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Nucleon-nucleon scattering from dispersion relations: Next-to-next-to-leading order study
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Nucleon-nucleon (NN) scattering is studied by applying an approach based on the N/D method and chiral
perturbation theory (ChPT), whose dynamical input per partial wave consists of the imaginary part of the NN
partial-wave amplitude along the left-hand cut. The latter is calculated in one-loop ChPT up to and including
next-to-next-to-leading order (NNLO). A power counting for the subtraction constants is established, which is
appropriate for those subtractions attached to both the left- and the right-hand cuts. A quite good reproduction of
the Nijmegen partial-wave analysis phase shifts and mixing angles results, which implies a steady improvement
in the accurateness achieved by increasing the chiral order in the calculation of the dynamical input. I discuss that
it is not necessary to fine tune the chiral counterterms ci determined from pion-nucleon scattering to agree with
NN data, but instead one should perform the iteration of two-nucleon intermediate states in a well-defined way so
as to keep proper unitarity and analyticity. It is also confirmed at NNLO the long-range correlations between the
NN S-wave effective ranges and scattering lengths, when employing only once-subtracted dispersion relations,
that hold up to around 10% when compared with experimental values.
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I. INTRODUCTION

Chiral perturbation theory (ChPT) is the effective field
theory of QCD at low energies [1,2]. Its paradigmatic ap-
plication is the purely mesonic sector in SU(2).1 Its extension
to the one-baryon sector presents some complications owing
to the large nucleon mass that does not vanish in the chiral
limit [13,14], which posed interesting problems to the theory.2

For reviews of ChPT on these topics, see, e.g., Refs. [18–23].
The extension of ChPT to systems with a larger baryonic

number was considered in Ref. [24], where the chiral counting
is applied to the calculation of the multinucleon potential. In
these cases one also has to face the problem associated with
the infrared enhancement associated with the small nucleon
kinetic energies, which requires to resum the infinite string of
diagrams owing to the iteration of intermediate multinucleon
states. The extension of the chiral power counting to finite
density system, including the contributions of multinucleon
reducible diagrams, is given in Ref. [25]. For related reviews,
see, e.g., Refs. [26–30].

The application of the set up of Ref. [24] to nucleon-nucleon
(NN) scattering has been phenomenologically successful
[31–34]. However, the sensitivity of the results on the values of
the cutoff taken to solve the associated Lippmann-Schwinger
equation for the iteration of two-nucleon intermediate states
has given rise to a flurry of publications, whose fair and
comprehensive consideration is beyond this Introduction. For
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1This even presents one corner of concern owing to the enhanced

role of the right-hand cut in the isoscalar scalar pion-pion scatter-
ing [3–9], with an important impact as well in the pion-nucleon (πN )
sector [10–12].

2A faster stabilization of the chiral series in this case has been
recently accomplished [11,12,15] by combining the covariant formal-
ism of the extended on mass shell regularization scheme (EOMS) [16]
with the explicit inclusion of the �(1232) in the δ counting [17].

more detailed accounts on this respect the reader is referred
to Refs. [26,27,35–41]. The aim here is not to solve yet such
a notorious problem but to offer a complementary approach
based on ChPT and dispersion relations (DRs) that allows
one to derive NN scattering amplitudes free of regulator
dependence.

I extend here the previous work of Refs. [42–44] to study
NN scattering by applying an approach based on ChPT and the
N/D method of Ref. [45]. For this theory the dynamical input
is not a NN potential but the discontinuities of NN partial-wave
amplitudes along the left-hand cut (LHC). Namely, denoting
by T (A) a generic NN partial wave, with A the center of mass
(c.m.) three-momentum squared, one has the LHC that extends
for A < L, L = −M2

π/4 with Mπ the pion mass. Because of
the Schwarz reflection principle, the discontinuity of T (A)
across the LHC fulfills that T (A + i0+) − T (A − i0+) =
2i�(A), where �(A) is the imaginary part of a NN partial-wave
amplitude.

Both two-nucleon irreducible and reducible Feynman dia-
grams contribute to �(A). The former ones are amenable to
a straightforward ChPT expansion in much the same way as
discussed in Ref. [24] for the calculation of chiral NN potential.
Remarkably, the contributions to �(A) stemming from two-
nucleon reducible diagrams can be calculated perturbatively in
the chiral expansion as well, as explained in detail in Ref. [44].
In this way, one can perform a perturbative calculation of
T (A) within chiral effective field theory [46] and then take its
imaginary part along the LHC to determine �(A). Notice that
short-range nuclear forces, which in a low-energy effective
field theory like ChPT are accounted for by local interactions
of zero range, do not contribute to �(A).

This approach based on the N/D method and ChPT was
solved in Refs. [42,43], with �(A) calculated at leading order
(LO) from one-pion exchange (OPE), while in Ref. [44] the
NLO contributions to �(A) were also included from the one-
loop ChPT perturbative calculation of Ref. [46]. Compared
with the LO study, Ref. [44] obtained a clear improvement
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in the reproduction of the phase shifts and mixing angles of
the Nijmegen partial-wave analysis (PWA) [47], referred to
in the following as PWA93. I want to give one step forward
here and consider the next-to-next-to-leading order (NNLO)
contributions to �(A) from subleading two-pion exchange
(TPE) [46]. A steady improvement in the reproduction of the
PWA93 results when passing from NLO to NNLO, which
already reproduces PWA93 accurately, so that the chiral
expansion in the method used is well behaved. In addition,
only convergent integrals are involved in the calculations by
taking enough subtractions, and then the referred regulator
dependence that typically arises when solving the Lippmann-
Schwinger equation with a chiral NN potential is avoided
by construction. An interesting outcome from the present
study is that the long-range correlations between the effective
range and scattering length for each of the NN S waves is
corroborated, when only one input is taken from experiment.
These correlations, first noticed in Ref. [35], were also obtained
in the NLO N/D study of Ref. [44]. Note that with the approach
followed here they are deduced solely from basic principles
of NN partial-wave amplitudes, namely, chiral symmetry,
unitarity, and analyticity. It is worth pointing out that one
can proceed further and include more subtractions, so that one
can implement within this formalism the exact values of the
effective ranges unambiguously, something that is not possible,
e.g., in the tighter schemes of Refs. [35,48,49].

A chiral power counting for the subtraction constants
is developed below based on the running of their values
under variations in the subtraction point. I show that at NLO
and NNLO in the calculation of �(A) one then has twice-
subtracted DRs. Nevertheless, on top of this criterion one
has to impose (i) to end with integral equations (IEs) having
meaningful solutions3 (otherwise, the arguments driving to the
power counting for the subtraction constants do not make sense
because the integrals involved are not convergent) and (ii) to
satisfy the proper threshold behavior for F and higher partial
waves. These two requirements could imply the necessity of
taking more than two subtractions in the corresponding DRs.
Nevertheless, the second requirement could be softened, as
explained below (Sec. III B).

It is argued in Ref. [50] that the pion-nucleon (πN )
monomials proportional to the NLO counterterms ci , produce
a too-large contribution to the NN potential at medium and
short distances when it is calculated at NNLO in dimensional
regularization, which worsens the properties of the chiral
expansion. Because of this, Ref. [50] advocated to employ
the so-called spectral function regularization (SFR) to cut the
spectral representation of the NNLO NN potential at around
the chiral symmetry breaking scale. This last point would
be equivalent to truncating the full extent of the LHC in the
dispersive integrals, as also remarked in Ref. [51]. However, I
would like to stress that this is not necessary to obtain a good
reproduction of PWA93 when employing �(A) determined

3By a meaningful solution I mean here a mathematical solution to
the IE that does not depend on the the number of points employed
and the arbitrary large extension of the LHC on which they lie when
performing the numerical discretization to solve the IE.

up to NNLO in the method used in this work. The definitive
improvement of the results here does not arise by modifying the
two-nucleon irreducible diagrams at NNLO, but by performing
the iteration of two-nucleon unitarity diagrams in a proper way,
such that the right analytical properties of a NN partial wave
are not distorted.

The N/D technique, in conjunction with ChPT, was also
applied recently to study NN partial-wave amplitudes in
Ref. [51], following the ideas employed in other works
[52–56]. This approach is based on a nonlinear IE for the
partial-wave amplitudes along the right-hand cut (RHC),
which results from a partial-wave DR in which there is an
explicit separation between the RHC and LHC contributions.
Here all the contributions from the LHC are collected in the
so-called generalized potential U (s). In each channel Ref. [51]
solves the nonlinear IE numerically using the N/D techniques,
with �(A) calculated from covariant ChPT up to NNLO.4

However, the contributions in �(A) for A < −9M2
π/4 in the

LHC are truncated, because it is considered that they cannot
be accurately calculated in ChPT. They are then mimicked
as short-range interactions so that their contributions to U (s)
are calculated in the physical region by means of a conformal
mapping, which also extends U (s) smoothly to a constant for
energies above the two-pion production threshold.

An important point in the approach of Ref. [51] is that
the resulting partial wave is assumed to be perturbative at the
subthreshold c.m. energy μM , the so-called matching point,
so that it is by construction the same as the one calculated
perturbatively in covariant ChPT. In this way the number of
coefficients of the Taylor expansion in the conformal variable
is chosen to be the same as the number of ChPT counterterms at
each chiral order and are fitted to NN phase shifts partial wave
by partial wave. Phenomenologically, the phase shifts obtained
in Ref. [51] for the lower NN partial waves reproduce data in
reasonable good agreement. The residual scale dependence of
the results in μM and �s (the latter enters in the conformal
mapping applied) is studied in detail in Ref. [51].

The N/D method is a powerful tool to study two-body
scattering in the limit case of neglecting the LHC contributions.
This is based on the fact that the general form of the solutions
to the N/D IEs when �(A) → 0 can be given algebraically,
as deduced in Ref. [4]. This solution was afterwards fixed
by matching with chiral effective field theory for S- and
P -wave meson-meson scattering with great phenomenological
success. However, in NN scattering the LHC contributions are
not typically perturbative because OPE can be particularly
strong in some triplet partial waves [25,36,57]. Nonetheless,
this fact could be tempered by increasing the number of
subtractions.

