spin-orbit
terms being zero ranged, they may lead to such pathological
behaviors when the valence space is large and high relative
momenta enter; (2) the T = 0 residual part of the Gogny
interaction is still not fully under control. Considering only
relative energies, we note, however, the reasonable gain of
∼770 keV when the full self-consistent process is applied.

At present, the uncertainties coming from the use of the
D1S interaction prevent us from concluding on the efficiency
of the method when using large valence spaces. Once a better
constrained fully finite-range interaction is developed and
implemented, it would be very interesting to compare the
results obtained in this approach with the ones produced by
methods based on deformed mean fields, such as the GCM with
angular momentum projection as described in, e.g., Ref. [24].
Such a comparison would provide information on the ability
of the MPMH approach to describe deformed nuclei.

2. Wave function

We show in Table III the effect of the orbital transformation
on the composition of the ground-state function, for truncation
scheme 1.

TABLE III. Truncation scheme 1. Weight of the main config-
urations in the correlated ground state without and with orbital
optimization. HF stands for “Hartree-Fock,” while SC stands for
“self-consistent.”

Configuration Eq. (27) Eqs. (27) and (28) Eqs. (27) and (28)
(HF orbitals) (HF orbitals) (SC orbitals)

0p-0h 53.95 47.65 48.20
(2p-2h)π 8.94 9.74 9.87
0p3/2 → 0p1/2

(2p-2h)ν 8.90 9.76 9.85
0p3/2 → 0p1/2

(2p-2h)πν 19.05 29.26 20.84
0p3/2 → 0p1/2

Others 9.16 2.46 11.24
within 0p shell
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TABLE IV. Truncation scheme 2. Weight of the 0p-0h configu-
ration in the wave function without and with orbital optimization.

Eq. (27) Eqs. (27) and (28) Eqs. (27) and (28)
(HF orbitals) (HF orbitals) (SC orbitals)

0p-0h 21.46 20.39 22.33

With frozen Hartree-Fock orbitals (first column), the 0p-0h
configuration embodies ∼54% of the total wave function.
The correlated ground state is already importantly fragmented
at this level because spherical orbitals are used. This low
component reflects the importance of correlations associated
to deformation. After optimizing the orbitals, one can analyze
the composition of the wave function in terms of optimal
self-consistent orbitals or in terms of the initial pure Hartree-
Fock orbitals (by calculating overlaps of Slater determinants).
We show the corresponding results on the third and second
columns, respectively. In terms of HF orbitals, we note that the
ground state is further fragmented in the sense that the 0p-0h
component is decreased by ∼6%. The 2p-2h excitations of
proton-neutron type within the 0p shell are enhanced by more
than 10%. This again shows the importance of proton-neutron
correlations for the description of deformed nuclei, probably
increased by the fact that the nucleus has N = Z. Looking now
at the ground-state composition in terms of self-consistent
orbitals, we note that the 0p-0h component is slightly more
important than the HF ground state. Although the effect is
very small in this case, it shows that the new self-consistent
reference state is “better” than the initial one in the sense that
it embodies more weight of the correlated wave function and
thus incorporates more physical content.

Similarly, we show in Table IV the weight of the 0p-0h
configuration before and after orbital renormalization when
using truncation scheme 2.

The wave function is much more fragmented than in the
previous case before optimizing the single-particle states.
Again, the orbital transformation slightly increases this frag-
mentation (second column), and the optimized self-consistent
reference state has a higher component than the initial HF
state (third column). Let us note that the transformation of
orbitals applied with scheme 1 brings the wave function
towards the fragmentation obtained with scheme 2, which
should be a better approximation to the “exact” solution
(given the interaction). However, this decrease of 6%, although
non-negligible, is not sufficient to reach the solution of scheme
2. As already discussed in Sec. II, we remind the reader that
the orbital variation only allows to optimize the one-body
quantities to “absorb” part of the correlation content of the
system. Changing the orbitals, however, does not introduce
new correlations and thus will never fully make up for the
truncation of the many-body space. This was also illustrated
by Eq. (24), which showed that the orbital equation makes it
possible to connect the subspaces P and Q via HPQ, but does
not account for HQQ.