After this Introduction I review the approach based on the
N/D method [45] for coupled and uncoupled partial waves in
Sec. II. The function �(A) is discussed in Sec. III, where I
also elaborate the chiral power counting for the subtraction

4The fulfillment of the nonlinear IE guarantees that the solutions
obtained in Ref. [49] are free of ghost states, so that they have the
right analytical properties. The solutions obtained within the approach
followed here do not present either ghost states.
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constants. Sections IV to XIII are devoted to discussing the
results obtained for the different NN partial waves up to
J = 4 (some aspects of the uncoupled waves 1H5 and 3H5

are also discussed). There it is shown that a quite good
reproduction of the PWA93 phase shifts and mixing angles
results [47], including also in the figures for comparison the
results from the potentials Nijm2, Reid93 [58], AV18 [59],
and the recent PWA [60]. In these sections I also compare
with the one-loop ChPT perturbative approximation for higher
partial waves and discuss on the relative importance of the
different contributions to �(A). The concluding remarks are
given in Sec. XIV. Finally, I discuss in the Appendix a novel
and efficient numerical method to calculate higher-order shape
parameters of the NN S waves.

II. DEVELOPMENT OF THE FORMALISM BASED
ON THE N/D METHOD

A detailed presentation of my approach based on the N/D
method [45] can be found in Ref. [44]. Here I only reproduce
the main facets of the formalism.

A. Uncoupled partial waves

An uncoupled NN partial wave is written as the quotient of
two functions,

T (A) = N (A)

D(A)
. (1)

In the following I use the spectroscopic notation and denote
by 2S+1LJ the different NN partial waves with S the total
spin, L the orbital angular momentum, and J the total angular
momentum. The reason to split T (A) in two functions is
because as a result of it N (A) has only LHC while D(A)
has only RHC or unitarity cut. The following expressions for
the discontinuities of the functions N (A) and D(A) along their
respective cuts then arise:

ImD(A) = −ρ(A)N (A), A > 0,
(2)

ImN (A) = �(A)D(A), A < L.

Here ρ(A) is the phase-space factor

ρ(A) = m
√

A

4π
, (3)

where m is the nucleon mass. The first of the relations in Eq. (2)
is a consequence of elastic unitarity, while the last one stems
from the definition of �(A) given above.

Standard DRs for the functions D(A) and N (A) are derived
in Ref. [44] under the assumption that the function D(A) does
not diverge faster than a polynomial of degree n0 for A → ∞.
Then for n > n0 one can write [44]

D(A) =
n∑

i=1

δi(A − C)i−1 − (A − C)n

π

×
∫ ∞

0
dq2 ρ(q2)N (q2)

(q2 − A)(q2 − C)n
,

N (A) =
n∑

i=1

νi(A − C)i−1 + (A − C)n

π

×
∫ L

−∞
dk2 �(k2)D(k2)

(k2 − A)(k2 − C)n
, (4)

where C is the subtraction point. In addition, it is clear
from Eq. (4) and the standard theory of DRs [61] that
different values for the subtraction points can be taken in each
function separately. Indeed, for many partial waves I take the
subtractions for the function D(A) in two points, one at C = 0
and the other at C = −M2

π . This is motivated by the fact that
one can always choose the normalization

D(0) = 1 (5)

by dividing simultaneously D(A) and N (A) by a constant, an
operation that obviously leaves invariant T (A) [Eq. (1)]. In
this way, one subtraction for D(A) is always taken at C = 0 to
guarantee straightforwardly the normalization Eq. (5).5 Note
also that the well-known uncertainty in the solution of the
N/D method [45], owing to the possible presence of Castillejo-
Dalitz-Dyson poles [62] in the D(A) function, can be traded to
a subtractive polynomial. This can be achieved by multiplying
simultaneously the original functions D(A) and N (A) by a
polynomial [which leaves T (A) invariant], whose roots contain
all the poles of the additive rational function in D(A).6

To solve D(A) one substitutes the expression for N (A) into
the DR of D(A) in Eq. (4). A linear IE for D(A) is then
obtained:

D(A) =
n∑

i=1

δi(A − C)n−i −
n∑

i=1

νi

(A − C)n

π

×
∫ ∞

0
dq2 ρ(q2)

(q2 − A)(q2 − C)n−i+1

+ (A − C)n

π2

∫ L

−∞
dk2 �(k2)D(k2)

(k2 − C)n

×
∫ ∞

0
dq2 ρ(q2)

(q2 − A)(q2 − k2)
. (6)

Notice that the same number of subtractions for both D(A)
and N (A) are taken in Eq. (4), which guarantees that the
integrals along the RHC present in Eq. (6) are convergent
[a fact that would be spoiled if the number of subtractions in
N (A) were larger than in D(A)]. The key point of the method
is to solve numerically the linear IE of Eq. (6), which provides
the knowledge of D(A) for A < L. Once D(A) is known along
the LHC, one can calculate all the functions D(A), N (A), and
T (A) in the whole A-complex plane. To obtain D(A), one can

5The normalization condition is real so that the function D(A)
always fulfills the Schwarz reflection principle.

6Poles with complex pole positions appear always in complex
conjugate pairs because one can always make that the Schwarz
reflection principle is fulfilled by the functions D(A) and N (A). This
implies a real polynomial on the A-real axis which does not spoil
unitarity.
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use Eq. (6) and for N (A) the second of the DRs in Eq. (4) is
adequate.

The integrations along the RHC in Eq. (6) can be done
algebraically in terms of the function

g(A,k2) ≡ 1

π

∫ ∞

0
dq2 ρ(q2)

(q2 − A)(q2 − k2)

= im/4π√
A + i0+ + √

k2 + i0+ . (7)

The +i0 is necessary for negative A or k2, with the prescription√−1 ± i0 = ±iπ . One can calculate the other RHC integrals
of Eq. (6) with higher powers of the factor (q2 − C) in the
denominator by simple differentiation of g(A,k2) with respect
to C.

B. Coupled partial waves

For the case of the triplet partial waves with total angular
momentum J one has the mixing between the partial waves
with �1 = J − 1 and �2 = J + 1, except for the 3P0. In this
case I denote the different coupled partial waves by tij (A),
i,j = 1,2, which are gathered in the 2 × 2 matrix T (A). The
relation with the S matrix in my notation is

S(A) = I + 2iρ(A)T (A)

=
(

cos 2εJ e2iδ1 i sin 2εJ ei(δ1+δ2)

i sin 2εJ ei(δ1+δ2) cos 2εJ e2iδ2

)
, (8)

where I is the unit matrix, εJ is the mixing angle, and δ1 and
δ2 are the phase shifts. Equation (8) corresponds to the Stapp
parametrization [63]. Now the N/D approach explained for
the uncoupled waves in Sec. II A is extended to the coupled
channel case [43,44] by writing down three N/D equations, one
for every tij (A) [notice that because of time reversal t12(A) =
t21(A)]. The main difference with respect to the uncoupled case
is that now the discontinuity along the RHC of the inverse
of tij (A) does not simply correspond to −ρ(A), but it also
contains information on the other coupled partial waves. In
the following I employ the notation

Im
1

tij (A)
≡ −νij (A), A > 0. (9)

From Eq. (8) it is straightforward to obtain the following
expressions for the νij (A) [43,44],

νii(A) = ρ(A)

[
1 −

1
2 sin2 2εJ

1 − cos 2εJ cos 2δi

]−1

,

ν12(A) = 2ρ(A)
sin(δ1 + δ2)

sin 2εJ

. (10)

In terms of them one has analogous DRs as in Eq. (4), but
now distinguishing between the different Dij (A) and Nij (A),
tij (A) = Nij (A)/Dij (A), and employing νij (A) instead of
simply ρ(A) [44]. The subtractions constants for Dij (A) and
Nij (A) are indicated by δ

(ij )
p and ν

(ij )
p , respectively. Note that

δ
ij
1 = 1 because of the normalization condition of Eq. (5).

Because the functions νij (A) depend on the phase shifts
δ1, δ2 and the mixing angle εJ , which also constitute the final

output of the calculation, I follow an iterative approach [43].
Given an input for δ1, δ2, and εJ , one solves the three IEs for
Dij (A) along the LHC so that the scattering amplitudes on the
RHC can be calculated. In terms of them, the phase shifts δ1

and δ2 are obtained from the phase of the S-matrix elements
S11 and S22, while sin 2εJ = 2ρ|t12|N12/|N12|, according to
Eq. (8). In this way a new input set of νij functions is provided.
These are used again in the IEs, and the iterative procedure is
finished when convergence is found [typically, the difference
between two consecutive iterations in the three independent
functions Dij (A) along the LHC is required to be less than one
per thousand].

C. Higher partial waves

An uncoupled NN partial wave with � � 1 should vanish
at threshold as A�. One has the analogous result for a coupled
partial wave but in terms of �ij ≡ (�i + �j )/2, with i,j = 1,2.
As discussed in Ref. [44] this threshold behavior is enforced
by taking at least � or �ij subtractions at C = 0 in the DR for
N (A) or Nij (A), respectively, and setting νp = 0 (ν(ij )

p = 0)
for p = 1, . . . ,� (�ij ). In this way, one ends with the following
DRs:

uncoupled case

D(A) =1 +
�∑

p=2

δpAp−1 + A�

π

∫ L

−∞
dk2 �(k2)D(k2)

(k2)�
g(A,k2),

(11)

N (A) = A�

π

∫ �

−∞
dk2 �(k2)D(k2)

(k2)�(k2 − A)
, (12)

δp = 1

(p − 1)!
D(p−1)(0), p = 2,3, . . . , (13)

coupled case

Dij (A) = 1 +
�ij∑

p=2

δ(ij )
p A(A − C)p−2 + A(A − C)�ij −1

π

×
∫ L

−∞
dk2 �ij (k2)Dij (k2)

(k2)�ij
gij (A,k2,C; �ij−1), (14)

Nij (A) = A�ij

π

∫ L

−∞
dk2 �ij (k2)Dij (k2)

(k2)�ij (k2 − A)
, (15)

δ(ij )
p = (−1)p

Cp−1

[
p−2∑
n=0

(−1)n

n!
CnD

(n)
ij (C) − 1

]
, p = 2,3, . . . ,

(16)

where the derivative of order n of D(A) is denoted by D(n)(A)
and the function gij (A,k2,C; m) is defined as [44]

gij (A,k2,C; m) = 1

π

∫ ∞

0
dq2 νij (q2)(q2)m

(q2 − A)(q2 − k2)(q2 − C)m
,

(17)

which can be expressed algebraically as a combination of
g(x,y)’s [Eq. (7)] with different arguments. Although in this
way there is a proliferation of subtraction constants (which are
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not constrained) in the function D(A) as � (�ij ) grows, most
of them play a negligible role. This is so because NN partial
waves with � or �ij greater than 2 are quite perturbative [44,46].
In practical terms it is found found at NNLO, as well as at
NLO [44], that for higher partial waves only δ� (or δ

(ij )
�ij

), if
any, is needed to fit data, with the rest of them fixed to zero.
Furthermore, no significant improvement in the reproduction
of data or in the fitted values is observed by releasing δi or
δ

(ij )
i , with 1 < i < � or �ij , respectively, so that the fit is stable.