Finally, let us remember what has been discussed in Sec. II.
The initial P space, denoted by P (i), contains the many-body
configurations |φ(i)

β 〉 that are built on initial Hartree-Fock

single-particle states and that are selected by the chosen
truncation scheme. Similarly, the final P space, P (f ), is
the space of selected configurations |φ(f )

α 〉 built on optimal
self-consistent orbitals. The idea here is to evaluate how much
of the initially ignored Q space, Q(i), has been incorporated
into the final state |�(f )〉 via the optimization of orbitals. That
is, writing

|�(f )〉 =
∑

α∈P (f )

A(f )
α

∣∣φ(f )
α

〉
=

∑
β∈P (i)

A
(i)
β

∣∣φ(i)
β

〉 + ∑
β∈Q(i)

A
(i)
β

∣∣φ(i)
β

〉
, (38)

we want to evaluate the values of

WP (i) ≡
∑

β∈P (i)

∣∣A(i)
β

∣∣2
,

and WQ(i) ≡
∑

β∈Q(i)

∣∣A(i)
β

∣∣2
, (39)

which represents the weights of P (i) and Q(i) in the final wave
function, respectively. This is done by calculating the overlaps
of configurations |φ(i)

β 〉 with configurations |φ(f )
α 〉, because

A
(i)
β = 〈

φ
(i)
β

∣∣�(f )〉 =
∑

α∈P (f )

A(f )
α

〈
φ

(i)
β

∣∣φ(f )
α

〉
. (40)

We perform the calculation for WP (i) and deduce WQ(i) from
the normalization condition WP (i) + WQ(i) = 1. The results
obtained with truncation scheme 1 are displayed on the first
line of Table V. In this case only ∼1% of the initial Q space
is incorporated into the final correlated wave function. Again,
this may be attributable to the fact that only the 0p shell
has been explicitly introduced in the configuration mixing
and, thus, because of the symmetry preservation, only the p
shells are directly impacted by the source term of the orbital
equation. In other words, not enough correlations have been
explicitly introduced at the beginning to have a noticeable
response from the orbital equation. Results obtained for larger
valence spaces are displayed on the next lines of Table V. We
note that the value of WQ(i) starts by increasing when adding
the 0s shell to the active space and again when adding the
sd shell. Introducing more active shells, and thus different
angular momentum and parities in the mixing, seems to
increase the effect of the orbital equation. However, when one
continues to enlarge the active space by adding the fp shell,
the value of WQ(i) starts decreasing again. At this point the
initial wave function is already close to the “exact” solution
(for a given interaction and given size of the single-particle

TABLE V. Weight of the initial Q space introduced in the final
wave function via the optimization of orbitals, according to the size
of the valence space.

Valence space WP(i) (%) WQ(i) (%)

0p shell 98.87 1.13
0s − 0p 97.42 2.58
0s − 0p − 1s0d 95.87 4.13
0s − 0p − 1s0d − 0f 1p 96.93 3.07
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basis). It becomes then less and less necessary to optimize
the single-particle states. Therefore, it seems that there exists
a size of valence space for which the orbital equation has a
maximum effect. Finally, let us remind the reader that the D1S
interaction used here contains a density dependence which
already implicitly accounts for part of the space Q. For a more
conclusive study, it would therefore be very informative to
perform the same analyses using an other type of interaction.
Perhaps the results would be more striking in this case.

E. Description of the first 2+ excited state

We end this study with an analysis of the first 2+ excited
state. Numerically, excited states are obtained in the following
way. First, the complete convergence procedure described in
Sec. III is applied to the ground state of the nucleus. Then,
when convergence is reached, we extract several eigenvalues
of the many-body matrix H[ρ,σ ], corresponding to different
many-body states. In other words, the orbitals are optimized
according to the correlations of the ground state and also used
to expand the excited states. Of course, in principle, one should
solve both variational equations, (27) and (28), for each state
and thus obtain a different set of orbitals for each of them.
However, the approximation that we use is usually justified
for the description of low-lying states.

We show in Fig. 18 the theoretical values for the ex-
citation energy E∗(2+

1 ) = E(2+
1 ) − E(0+

1 ) and the transition
probability B(E2 : 2+

1 → 0+
1 ) obtained with both truncation

schemes. The results obtained with pure HF single-particle
states are represented by circles, while the ones obtained with
self-consistent orbitals are represented by triangles. These
values are compared to the experimental data [57].