This is called in Ref. [44] the principle of maximal smoothness
(reasons for this name are given in the same reference). In some
cases, it happens that δ� or δ

(ij )
�ij

is also zero and then one says
that for this partial wave the subtraction constants have pure
perturbative values. The principle of maximal smoothness, at
the practical level, is not in contradiction with the fact that
the subtraction constants change their values depending on the
subtraction point. The reason is that for higher partial waves
at low energies the resulting D(A) is close to 1 and rather
smooth, its departure from this value being governed mostly
by the subtraction constant multiplying the largest power of A.
The latter is fixed by the degree of the subtractive polynomial
and then the value of the accompanying subtraction constant
is nearly independent of the precise value taken for the
subtraction under changes in its value of O(Mπ ).

I further study in this work the perturbative character of NN
partial waves with � (�ij ) � 2 by comparing the full outcome
from the N/D equations with the result corresponding to the
perturbative one-loop calculation in ChPT of Ref. [46]. In
this case there is no dependence on any of the subtraction
constants δp or δ

(ij )
p and, indeed, I show below that the results

are typically rather similar to the full ones for �ij � 3, although
the latter reproduce closer PWA93, as one should expect.

III. THE INPUT FUNCTION �(A)

In the present work �(A) is taken from the one-loop
calculation of Ref. [46] in ChPT, which allows us to include
all the contributions in �(A) up to O(p3) or NNLO, in the
counting settled in Ref. [44], which comprise OPE plus leading
and subleading TPE.7 At this order, for a given partial wave,
�(A) diverges at most as λ(−A)3/2 for A → −∞, with λ a
constant. As discussed in Ref. [44], when λ < 0 one can have
solutions for the IE providing D(A) in the once-subtracted
case, even with a divergent �(A) for A → −∞. However,

7The covariant calculation of the once-iterated OPE contribution
is performed in Refs. [64,65], which explicitly shows that the 1/m

expansion does not converge at q2 = −4M2
π , with q2 the squared

of the momentum transferred. This is also the case for some other
two-nucleon irreducible diagrams [65]. Nevertheless, one should
stress that this pathological behavior is restricted to just a very narrow
interval around the TPE branch point at the LHC. Furthermore, the
calculation of Ref. [46] is standard in any potential approach on
NN scattering [64]; see, e.g., Refs. [32–34,38,39], the recent reviews
[26–30], and references therein. Certainly it would be of interest to
apply a relativistic version of the method followed here and use
a covariant calculation of �(A). Recent covariant studies of NN
dynamics can be found in Refs. [51,64–66].

TABLE I. Different sets of values for the O(p2) πN LECs c1, c3,
and c4.

Analysis c1 (GeV−1) c3 (GeV−1) c4 (GeV−1)

GW-HBChPT [69] −1.13 −5.51 3.71
KH-HBChPT [69] −0.75 −4.77 3.34
GW-EOMS [11] −1.50 ± 0.007 −6.63 ± 0.31 3.68 ± 0.14
KH-EOMS [11] −1.26 ± 0.14 −6.74 ± 0.38 3.74 ± 0.16
GW-IR [70] −1.32 ± 14 −6.9 ± 6 3.66 ± 0.33
KH-IR [70] −1.08 ± 0.15 −7.0 ± 0.7 3.72 ± 0.32
NN study [71] −0.76 ± 0.7 −4.78 ± 0.10 3.96 ± 0.22
GW-UChPT [11] −1.11 ± 0.02 −4.78 ± 0.04 3.04 ± 0.02
KH-UChPT [11] −1.04 ± 0.02 −4.48 ± 0.05 3.00 ± 0.02
KH [72] −0.81 ± 0.12 −4.70 ± 1.16 3.40 ± 0.04

λ is not always negative, as shown below, and then more
subtractions are required to end with a meaningful IE.

A. NLO π N counterterms

At NNLO the function �(A) is sensitive to the NLO πN
ChPT low-energy constants (LECs) c1, c3, and c4. Their values
are taken from different works in the literature, which are
summarized in Table I. Within the same reference I distinguish,
when appropriate, between those values obtained by fitting
phase shifts from the Karlsruhe-Helsinki group (KH) [67] or
the George Washington University group (GW) [68].

Reference [69] performs an O(p4) heavy-baryon ChPT
(HBChPT) study of πN scattering data. I take its values instead
of the ones from the older HBChPT studies at O(p3) and
O(p4) [73]. I include too the values from Lorentz covariant
ChPT obtained in Ref. [11] by fitting πN phase shifts making
use of EOMS at O(p3). Furthermore, I show in the table the
ci’s obtained in the covariant O(p3) ChPT study of Ref. [70]
employing infrared regularization (IR). However, owing to
the better convergence of the πN scattering amplitude in
EOMS than in IR [11,12] I give results only for the values
obtained within EOMS [11]. The resulting uncertainty band is
already wide enough to take into account further uncertainties
that would result by considering explicitly the ci’s from
the IR study of Ref. [70], which indeed are rather close to
those obtained in EOMS [11]. The values from Ref. [71],
obtained in a NN scattering study, are very similar to those of
KH-HBChPT [69], so that in the following the former are not
considered. Again the uncertainty estimated takes into account
the variation in the results that would stem from the use of
the the ci’s from Ref. [71]. I also give the resulting values
from the fits to πN data within unitarized EOMS ChPT
obtained in Ref. [11]. These are the fits that provide more
stable values under the change of data between KH and
GW. These values are rather similar to those from the set
KH-HBChPT [69]. The values for the ci from the work [72]
are shown in the last row. This set is well covered by the
values already discussed and are not considered any further.
In summary, when discussing results I take into account the
values for the LECs ci obtained in Refs. [69] and [11], namely,
rows 2, 3, 4, 5, 9, and 10 in Table I.
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B. Number of subtractions in the chiral expansion of �(A)

An interesting point to discuss is the appropriate number
of subtractions for a given chiral order in the calculation of
�(A) by establishing a low-energy chiral power counting
for the subtraction constants. This can be accomplished by
considering the running of the subtraction constants under
variations of the subtraction point in the low-energy region.
Let us consider first the chiral order for the subtraction
constants appearing in N (A). For definiteness, let us employ a
twice-subtracted DR,

N (A) = ν1 + ν2A + A2

π

∫ L

−∞
dk2 �(k2)D(k2)

(k2)2(k2 − A)
. (18)

Now let us move the subtraction point from zero to C =
O(M2

π ). It is then straightforward to show that the previous
DR can be rewritten as8

N (A) = ν ′
1 + ν ′

2A + (A − C)2

π

∫ L

−∞
dk2 �(k2)D(k2)

(k2 − C)2(k2 − A)
,

ν ′
1 = ν1 − C2

π

∫ L

−∞
dk2 �(k2)D(k2)

(k2 − C)2k2
,

ν ′
2 = ν2 + C

π

∫ L

−∞
dk2 �(k2)D(k2)

(k2 − C)2k2

2k2 − C

k2
. (19)

Here one takes C = O(p2); k2 can also be counted as O(p2),
because the result of a convergent integral at low energies is
dominated by the low-energy region of the integrand, while
the function D(k2) is counted as O(p0) because D(0) = 1.
Furthermore, because at LO �(k2) = O(p0), it follows from
Eq. (19) that ν1 = O(p0) and ν2 = O(p−2). This procedure
can be easily generalized so that νn = O(p−2(n−1)). By
increasing the chiral order in the calculation of �(A) up to
O(pm) the νn will receive an extra contribution starting at
O(p−2(n−1)+m), as it is also clear from Eq. (19). Now the point
is to demand that

−2(n − 1) + m � 0, (20)

so that the chiral dimension for a given subtraction constant is
positive or zero, because short-distance physics gives rise to
contributions that do not vanish in the chiral limit.9 Then the
raising in the chiral dimension of νn with m until the nominal
one, Eq. (20), must come from powers of Mπ , |C| 1

2 ∼ Mπ .10

The condition in Eq. (20) determines the appropriate number of

8For that one can rewrite the factor A2/(k2)2 in the integral of
Eq. (18) as ([A − C] + C)2/(k2 − C)2 × (k2 − C)2/(k2)2 and then
isolate the factor (A − C)2/(k2 − C)2. The rest of terms can be
reabsorbed in the polynomial on the right-hand side (r.h.s.) of Eq. (18).

9As a result, they are counted as O(p0).
10One could ask about the fact that the chiral dimension for

the other contributions to �(A) of order m′ < m could imply a
negative −2(n − 1) + m′ with n � n0. This already occurs, e.g., in
the paradigmatic example of ChPT, namely, meson-meson scattering.
The point is to realize that these extra long-range physics contribu-
tions cancel explicitly with other contributions stemming from the
rearrangement of the dispersive integral, which was done already
with less subtractions when including only lower orders in �(A).

subtraction constants for a given chiral order in the calculation
of �(A).

It is also worth noticing that νn is multiplied by (A − C)n−1,
so that the chiral order of νn(A − C)n−1 is always m for any n,
which corresponds to the chiral order of the dispersive integral
with the O(pm) contribution of �(A). This power counting
coincides with the standard Weinberg chiral power count-
ing [24] for short-range operators, which is based on naive
dimensional analysis, and that is applied to the calculation
of the NN potential. For alternative suggestions on the power
counting of NN counterterms, see Refs. [36,37,40,74].

One can proceed analogously for the function D(A). I also
exemplify it by writing down a twice-subtracted DR for D(A),

D(A) = 1 + δ2A − A(A − C)

π

∫ ∞

0
dq2 ρ(q2)N (q2)

q2(q2 − C)(q2 − A)
.

(21)

Let us change the subtraction point from C to E. Because
the normalization D(0) = 1 is fixed, the position of the first
subtraction taken at A = 0 is not changed. As a result of this
rewriting one obtains the evolution

δ2 → δ2 + C − E

π

∫ ∞

0
dq2 ρ(q2)N (q2)

q2(q2 − E)(q2 − C)
. (22)

For ascribing the chiral order to δn, n � 2, one has, as before,
that C ∼ E ∼ M2

π , q2 = O(p2). Importantly, the phase-space
factor that appears in the integrals along the RHC is counted
as

ρ(q2) = O(p0) (23)

because it involves the product m
√

q2 and m/Mπ � 1. One
then concludes from Eqs. (22) and (23) that δ2 = O(p−2) for
the LO contribution of N (A) = O(p0). This result can be gen-
eralized easily to more subtractions so that δn = O(p−2(n−1)).
However, this chiral order increases when considering higher-
order contributions to N (A), stemming from higher orders in
the calculation of �(A), which give rise to contributions of the
same order in N (A). Thus, once they are taken into account,
there is the corresponding rise in the chiral order of δn, so that
now δn = O(p−2(n−1)+m) and the chiral orders of νn and δn are
the same. Indeed, this is a necessary result because, according
to the general formalism of Sec. II, the same number of
subtractions are taken in both D(A) and N (A). The fulfillment
of this requirement is also another reason for taking ρ = O(p0)
in the chiral counting. It is worth stressing that the chiral
power counting for the subtraction constants δn corresponds
to two-nucleon reducible diagrams,11 while the standard
Weinberg chiral power counting for nuclear interactions [24]
only involves two-nucleon irreducible diagrams.

Note also that Eqs. (19) and (22) show in a simple and
explicit way how the subtraction constants evolve when
changing the subtraction point. In contrast, it is not pos-
sible, in the general case, to know a priori the evolution

11This is apparent from the factor q2 − A in the denominator of the
RHC integral in Eq. (21).
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of chiral counterterms to absorb cutoff dependence when
solving a Lippmann-Schwinger equation [37,75], though it
could be computed numerically afterwards to require cutoff
independence in the results [35,36,48,49]. Nonetheless, the
limit cutoff → ∞ does not always exists for the renormalized
physical magnitudes [48,49]. In configuration space by making
use of energy-independent short-distance boundary conditions
in the Schrödinger equation one can deduce general algebraic
rules on the behavior of renormalized phase shifts when
the radial cutoff tends to zero for both regular and singular
potentials [48].

Although the arguments offered here correspond to the
uncoupled case, the same results follow for the coupled-
channel partial waves because the function νij (A) [Eq. (9)]
shares the same chiral counting as ρ(A), because the T matrix
is O(p0).12 In summary, for �(A) calculated up to O(pm) one
has the following power counting for the subtraction constants:

νn,δn ∼ O(p−2(n−1)+m). (24)

Now by applying the requirement that −2(n − 1) + m � 0
it results that in the present study at NNLO one should properly
take two subtractions (n = 2) because m = 3.

Before applying Eq. (24) to a NN partial wave one has to
take into account two points:

(1) For Eq. (24) to make sense one really needs that the
resulting IE has well-defined solutions; otherwise, the
chiral counting for the subtraction constants does not
even make sense, because the integrals in Eqs. (19)
and (22) would be divergent in the high-energy region.
If this is the case, more subtractions have to be taken
than expected from Eq. (24) until the IE becomes well-
defined (with convergent DR integrals). This possible
mismatch reflects a deep point: The ultraviolet region
in the DR integrals is the one that controls whether an
IE is convergent or not (this was analyzed in detail in
Ref. [44]), while the chiral power counting reflects the
infrared region (the one controlled by the chiral EFT).

(2) The exact threshold behavior of a partial wave (cf.
Sec. II C) is satisfied in this work. Certainly, one could
also try to soften this criterion and consider that the
violation of the threshold behavior in higher partial
waves is attributable to imperfections in the input
function which should be tempered when increasing the
order in the calculation of �(A). However, this is not
explored in this work because, I think, it is physically
more feasible to keep the exact threshold behavior.
Otherwise, higher partial waves could generate too
large contributions to physical observables, which are
certainly suppressed at low energies because of the
aforementioned threshold behavior. Then, as discussed
in Sec. II C, one takes � � 3 (�ij � 3) subtractions for
F and higher partial waves. In addition, at the practical
level the principle of maximal smoothness is invoked,
so that only one or none free parameter remains.

12With ρ = O(p0) it is also true that Imtij = O(p0); because of
unitarity for A � 0, Imtij = ρ

∑
k tikt

∗
jk .

IV. UNCOUPLED 1S0 WAVE

This section is devoted to the study of the 1S0 partial wave
and for the sake of concision I follow the convention, also
applied to any other partial wave, that whenever DRs already
used in Ref. [44] are also employed here, they are not written
again and the interested reader is referred to Ref. [44]. One
can also deduce the corresponding expression from the general
formalism described in Sec. II.

The case with only one-subtracted DRs [44] is discussed
first, because one can then study the interesting long-range cor-
relations between the effective range and scattering length for
the 1S0 partial wave, first noticed in Ref. [35] and also derived in
the NLO N/D study of Ref. [44].13 The unique free parameter
in this case, ν1, is fixed in terms of the 1S0 scattering length as ,

ν1 = −4πas

m
, (25)

with the experimental value as = −23.76 ± 0.01 fm [33],
which is much larger in absolute value than 1/Mπ . The large
value for ν1 corresponding to Eq. (25) is given in Table III and
is a large number in units of M−1

π (in these units 4π/m 
 1.85).
At this point it is worth stressing that the power counting
for the subtraction constants νi is based on the change of the
subtraction point along the LHC [Eq. (19)]. This cut is absent
when pions are integrated out and this is why this large value
for ν1, owing to the scattering length, cannot be foreseen by the
offered chiral counting. I have explicitly checked that D(A) in
the low-energy region along the LHC, which fixes the power
counting for the subtraction constants Eq. (24), is enhanced
by around one order of magnitude owing to the large value
of |as | � M−1

π . However, let us notice that this enhancement
just induces in the power counting a global additive constant
in the chiral power of each subtraction constant [e.g., we
could consider in this case that D(A) = O(p−1), in the same
way as Ref. [37] considered as ∼ O(p−1)]. Given the fact
that only relative chiral powers between subtraction constants
matter, this global additive constant does not actually affect
my calculations. However, one should stress that ν1 already
appears at LO and its large size is well accounted for by the
fact that the method is nonperturbative at any order in the
calculation of �(A). Incidentally let us note that ν1 does not
enter in the calculation of �(A).

The phase shifts obtained in this case are shown in Fig. 1
as a function of the c.m. three-momentum, denoted by p (p =√

A), up to p = 300 MeV. I choose this value because it is
smaller than the the nearby threshold for one-pion production
at around p = 360 MeV and the inelastic channel NNπ is not
included. In addition, it is also shown below that the expansion
scale � � 3Mπ , so that larger values of p are too close to
�. This is also the same range of energies taken in previous
studies to show the results of NN scattering from ChPT and
DRs [42–44]. The (red) hatched area corresponds to the results
with �(A) calculated up to and including O(p3) contributions

13The correlation between the effective range and the scattering
length in Eq. (27) was derived earlier in atomic physics for Van der
Waals potentials [76] and thoroughly confronted with data [77].
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FIG. 1. Phase shifts of 1S0 (a) and uncoupled P waves (b)–(d). Once-subtracted DR results: NNLO (red hatched areas), NLO [44] (magenta
solid lines). Twice-subtracted DR results: NNLO (cyan band), NLO [44] (green dash-dotted line). P waves: NNLO (red hatched areas), NLO
(magenta solid lines). In all the panels, OPE or LO results [42] are the blue dotted lines. The results obtained are compared with (i) the PWA93
phase shifts [47] (black dashed lines); the mean between the phase shifts from PWA93 [47] and the potential models Nijm2, Reid93 [58], and
AV18 [59] (black asterisks); (iii) phase shifts with error bars of the PWA of Ref. [60] (blue open circles).

and by taking into account the variation in the results
from the different values employed for the NLO πN ChPT
counterterms in Table I. Together with the present outcomes
I also show the once-subtracted results of Ref. [42], which
only includes OPE (blue dotted line), and the NLO results of
Ref. [44] (magenta solid line). The phase shifts obtained are
always compared with the results from the neutron-proton (np)
PWA93 [47] (black dashed line), and the mean of the latter and
the phases obtained with the potentials Nijm2, Reid93 [58],
and AV18 [59] (black asterisks). The error is estimated in
this case from the variance of the set of values. I also show the
recent PWA of Ref. [60] that provides errors by the (blue) open
circles. It is interesting to remark that the 1S0 phase shifts are
better reproduced for lower energies at NNLO than at smaller
orders, though one still observes an excess of repulsion.