Truncation scheme 1 yields a good description of the
energy, which is improved by ∼670 keV when using self-
consistent orbitals. The transition probability B(E2) is, how-
ever, clearly underestimated. When using pure Hartree-Fock
orbitals, the theoretical value differs from the experimental
one by a factor ∼2.3. It is well known that to reproduce the
quadrupole collectivity, one usually needs to include explicit
2�� excitations in the valence space. Such a discrepancy is
therefore expected when the mixing is restricted to the 0p
shell (0�� space) and no effective charge is used. The B(E2)
obtained with self-consistent single-particle states is slightly
improved and differs from experiment by a factor of ∼2. This
small improvement corresponds to the 1.13% of the space
Q that has been included in the wave function, as shown in
Table V.

Enlarging the valence space makes it possible to increase
the collectivity and improves the description of the B(E2).
However, the effect appears to be too important, so that
the theoretical value now sits above the experimental one.
Concerning the excitation energy, the good description that
was obtained with scheme 1 is not reproduced with scheme
2, which largely overestimates the experimental E∗(2+

1 ) by
∼10 MeV. This again shows that the correlations added to
the ground state when enlarging the active space are incorrect
and are likely related to the D1S interaction we are using that
already empirically incorporates correlations in its parameters.
The zero-range spin-orbit and density-dependent terms are also
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FIG. 18. Excitation energy E∗(2+
1 ) in MeV (top) and transition

probability B(E2 : 2+
1 → 0+

1 ) in Weisskopf units (bottom) for the
first excited 2+ state.

to be investigated. These might explain why the couplings
between high-energy Slater determinants do not only bring
collectivity, as should be the case owing to their chaotic
behavior [45]. As noted in the previous section, when the full
single-particle space is active, the transformation of orbitals,
although acting here in the right way, has only very little impact
on the results.

V. SUMMARY, CONCLUSION, AND PERSPECTIVES

In this work, we have fully applied for the first time the
self-consistent MPMH configuration mixing approach to the
description of a nucleus. Based on a variational principle
determining both the expansion coefficients of the wave func-
tion and the single-particle orbitals, this method establishes a
natural bridge between CI techniques and SCMF methods. To
gain insight into the equations, we have exposed and analyzed
the formalism in a general context considering a three-body
Hamiltonian. A first application was then performed using the
two-body density-dependent D1S Gogny force. We chose 12C
as an example to test and compare the numerical algorithm
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using different truncation schemes of the wave function.
Starting from a spherical Hartree-Fock solution, convergence
has been successfully reached in a reasonable number of
iterations, with convergence criteria of 1.0 × 10−4 set on the
one-body density matrix. Particular attention has been paid to
the effect induced by the orbital equation on the description
of different quantities. In particular, introducing the effect of
correlations into the mean-field led to a global compression
of single-particle spectra and gaps at the Fermi level. The
effect was particularly strong when a N�� valence space
was used. Concerning ground-state properties, optimizing
the single-particle states globally increased the fragmentation
of the wave function. The comparison of different valence
spaces revealed that there may exist a truncation scheme
for which the effect of the orbital equation toward a better
solution is maximal. However, this equation acting at the
one-body level only, the induced effect usually remains small.
The D1S force which already partly accounts for the rest
of the many-body space may also reduce the impact of the
orbital transformation. Finally, the calculation of binding and
excitation energies led to unrealistic results when using a
large valence space. This confirms that the D1S Gogny force
is not prepared for this type of truncation scheme, and a
better constrained fully finite-range interaction is necessary
to validate the method. Work in this direction is in progress
[54,55].

In a next paper, we will apply the MPMH method using
the numerical algorithm described in this work to perform a

systematic study of sd-shell nuclei. Ground-state properties
and spectroscopy will be exposed. The structure description
provided by MPMH will also be used as input to calculate
cross sections associated with inelastic scattering processes.
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APPENDIX: THE ORBITAL EQUATION FROM THE
GREEN’S FUNCTION FORMALISM AT EQUAL TIMES

1. Derivation of the orbital equation

Let us first recall the definition of the Green’s functions.
Let a

†
i (t) and ai(t) be the creation and destruction operators of

a particle in state i in the Heisenberg picture. They are related
to the time-independent operators a

†
i and ai in the Schrödinger

picture as (with � = 1)

a
†
i (t) = eiHta

†
i e

−iH t ,
(A1)

ai(t) = eiHtaie
−iH t .