Next let us calculate the effective range expansion (ERE)
parameters for the 1S0 by taking into account the relation

4π

m

D

N
= − 1

as

+ 1

2
rsA +

6∑
i=2

viA
i − i

√
A + O(A7), (26)

with rs the 1S0 effective range and vi , i = 2, . . . ,6 the shape
parameters. To evaluate the different ERE parameters I
make use of the efficient numerical method developed in
the Appendix. The resulting values for rs and the shape
parameters vi , i = 2, . . . ,6, are given in Table II in the second
and third rows for NLO and NNLO, respectively. The latter
are indicated by NNLO-I. These results are compared with the
ones from the calculation based on the NNLO NN potential of
Refs. [33] and [50], and with the PWA93 values. The results

TABLE II. Values for effective range rs (fm) and the shape parameters vi , i = 2, . . . ,6 in units of fm2i−1 for the present results at NNLO
with once-subtracted DRs (NNLO-I, third row) and twice-subtracted DRs (NNLO-II, fourth row). The results at NLO with once-subtracted DRs
(second row), the outcomes from the NNLO NN potential in Refs. [33,50] (fifth and sixth rows, respectively), and the values for PWA93 [47]
obtained in Refs. [33,50] (last row) are also given.

rs v2 v3 v4 v5 v6

NLO 2.32 −1.08 6.3 −36.2 225 −1463
NNLO-I 2.92(6) −0.32(8) 4.9(1) −27.7(8) 177(4) −1167(30)
NNLO-II 2.699(4) −0.657(3) 5.20(2) −30.39(9) 191.9(6) −1263(3)
Ref. [33] 2.68 −0.61 5.1 −30.0
Ref. [50] 2.62 to 2.67 −0.52 to −0.48 4.0 to 4.2 −20.5 to −19.9
Ref. [47] 2.68 −0.48 4.0 −20.0
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TABLE III. The partial wave, the type of DRs employed to study it and the values for the free parameters involved are given in columns from
left to right. The notation already introduced in Ref. [44] is followed here. Then, mDR, with m = 1,2, . . ., corresponds to m-times-subtracted
DRs and for the higher NN partial waves the abbreviation LTS is used to indicate that � (or J for the mixing partial waves) subtractions are
taken to satisfy the threshold behavior, following the standard formalism explained in Sec. II C. The units are given by appropriate powers of
M2

π , although they are not explicitly shown. The intervals in the values given for the parameters include the variation in the sets of values for
the ci’s.

Wave Type of DRs Parameters

1S0 1DR ν1 = 30.69
2DR ν1 = 30.69, ν2 = −23(1), δ2 = −8.0(3)

3P0 3DR ν2 = 1.644, δ2 = 2.82(5), δ3 = 0.18(6)
3P1 3DR ν2 = −1.003, δ2 = 2.7(1), δ3 = 0.47(3)
1P1 2DR ν2 = −1.723, δ2 = 0.4(1)
1D2 LTS D(1)(0) = 0.07(1)
3D2 LTS D(1)(0) = −0.017(3)
1F3 LTS D(2)(0) = 0.057(3)
3F3 LTS D(2)(0) = 0.035(5)
1G4 LTS D(3)(0) = −0.014(2)
3G4 LTS D(3)(0) = −0.055(5)
1H5 LTS D(4)(0) = 0.156
3H5 LTS D(4)(0) = 0.066
3S1-3D1 1DR 3S1, 2DR 3D1, mixing Ed

2DR all at , rt , Ed

2DR 3S1, mixing, 3DR 3D1 at , rt , Ed , ν
(22)
3 = −2.05(5)

3P2-3F2 3DR for 3P2 and LTS for the others ν
(11)
2 = 0.178, D

(1)
11 (−M2

π ) = 0.025(5), ν
(11)
3 = 0.155(5)

D
(1)
22 (−M2

π ) = 0.011(4)
3D3-3G3 LTS D11(−M2

π ) = 0.90(5), D
(2)
22 (−M2

π ) = −0.09(1)
3F4-3H4 LTS D

(1)
11 (−M2

π ) = −0.009(3)

for v3 and v4 are very similar to those obtained in Ref. [33].
The difference between Refs. [33] and [50] stems from the fact
that in the latter reference SFR is used, instead of dimensional
regularization. One also observes a clear improvement in the
reproduction of the ERE parameters from NLO to NNLO. At
NLO the errors in Table II reflect the numerical uncertainty
in the calculation of higher-order derivatives, while at NNLO
they take into account additionally the spread in the results
from the different sets of ci’s used.

In the once-subtracted case a power series expansion of the
ERE parameters can be worked out as a function of as , as it
was done previously for rs in Ref. [44] at NLO, to which I
refer for further details. In this way, the ERE parameters are
given by the expansions

rs = α0 + α−1

as

+ α−2

a2
s

,

vn =
0∑

m=−n−1

v(m)
n

am
s

, (27)

with the coefficients αi and v(i)
n independent of as . The values

of of αi (i = −2,−1,0) at NNLO are

α0 = 2.61 to 2.73 fm,

α−1 = −5.93 to − 5.65 fm2, (28)

α−2 = 5.92 to 6.12 fm3.

These figures are perfectly compatible with those obtained
in the first entry of Ref. [35], α0 = 2.59 to 2.67 fm, α−1 =
−5.85 to−5.64 fm2 and α−2 = 5.95 to 6.09 fm3. This refer-
ence employs the chiral NN potential in a Schrödinger equation
that is renormalized with an energy-independent boundary
condition. In the present case, the expansions in Eq. (27) are
consequences of basic principles of a NN partial wave like
unitarity, analyticity, and chiral symmetry. The resulting phase
shifts obtained here, shown by the (red) hatched area in Fig. 1,
are also coincident with those obtained by Ref. [35]. They are
rather similar as well to the ones obtained by employing only
one contact term in the third entry of Ref. [38].

Next, I consider the twice-subtracted DRs [44]. The
subtraction constant ν1 is given by Eq. (25), while ν2 and δ2 are
directly fitted to the np PWA93 phase shifts.14 The best fitted
values are shown in Table III, where, for each partial wave
(first column), the values of the free parameters are given in
the last column according to the type of DRs employed (second
column). The uncertainty in the given value of a subtraction
constant takes into account the spread in the results that stem
from the variation of the ci’s taken from Table III.

As shown by the (cyan) shaded area in Fig. 1 it is clear
that the reproduction of data is very good; indeed, it lies on
top of the PWA93 np phase shifts. In the same figure I show

14Because Ref. [47] does not provide errors, I always perform a
least square fit, without weighting.
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by the (green) dash-dotted line the twice-subtracted DR result
at NLO, which reproduces the Nijmegen data equally well
as obtained at NNLO, with the fitted values ν2 = −11.9M−4

π

and δ2 = −4.6M−2
π . The resulting ERE shape parameters are

shown in the fourth row of Table II, where one observes a
remarkable good agreement with Ref. [33]. I predict rs =
2.70 fm, which is compatible with its experimental value
rs = 2.75 ± 0.05 fm [33]. The 1S0 phase shifts are also well
reproduced in terms of two free parameters in the dispersive
study of Ref. [51].

The value of ν2 in Table III is rather large, a 25% smaller
in absolute value than ν1 
 31M−2

π [Eq. (25)]. By reshuffling
the once-subtracted DR in the form of a twice-subtracted DR,
one can predict the value for the subtraction constant ν2, that
I denote by ν

pred
2 . It is given by the expression

ν
pred
2 = 1

π

∫ L

−∞
dk2 �(k2)D(k2)

(k2)2
, (29)

with the numerical value ν
pred
2 
 −6.0, −6.4, and −7.5 ±

0.2M−4
π when �(A) is calculated up to O(p0), O(p2), and

O(p3), respectively. The difference between the predicted
and fitted values for ν2 at NLO is denoted by δν

(0)
2 . The

superscript takes into account the chiral order for ν2,O(p−2+m)
[Eq. (24)]. The value obtained is δν

(0)
2 
 −5.5M−4

π . At NNLO,
to calculate δν

(1)
2 one has to subtract δν

(0)
2 to the difference

between the fitted value in Table III and the predicted one from
Eq. (29). Then it results that δν

(1)
2 
 −15 + 5.5 = −9.5M−4

π .
This implies that to overcome the excess of repulsion at NNLO,
one needs to incorporate a significant contribution from
short-distance physics to give account of “missing physics,”
beyond the pure long-range contributions15 that stem from
the once-subtracted DR case and that are not able to provide
an accurate reproduction of data; cf. Fig. 1. The large value
for δν

(1)
2 is mainly attributable to the O(p2) πN counterterms

ci’s, which, in turn, are dominated by the �(1232) resonance
contribution [12,78]. This can be easily seen by performing
a fit to data in which one sets ci = 0 for all of them. A
good reproduction of the PWA93 phase shifts results, but now
δν

(1)
2 
 −1.5M−4

π , which is much smaller than δν
(0)
2 , with

a ratio δν
(1)
2 /δν

(0)
2 ∼ 30% ∼ O(p). This indicates that once

the large contributions that stem from the ci coefficients are
discounted a quite natural (baryon) chiral expansion emerges.
From the previous ratio one also learns that the expansion scale
� is such that Mπ/� � 1/3.

Let us consider now the relevance of the different con-
tributions to �(A) by following the same procedure as in
Ref. [44], so that the last integral in the r.h.s. of Eq. (6) is
evaluated for n = 2 with the full function D(A) fitted to data,
but with �(A) evaluated with only some contributions or all
of them. The result of this exercise is given in Fig. 2(a) for
the ci coefficients of Ref. [69] (second row of Table I). The
(black) dash-dotted line corresponds to OPE, the (blue) dotted
line takes into account the full O(p2) TPE, including both

15This is meant here as the physics driven by the multipion
exchanges giving rise to the LHC and to �(A).

two-nucleon reducible and irreducible TPE, and the (cyan)
double-dotted line contains the O(p3) two-nucleon irreducible
TPE [46]. Finally, the (red) solid line results by keeping
all the contributions to �(A), and it is clear that that the
O(p3) irreducible TPE is the largest subleading contribution.
In addition, �(A) is also shown along the LHC in Fig. 2(b),
where each line included has the same meaning as in the right
panel although for �(A) the (cyan) shaded area reflects the
variation in the O(p3) irreducible TPE contribution by varying
between the different sets of ci’s considered, as discussed
above. This band indicates a large source of uncertainty
in �(A).

The increase in energy of the relative size of the subleading
TPE contribution should be expected because at low energies
the suppression mechanism owing to the earlier onset of the
OPE source of �(A) along the LHC at L is more efficient. In
addition, it is well-known that the �(1232) plays a prominent
role in πN scattering, which manifests in the large size of the
LECs c3 and c4 in Table I [12,78]. Once the leading effects
of including the �(1232) are taken into account at O(p3) the
chiral expansion stabilizes [32,50], as it was also concluded
above. From now on, I skip the discussion on the relative
importance of the different contributions to �(A) for those
NN partial waves with a similar behavior as the 1S0.