The many-body Green’s functions in the representation i are
defined as

G[1]
ij (t1 − t2) = −i〈�|T [ai(t1)a†

j (t2)]|�〉,
G[2]

ij,kl(t1,t2; t3,t4) = −〈�|T [ai(t1)aj (t2)a†
l (t4)a†

k(t3)]|�〉,
(A2)

G[3]
ijk,lmn(t1,t2,t3; t4,t5,t6) = 〈�|T [ai(t1)aj (t2)ak(t3)a†

n(t6)a†
m(t5)a†

l (t4)]|�〉,
...,

where |�〉 is, in principle, the exact ground state of the A-particle system, and T ( ) is the time-ordering operator which brings the
operators taken at latter times on the left of operators taken at earlier times and affects the results by the sign of the corresponding
permutation.

The equation of motion for the one-body propagator can be obtained from the equation of motion for the Heisenberg annihilation
operator ai(t). Considering a three-body Hamiltonian Ĥ = K̂ + V̂ 2N + V̂ 3N , we have

i
∂

∂t
ai(t) = [ai(t),Ĥ ] = eiĤ t [ai,Ĥ ]eiĤ t

=
∑
jk

Kjke
iĤ t [ai,a

†
j ak]eiĤ t + 1

4

∑
jk,lm

Ṽ 2N
jk,lmeiĤ t [ai,a

†
j a

†
kamal]e

iĤ t + 1

36

∑
sqklmn

Ṽ 3N
sqk,lmne

iĤ t [ai,a
†
s a

†
qa

†
kanamal]e

iĤ t

=
∑

k

Kikak(t) + 1

2

∑
klm

Ṽ 2N
ik,lma

†
k(t)am(t)al(t) + 1

12

∑
qklmn

Ṽ 3N
iqk,lmna

†
q(t)a†

k(t)an(t)am(t)al(t). (A3)

Multiplying (A3) by a
†
j (t ′) on the right, taking the T product and the expectation value in |�〉 of the corresponding expression,

and using the fact that the T product of operators is a distribution, we finally obtain∑
k

(
iδik

∂

∂t
− Kik

)
Gkj (t − t ′) = δ(t − t ′)δij + i

2

∑
klm

Ṽ 2N
ik,lmG

[2]
ml,jk(t,t ; t ′,t+) − 1

12

∑
qklmn

Ṽ 3N
iqk,lmnG

[3]
nml,jkq (t,t,t ; t ′,t+,t+). (A4)
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This is the equation of motion expressing the one-body propagator G[1] in terms of G[2] and G[3], the first step of the famous
Martin-Schwinger hierarchy of equations [58].
Similarly, one can repeat the same steps starting from the equation of motion for a

†
j (t ′). This leads to the following equivalent

equation∑
k

Gik(t − t ′)
(

i

←−
∂

∂t ′
δkj + Kkj

)
= −δ(t − t ′)δij + i

2

∑
klm

Ṽ 2N
kl,mjG

[2]
im,lk(t,t ′−; t ′,t ′) + 1

12

∑
klmnp

Ṽ 3N
klm,nqjG

[3]
iqn,mlk(t,t ′−,t ′−; t ′,t ′,t ′).

(A5)

Adding Eq. (A4) to (A5) eliminates the time derivatives and we get∑
k

[−KikG[1]
kj (t − t ′) + G[1]

ik (t − t ′)Tkj

]
= i

2

∑
klm

Ṽ 2N
ik,lmG

[2]
ml,jk(t,t ; t ′,t+) + i

2

∑
klm

Ṽ 2N
kl,mjG

[2]
im,lk(t,t ′−; t ′,t ′) − 1

12

∑
qklm

Ṽ 3N
iqk,lmnG

[3]
nml,jkq (t,t,t ; t ′,t+,t+)

+ 1

12

∑
klmnq

Ṽ 3N
klm,nqjG

[3]
iqn,mlk(t,t ′−,t ′−; t ′,t ′,t ′). (A6)

We now want to take the equal-time limit t ′ → t+ of Eq. (A6). It is straightforward to see that, in this limit, the N -body propagator
is proportional to the N -body density. In particular, we have for the one-body propagator

lim
t ′→t+

G[1]
kj (t − t ′) = −i〈�|T [ak(t)a†

j (t+)]|�〉 = +iρkj , (A7)

for the two-body propagator

lim
t ′→t+

G[2]
ml,jk(t,t ; t ′,t+) = −〈�|T [am(t)al(t)a

†
k(t+)a†

j (t+)]|�〉 = +〈�|a†
j a

†
kamal|�〉 = ρljρmk − ρlkρmj + σjl,km, (A8)

and for the three-body propagator

lim
t ′→t+

G[3]
nml,jkq(t,t,t ; t ′,t+,t+) = +i〈�|T [an(t)am(t)al(t)a

†
q(t+)a†

k(t+)a†
j (t+)]|�〉 = −i〈�|a†

qa
†
ka

†
j anamal|�〉

= −i(ρlqρmkρnj − ρlqρmjρnk − ρlkρmqρnj + ρlkρmjρnq − ρljρmkρnq + ρljρmqρnk + ρlqσkm,jn

− ρlkσqm,jn − ρljσkm,qn + ρmkσql,jn − ρmqσkl,jn − ρmjσql,kn + ρnjσql,km − ρnqσjl,km

− ρnkσql,jm + χql,km,jn), (A9)

where σ and χ are the two- and three-body correlation matrices. They correspond to the equal-time limit of the connected two-
and three-body propagators, respectively. Using relations (A7)–(A9) to take the limit t ′ → t+ of Eq. (A6) finally leads, after
calculus, exactly to the orbital equation (16),

[ĥ[ρ,σ ],ρ̂] = Ĝ[ρ,σ,χ ],

where h[ρ,σ ] and G[ρ,σ,χ ] = F [ρ,σ,χ ] − F †[ρ,σ,χ ] are defined in Eqs. (20) and (21).

2. Relation to the Dyson equation

As is well known, the equation of motion (A4) for the one-body propagator can equivalently be written in terms of the free
propagator G[0], satisfying ∑

l

(
iδil

∂

∂t
− Kil

)
G[0]

lj (t − t ′) = δ(t − t ′)δij , (A10)

as

G[1]
ij (t − t ′) = G[0]

ij (t − t ′) +
∑
ks

∫
dt1

∫
dt2G[0]

ik (t − t1)�ks(t1 − t2)G[1]
sj (t2 − t ′), (A11)

where � is the so-called “self-energy” which contains all the information about the many-body propagators and is defined as∑
s

∫
dt2�is(t1 − t2)G[1]

sj (t2 − t ′) = i

2

∑
lmn

Ṽ 2N
il,mnG

[2]
nm,jl(t1,t1; t ′,t+1 ) − 1

12

∑
qklmn

Ṽ 3N
iqk,lmnG

[3]
nml,jkq (t1,t1,t1; t ′,t+1 ,t+1 ). (A12)

Equation (A11) is the famous Dyson equation.
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The self-energy can always be split into a static part �[0] and a dynamical part �dyn as

�(t − t ′) = �[0]δ(t − t ′) + �dyn(t − t ′). (A13)

In Eq. (A12), one can express the two-body propagator in term of its connected part G[2]C as

G[2]
ij,kl(t1,t2; t3,t4) = G[1]

ik (t1 − t3)G[1]
j l (t2 − t4) − G[1]

il (t1 − t4)G[1]
jk (t2 − t3) + G[2]C

ij,kl (t1,t2; t3,t4). (A14)

Similarly, the three-body propagator can be written in terms of antisymmetrized products of the type G[1]G[1]G[1], G[1]G[2]C , and
its connected part G[3]C . It is then easily shown that the static self-energy �[0] corresponds to the average potential defined in
Eq. (20):

�[0] = �[ρ,σ ] ≡ �2N [ρ] + �3N [ρ,σ ]. (A15)

The dynamical self-energy is then given by

�
dyn
ij (t − t ′) = −i

∫
dt1

∑
klmn

Ṽ 2N
ki,lmG

[2]C
ml,nk(t,t ; t1,t

+)G[1]−1
nj (t1 − t ′)

− i

2

∫
dt1

∑
qklmns

Ṽ 3N
iqk,lmnρmkG[2]C

nl,jq (t,t ; t1,t
+)G[1]−1

nj (t1 − t ′)

− 1

12

∫
dt1

∑
qklmns

Ṽ 3N
iqk,lmnG

[3]C
nml,jkq (t,t,t ; t1,t

+,t+)G[1]−1
nj (t1 − t ′), (A16)

and can be related to the source term G[ρ,σ,χ ] = F [ρ,σ,χ ] − F †[ρ,σ,χ ] of the orbital equation because

lim
t2→t+1

∑
s

∫
dt ′�dyn

is (t1 − t ′)G[1]
sj (t ′ − t2) = i

2

∑
klm

Ṽ 2N
ki,lmσkl,jm − i

2

∑
qklmn

Ṽ 3N
iqk,lmnρmkσjl,kn + i

12

∑
qklmn

Ṽ 3N
iqk,lmnχql,km,jn

= i(F †)ij . (A17)
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