V. UNCOUPLED P WAVES

In this section the application of the method to the
uncoupled P waves is discussed. At NNLO one has for these
waves that

λP = lim
A→−∞

�(A)

(−A)(3/2)
> 0, (30)

so that, according to the results of Ref. [44], its Proposition 4, a
once-subtracted DR for D(A) [Eq. (4)] does not converge and
more subtractions should be taken. Then let us consider the
twice- and three-times-subtracted DRs. The twice-subtracted
DRs is of the same form as the one given in Ref. [44] for
the 3P0 wave; hence, I write here explicitly only the three-
times-subtracted DRs that are used in slightly different form
compared with Ref. [44],

D(A) = 1 + δ2A + δ3A
(
A + M2

π

)
+ (

ν2 − ν3M
2
π

)
A

(
A + M2

π

)2 ∂g
(
A, − M2

π

)
∂M2

π

− ν3 A
(
A + M2

π

)2
g
(
A, − M2

π

) + A
(
A + M2

π

)2

π

×
∫ L

−∞
dk2 �(k2)D(k2)

(k2)3
g
(
A,k2,−M2

π ; 2
)
,

N (A) = ν2A + ν3A
2 + A3

π

∫ L

−∞
dk2 �(k2)D(k2)

(k2 − A)(k2)3
. (31)

Here all the subtractions in N (A) and one in D(A) are
taken at C = 0, while the other two subtractions in D(A)
are at C = −M2

π . This is done to avoid handling an infrared
diverging integral along the RHC multiplying ν2 that would
result if all the subtractions were taken at C = 0. The function
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FIG. 2. The left panels quantify the different contributions to the double-dispersive integrals in the DRs employed to calculate D(A), and
the right panels correspond to the different contributions to �(A) along the LHC. (a),(b) 1S0; (c),(d) 1F3; and (e),(f) 3F3. For the precise meaning
of the lines, the reader is referred to the text.

g(A,k2,C; m) in Eq. (31) is defined as

g(A,k2,C; m) =
∫ ∞

0
dq2 ρ(q2)(q2)m

(q2 − A)(q2 − k2)(q2 − C)m
,

(32)

which can be worked out algebraically and written as a linear
combination of functions g(x,y) [Eq. (7)]. In all the cases
the subtraction constant ν2 is fixed in terms of the scattering
volume, aV ,

ν2 = 4πaV /m. (33)

For aV the values 0.890M−3
π , −0.543M−3

π , and −0.939M−3
π

are employed for the partial waves 3P0, 3P1, and 1P1, in order,
as deduced from Ref. [47].

For the 3P0 wave the twice-subtracted DRs at NNLO do
not provide stable results under the increase in absolute value

of the lower limit of integration along the LHC. However,
the three-times-subtracted DRs are convergent. Notice that, as
discussed in Sec. III B, on top of the number of subtractions
required by the chiral counting one needs to have well-defined
IEs; otherwise, the very same power counting does not make
sense. Regarding the subtraction constants ν3, δ2, and δ3 in
Eq. (31), one can fix ν3 = 0 because it plays a negligible
role in the fits and, if released, the fit is stable. The fitted
values for δ2 and δ3 are collected in Table III. The phase shifts
calculated, shown in panel (b) of Fig. 1 by the (red) hatched
area, reproduce exactly the PWA93 phase shifts [47]. The
results with different sets of values for the ci counterterms
cannot be distinguished either between each other. I have also
checked that a three-times-subtracted DR at LO and NLO
provides already a prefect reproduction of data as well. Then
the wave 3P0 studied at O(p3) is not a good partial wave to
learn above chiral dynamics, because, independently of the
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order up to which �(A) is calculated, the reproduction of data
is excellent when three subtractions are taken.

The situation is completely analogous for the wave 3P1

and the fitted values of the parameters can be read from
Table III. The resulting phase shifts are shown in the panel
(c) of Fig. 1, which again reproduce perfectly the PWA93
phase shifts, independently of the set of values for the ci’s
chosen in Table I. At NLO [44] it is also necessary to take
three-times subtracted DRs so as to obtain stable results, and
the reproduction of data is equally perfect.

For the 1P1 partial wave the twice-subtracted DR results
are quite stable at low energies. The parameter δ2 is fitted to
the PWA93 phase shifts and given in Table III. I show the
results in panel (d) of Fig. 1, where the curves obtained with
the ci from Ref. [11], by reproducing the πN phase shifts
with Lorentz covariant EOMS ChPT, are the closest to data.
The improvement in the reproduction of data for the 1P1 partial
wave by the twice-subtracted DRs at NNLO compared with the
results obtained at NLO with the same number of subtractions
(magenta solid line) is a significant effect from πN physics.

Because of the truncation of the LHC integrals in Ref. [51]
for A < −9M2

π/4 this reference is not sensitive to the high-
energy behavior of �(A), and in particular to λP , Eq. (30). As
a result Ref. [51] can obtain phase shifts for the uncoupled P
waves with only one free parameter, which also reproduce the
experimental phase shifts rather closely.

VI. UNCOUPLED D WAVES

The function �(A) for the uncoupled D waves has the
asymptotic behavior

λD = lim
A→−∞

�(A)

(−A)3/2
< 0, (34)

and with this sign the resulting IE from the twice-subtracted
DRs [44] is convergent. The only free parameter per partial
wave is δ2 = D(1)(0), which is fitted to the PWA93 phase
shifts and its value is given in Table III. The reproduction
of data is excellent, as shown by the (red) hatched areas in
Figs. 3(a) and 3(b), where the left panels correspond to the
singlet waves and the right ones to the triplet waves. The
results obtained indeed overlap the PWA93 phase shifts. One
can see a remarkable improvement from NLO to NNLO owing
to the inclusion of NLO πN dynamics (without any further free
parameter). In the 1D2 partial wave this occurs in the whole
energy range shown, while for the 3D2 it takes place in the
higher part, above p � 220 MeV. The perturbative one-loop
ChPT phase shifts [46] are also shown in Fig. 3 by the (cyan)
shaded areas. These curves are quite different from the full
results given by the hatched areas, which clearly indicates that
the perturbative treatment of the NN D waves is not accurate.

VII. UNCOUPLED F WAVES

For the F waves one has three subtractions with two
free parameters δ2 and δ3. I fix δ2 = 0 in the following
(according to the principle of maximal smoothness) and fit
δ3 to data, which is related to D(2)(0) in virtue of Eq. (13),
with the fitted value given in Table III. The NNLO results
are shown by the (red) hatched areas in Figs. 3(c) and 3(d).

One observes an improvement compared to the NLO results
in the reproduction of data for the wave 3F3 and momenta
somewhat above 200 MeV. For the wave 1F3 the NNLO
outcomes are very similar to those obtained at lower orders and
show a small discrepancy with the PWA93 phase shifts [47] for
p > 150 MeV. However, the results in this case run very close
to the high-quality AV18 potential [58], which determines
the lower end of the error bars attached to the bursts and
to the recent PWA of Ref. [60]. Thus, the failure reported in
Refs. [33,50] to reproduce simultaneously the D and F waves
by using the NNLO chiral potential calculated in dimensional
regularization in Ref. [46], because of the large values of the ci

counterterms, does not happen within the approach used here.
The dependence on the precise set of values taken for the ci’s
from πN scattering is quite mild for the full results and gives
rise to a modest uncertainty band. Indeed, the calculation at
NNLO describes the PWA93 phase shifts for the D and F
waves better than the NLO ones [44], without increasing the
number of subtractions, which is not the case for all of these
waves in Ref. [33] based on the (modified) Weinberg approach
when comparing their NLO and NNLO results. Recently,
Ref. [79] arrived at similar conclusions by regularizing the
Lippmann-Schwinger equation in partial waves with a new
type of local cutoff function that does not distort the analytical
properties of the NN potential along the real axis16 in a given
partial wave. Within the theory employed here, the right
analytical properties of the NN partial waves in the whole
complex A plane are accomplished by construction.

One also observes that for the F waves the one-loop ChPT
perturbative phase shifts [46] run much closer to the full results
than for the D waves, which clearly indicates that F waves
are more perturbative. Nevertheless, the relative deviation of
the phase shifts in the pure perturbative ChPT calculation
compared with the full solution is still around 50% at the end
of the interval shown in Fig. 3. However, the situation is not so
dramatic when considering the actual expansion followed in
the present work. The phase shift at p = 300 MeV for the
3F3 has the values, at the different orders, of −3.5 (LO),
−2.8 (NLO), and −2.2(NNLO) degrees. Thus, the relative
deviation with respect to the NNLO result clearly decreases
by increasing the order of the calculation, so that at LO it is
around 50%, but at NLO it is reduced to around 20%. A similar
conclusion on the more perturbative nature of the F waves was
also reached in the one-loop ChPT calculation of Ref. [46] by
comparing with experimental data.

It is also interesting to remark from Fig. 3 that the widths
of the (cyan) shaded bands for the perturbative results [46]
reflect a much larger dependence on the ci coefficients than
the one corresponding to the full nonperturbative results given
by the (red) hatched areas. This is a twofold effect. On the
one hand, the nonperturbative method reduces the sensitivity
on the precise values of the ci’s employed for most of the
partial waves and, on the other hand, refitting the subtraction
constants for each set of ci’s employed further reduces the
dependence on them.

16It does, however, in the complex A plane.
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FIG. 3. The phase shifts for D and higher partial waves are plotted. The meaning of the lines is the same as in the last three panels of Fig. 1,
though the number of subtraction taken is given by the standard formalism for higher partial waves; cf. Sec. II C. In addition, perturbative phase
shifts [46] are also shown by the (cyan) shaded bands.

The increase in the perturbative character of the F waves
can also be seen by considering the relevance of the different
contributions of �(A) to the integral on the r.h.s. of Eq. (11),
proceeding in a similar way to that followed for the 1S0 partial
wave in Sec. IV. The result is shown in Figs. 2(c) and 2(e),
where the second row corresponds to 1F3 and the third one
to 3F3. In the right panels the different contributions to �(A)
along the LHC are plotted. The meanings of the lines here
are the same as for the 1S0 wave, though now the ci’s are
taken from Ref. [11], given in the last row of Table I, which is
enough for the present purposes. Notice that for the F waves a
qualitative different situation is found with respect to what is
shown for the 1S0 (that also holds for the P and D waves). For
the F and higher waves the subleading two-nucleon irreducible
TPE contribution is much less important and OPE is, by
far, the dominant contribution, as it should correspond to a
perturbative high-� wave.

VIII. UNCOUPLED G WAVES

For the uncoupled G waves, 1G4 and 3G4, one has four
subtractions, of which δi (i = 2,3,4) are free but, according
to the principle of maximal smoothness, all of them are fixed
to 0 except δ4 = D(3)(0)/3!, which is fitted to data, with its
value given in Table III. The corresponding results are shown
by the (red) hatched areas in Figs. 3(e) and 3(f). For both
partial waves the actual dependence on the ci coefficients in the
resulting phase shifts is almost negligible and the hatched areas
degenerate to lines. The low-energy results are very similar at
NLO and NNLO and reproduce the PWA93 phase shifts quite
well. These results are better than the perturbative ones, given
by the (cyan) shaded areas. As indicated for the uncoupled
F waves, here OPE overwhelmingly dominates the different
contribution to the dispersive integral on the r.h.s. of Eq. (11).
This indicates that these waves are rather perturbative, though
still one observe differences around 30% for p � 300 MeV
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in the corresponding panels of Fig. 3 between the full and the
perturbative results.

IX. UNCOUPLED H WAVES

The uncoupled H waves, 1H5 and 3H5, require five-times-
subtracted DRs with � = 5 in Eqs. (11) and (12). I fit δ5 =
D(4)(0)/4! to the PWA93 phase shifts, while δ2,3,4 are fixed
to 0 (principle of maximal smoothness). The fitted values are
given in Table III, and the resulting fit is stable if δi (i = 2,3,4)
are released. The PWA93 phase shifts for J � 5 correspond to
those obtained from the NN potential model of Ref. [80], so I do
not plot them here or the resulting phase shifts. One can notice
that the phase shifts in one-loop ChPT [46] run very close to
the full results, particularly for the 3H5, in which case both are
coincident. This clearly indicates the perturbative nature for
the H waves. In connection with this, the dependence of the
results on the ci’s is negligible.

I have included these waves under consideration because
I find it interesting to discuss in this case the behavior of
the function N (A) compared with its perturbative solution
in powers of �(A). The point is that for a weak interaction
[small �(A) at low three-momentum] one can expect that
D(A) 
 1 at low energies. It is then reasonable to consider
that substituting D(A) → 1 in the integral on the r.h.s. of
Eq. (12) would be meaningful in calculating N (A) at low
energies, because one has a rapid converging integral owing
to the factor (k2)� in the denominator for a sufficiently large
value of �. The leading perturbative result for N (A) in powers
of �(A), denoted by Np(A), is then

Np(A) = A�

π

∫ L

−∞
dk2 �(k2)

(k2)�(k2 − A)
. (35)

I consider only the 3H5 wave, but a similar discussion would
follow for 1H5 as well. In Fig. 4(a) I show by the (red) solid line
the full N (A) and by the (blue) dashed line the perturbative
result Np(A). One sees that they are very similar, as expected
for a partial wave with an � as high as 5. In Fig. 4(b) the real
part of D(A) from Eq. (11) is drawn, which is very close to
1, as discussed. All these curves are obtained by employing
the ci’s from Ref. [11]. A bit higher in energy both Np(A)
and N (A) have a zero at around

√
A = 450 MeV. Because

T (A) = N (A)/D(A) this would imply that T (A) = 0 there,

unless D(A) is also zero at the same point. This is indeed the
case and it is is the reason why D(A) starts to decrease for√

A > 200 MeV in Fig. 4.
Another question of interest to think about is what has been

gained by solving exactly Eq. (11) instead of using only the
perturbative solution, Eq. (35), or the pure perturbative ChPT
one-loop calculation [46], or even the Born approximation.
The main point is that by solving the full and nonperturbative
Eq. (11) one can then state that Eq. (35) is a perturbation of a
well-defined and existing nonperturbative solution. By solving
exactly Eq. (11) one needs to consider explicitly δ5 as a free
parameter for the uncoupled H waves. As a matter of fact,
δ5 is not only necessary for a good fit, but it is also required
to keep D(A) 
 1 at low three-momentum. Otherwise, the
contribution from the dispersive integral of D(A) on the r.h.s.
of Eq. (12) would be too large and negative and would render
a too-strong function N (A) in plain disagreement with Np(A).

X. COUPLED 3S1-3D1 WAVES

Let us start the study of the 3S1-3D1 coupled-partial-wave
system in terms of just one free parameter, which corresponds
to the pole position of the deuteron in the A-complex plane,
k2
d = −mEd , with Ed = 2.225 MeV the deuteron binding

energy. The aim here is to consider the long-range correlations
first noticed in Ref. [35] for NN S waves. Thus, one proceeds
similarly to that given in Ref. [44], with the only difference
that now the subtraction constant ν

(11)
1 is fixed to reproduce the

experimental deuteron pole position, while in Ref. [44] it was
fixed to the experimental triplet scattering length. This is why
I write here the DRs considered for the 3S1,

D11(A) = 1 − A

k2
d

g11(A,0)

g11
(
k2
d,0

) + A

π

∫ L

−∞
dk2 �11(k2)D11(k2)

k2

×
[
g11(A,k2) − g11(A,0)

g11
(
k2
d ,k

2
)

g11
(
k2
d,0

) ]
,

N11(A) = ν
(11)
1 + A

π

∫ L

−∞
dk2 �11(k2)D11(k2)

k2(k2 − A)
, (36)

with all the subtractions taken at A = 0. The new function
gij (A) was already given in Ref. [35] and ν1 in N11(A) is fixed
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FIG. 4. The functions N (A) and Np(A) are shown by the (red) solid and (blue) dashed lines in (a), respectively. The real part of the function
D(A) is plotted in (b).
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FIG. 5. Phase shifts for (a) 3S1, (b) 3D1, and (c) the mixing angle ε1. The (cyan) shaded areas correspond to NNLO-I; the hatched areas
with (red) crossed lines are the NNLO-II results. In addition, for the 3D1 the hatched areas with (gray) parallel lines correspond to the results
obtained by employing three-times-subtracted DRs only for the wave 3D1. The (magenta) dot-dashed lines are the NLO phases, while the LO
ones are given by the (blue) lines. The meaning of the (black) dashed lines and points is the same as in Fig. 1.

by imposing that D11(k2
d ) = 0,

ν
(11)
1 = 1

k2
d g11

(
k2
d ,0

)
×

[
1 + k2

d

π

∫ L

−∞
dk2 �11(k2)D11(k2)

k2
g11

(
k2,k2

d

)]
.

(37)

This expression is already implemented in Eq. (36) for D11(A).
The results obtained are shown in Fig. 5 by the (cyan) shaded
areas. These results are indicated as NNLO-I and all the
subtraction constants are fixed in terms of k2

d , without any other
freedom. The width of the bands originates by taking different
sets of ci’s from Refs. [11,69] and varying the input in the
iterative procedure. The present NNLO calculation reproduces
the PWA93 mixing angle ε1 much better than the NLO results
(magenta dot-dashed lines) without further subtractions. This
improvement in the description of ε1 when passing from NLO
to NNLO is also seen in Ref. [33] by employing the Weinberg
scheme. The 3S1 phase shifts are also reproduced better at
NNLO than at NLO, while the 3D1 is described somewhat
worse by the former. The results for the 3S1 and 3D1 phase
shifts are quite similar to those obtained in Ref. [35], but not
for ε1 as the outcome here is closer to PWA93.

One can also predict in this case the 3S1 scattering length (at )
and effective range (rt ). The former is given in terms of ν

(11)
1 ,

[Eq. (37)] as at = −mν
(11)
1 /4π . Regarding rt , one can proceed

similarly as discussed in detail in Ref. [44]; see Eq. (92) there,
which shows an implicit correlation between rt and at , because
ν11(A) depends nonlinearly on D11(A). Another observable

that I also consider is the slope at threshold of ε1, indicated as
aε, and defined by

aε = lim
A→0+

sin 2ε1

A
3
2

= 1.128M−3
π , (38)

where the numerical value is deduced from the PWA93 phase
shifts. It is also interesting to diagonalize the 3S1-3D1 S matrix
around the deuteron pole position. For further details, see
Refs. [44,81]. This can be done by means of a real orthogonal
matrix [81], parametrized in terms of the angle ε1, and the
eigenvalues are denoted by S0 and S2. The asymptotic D/S
ratio of the deuteron, η, can be expressed in terms of ε1 as
η = − tan ε1, and the residue of S0 at the deuteron pole position
is denoted by N2

p, where N2
p = limA→k2

d
(
√
−k2

d+i
√

A)S0. Next
I study the results for the shape parameters of the lowest
eigenphase δ0 (also called 3S1 eigenphase) of S0 that stems
from the diagonalization of the S matrix performed in the
physical region A � 0,

√
A cotδ0 = − 1

at

+ 1

2
rtA +

6∑
i=2

viA
i + O(A11). (39)

It is well known that the shape parameters are a good
testing ground for the range of applicability of the underlying
EFT [82].

The scattering length and effective range in the previous
equation are the same as given above because coupled-wave
effects with the 3D1 only affects the shape parameters vi , i � 2.
The values obtained at NLO and NNLO for at , rt , η, N2

p, and
aε are shown in Table IV in the second and third rows, respec-
tively. One can observe that the numbers at NNLO (indicated

TABLE IV. Values for at , rt , η, N 2
p and aε at NLO (second row) and NNLO-I (third row). The values given in the fourth row (NNLO-II) are

obtained once at and rt are fixed to the experimental figures, which is indicated by a star on top of the values. The results from Refs. [33,81]
and [33] are also shown in the fifth and sixth rows, respectively.

at [fm] rt [fm] η N 2
p [fm−1] aε [M−3

π ]

NLO 5.22 1.47 0.0295 0.714 1.372
NNLO-I 5.52(3) 1.89(3) 0.0242(3) 0.818(10) 1.270(9)
NNLO-II 5.5424� 1.759� 0.02535(13) 0.78173(2) 1.293(8)
Ref. [81] 5.4194(20) 1.7536(25) 0.0253(2) 0.7830(15)
Ref. [33] 5.424 1.753 0.0245
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TABLE V. Values for the shape parameters vi , i = 2, . . . ,6 in units of fm2i−1 at NLO (second row) and at NNLO-I (third row). Those
values corresponding to NNLO-II are given in the fourth row. The values from Refs. [81] and [33] appear in the fifth and sixth rows, in order.

v2 v3 v4 v5 v6

NLO −0.10572(12) 0.8818(11) −5.427(11) 36.73(11) −259.9(1.1)
NNLO-I 0.157(22) 0.645(9) −3.41(13) 23.2(8) −161(6)
NNLO-II 0.0848(4) 0.762(7) −4.33(2) 29.0(2) −198(2)
Ref. [81] 0.040(7) 0.673(2) −3.95(5) 27.0(3)
Ref. [33] 0.046 0.67 −3.9

by NNLO-I) are already rather close to those of Ref. [81],
obtained from the PWA93 of np data, and Ref. [33]. It is
interesting to remark that the value for rt is a prediction in terms
of only one subtraction constant (fixed by the deuteron binding
energy) and NN forces stemming from πN physics. This
value deviates from experiment rt = 1.759 ± 0.005 fm [33]
around a 10% at NNLO (∼20% at NLO), while the relative
experimental error is around 3%. Other determinations for the
parameter η, not shown in Table IV, are η = 0.0256(4) [83],
0.0271(4) [84], 0.0263(13) [85], and 0.0268(7) [86]. The
values for the shape parameters vi , i = 2, . . . ,6, are given
in Table V. To my knowledge the shape parameters with
i > 5 were not calculated before. I detail in the Appendix the
numerical method that allows one to perform the appropriate
derivatives up to very high orders.17 One can appreciate the
numerical precision in the calculation of the shape parameters
by considering the errors in Table V for the NLO results. The
errors at NNLO take into account additionally the variation
in the results from the different sets of ci’s employed and
the dependence in the input for starting the iterative process.
I could have also given shape parameters of orders higher
than 6 within a numerical precision of less than 1%, but I

skip this because its apparent little relevance in practice. By
increasing the order of the shape parameter the numerical
accuracy only worsens little by little. For example, it is not
until v10 that the relative numerical error is bigger than 1% (a
1.5%). For the shape parameters with large order, i � 5, their
absolute values increase typically as O(1/Mπ )2i−1, which is
the expected behavior for long-range interactions mediated by
OPE. It is clear from Table V that the shape parameters vi ,
i = 2, . . . ,5 predicted by the NNLO-I calculation (third row)
are typically closer to the values of Refs. [33,81] than those
at NLO (second row). This is a positive feature indicating a
well-behaved expansion of the results obtained by applying the
N/D method with the discontinuity �(A) expanded in ChPT.

According to the power counting for the subtraction
constants [Eq. (24)] at NNLO, it is considered appropriate to
take twice-subtracted DRs. Compared to the NNLO-I case,
this implies to take into account one more subtraction for
D11(A) and N11(A); another one is needed for the function
N12(A) in the mixing partial wave, while the DRs for the 3D1

wave are the same. The three parameters for the 3S1 wave are
fixed in terms of the experimental values of k2

d , rt and at . The
twice-subtracted DRs taken now for the 3S1 wave are

D11(A) = 1 − A

k2
d

−ν
(11)
1 A

(
A−k2

d

)
g

(d)
11 (A,0; 1)−ν

(11)
2 A

(
A−k2

d

)
g11

(
A,k2

d

) + A
(
A−k2

d

)
π

∫ L

−∞
dk2 �11(k2)D11(k2)

(k2)2
g

(d)
11 (A,k2; 2),

N11(A) = ν
(11)
1 + ν

(11)
2 A + A2

π

∫ L

−∞
dk2 �11(k2)D11(k2)

(k2)2(k2 − A)
,

ν
(11)
1 = −4πat

m
,

ν
(11)
2 = ν

(11)
1

ν
(11)
1 k2

d g11
(
0,k2

d

) − 1

{
1

k2
d

+ at

[
4k2

d

m

∫ ∞

0
dq2 ν11(q2) − ρ(q2)

(q2)2
(
q2 − k2

d

) + 1√
−k2

d

− rt

2

]

+ k2
d

π

∫ L

−∞
dk2 �11(k2)D11(k2)

(k2)2
g11

(
k2
d,k

2
)}

. (40)

For the mixing partial wave the DRs are

D12(A) = 1 − A

k2
d

− ν
(12)
2 A

(
A − k2

d

)
g12

(
A,k2

d

) + A
(
A − k2

d

)
π

∫ L

−∞
dk2 �12(k2)D12(k2)

(k2)2
g

(d)
12 (A,k2; 2),

N12(A) = ν
(12)
2 A + A2

π

∫ L

−∞
dk2 �12(k2)D12(k2)

(k2)2(k2 − A)
. (41)

17For example, in Ref. [81] it is stated that their numerical setup is not precise enough to calculate v6 and that it already casts doubts about
the numerical accuracy for v5.
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The results obtained now are denoted in the following as
NNLO-II and correspond to the (red) hatched areas with
crossed lines in Fig. 5. It turns out that one cannot obtain
a solution of the resulting IE for D12(A) by implementing
any arbitrary value for ν

(12)
2 . Whenever one finds a meaningful

solution the obtained value of aε = mν
(12)
2 /2π is always in

the band aε 
 1.30–1.90M−3
π . Similar values are also found

in Ref. [87] by renormalizing the chiral TPE potential with
explicit � excitations for NN scattering. In my opinion this
difficulty to reproduce the value for aε that follows from
the PWA93 [Eq. (38)] casts doubts on this number. Notice
that the calculated values for ε1 at low momentum, e.g., for√

A � 100 MeV, lie on top of the curve for the PWA93 results
as shown in panel (c) of Fig. 5 by the coincident hatched and
shaded areas that overlap the PWA93 line. The phase shifts
and ε1 are quite similar to the NNLO-I results in terms of
just one free parameter. Nevertheless, the 3S1 phase shifts for
NNLO-II are closer to the PWA93 ones at lower energies, but
the change for this S wave from once- to twice-subtracted DRs
is much less notorious than in the case of the partial wave 1S0,
discussed in Sec. IV. One can also see in the fourth row of
Table IV that the NNLO-II values for η and N2

p are compatible
with those of Ref. [81], which is quite remarkable. The value
for aε mentioned above is shown in the last column of the
same table. The shape parameters are given in the fourth row
of Table V, where one observes a better agreement with the
numbers from Ref. [81] for v4 and v5 than for v2 and v3. The
variation of the values between NNLO-I and NNLO-II for
the higher-order shape parameters allows one to estimate in
a conservative way the systematic uncertainty affecting their
calculation.

The results of Ref. [51] for these coupled partial waves
at O(p3) contain three free parameters like the NNLO-II
results, the quality in the reproduction of data being similar as
well. I agree with the remark in Ref. [51] about the dominant
role in this channel of long-range physics associated with the
exchange of pions. Notice the already rather good reproduction
of the PWA93 phase shifts by the NNLO-I results, which
depend on only one free parameter.

However, I would like to elaborate further on the fact that
at NNLO the results for the 3D1 phase shifts do not offer
a good reproduction of the PWA93 ones, being even worse
than those at NLO. In view of this, let us consider now the
influence in the results of including one more subtraction in
the DRs for 3D1 with the aim of determining whether this
worsening is an effect that could be counterbalanced in a
natural way at O(p4). In this way the same twice-subtracted
DRs for 3S1 and the mixing partial wave, given in Eqs. (40)
and (41), respectively, are used while three-times-subtracted
DRs are employed for the 3D1. The latter include two additional
subtraction constants, δ(22)

3 and ν
(22)
3 . Considering the results in

the system 3S1-3D1 from the twice-subtracted DRs, one has the
following predictions for these subtraction constants, δ

pred
3 


1m−4
π and ν

pred
3 
 −2.5m−6

π . An actual fit to the 3D1 phase
shifts only requires to vary ν

(22)
3 around that value with the final

result ν
(22)
3 = −2.05(5) m−6

π , while δ
(22)
3 stays put. Then only

a relatively small change of around 20% in ν
(22)
3 is necessary

to end with a much better reproduction of the 3D1 phase shifts

that is compatible with PWA93, as shown by the hatched areas
with (gray) parallel lines in Fig. 5(c) (denoted as NNLO-III
results). Hence, this might be a natural NNNLO effect.

The fact that the matrix of limiting values Mij =
limA→−∞ �ij (A)/(−A)3/2 has two negative eigenvalues is
certainly related to the possibility of obtaining meaningful
DRs with only one free parameter, according to the necessary
condition of Ref. [44] to obtain meaningful once-subtracted
DRs for λ < 0; cf. Sec. III B. Indeed, because the mixing
between different partial waves is very small these eigenvalues
are given in good approximation by M11 and M22; this rule
applies, in fact, not only to the 3S1-3D1 coupled waves but to
any other ones.

XI. COUPLED 3P2-3F2 WAVES

This section is devoted to the study of the coupled wave
system 3P2-3F2. By direct computation one has in this case that

λ11 = lim
A→−∞

�11(A)

(−A)3/2
> 0, (42)

which requires one to consider DRs with more than one
subtraction for the 3P2 wave [44]. Indeed, similarly to the
3P0 and 3P1 partial waves, discussed in Sec. V, one needs
to take at least three subtractions in the DRs for the 3P2

wave to obtain stable and meaningful results. The following
three-times-subtracted DRs for the 3P2 wave is used here:

D11(A) = 1 + δ
(11)
2 A + δ

(11)
3 A(A − C)

− ν
(11)
2

A(A − C)2

π

∫ ∞

0
dq2 ν11(q2)

(q2 − A)(q2 − C)2

− ν
(11)
3

A(A − C)2

π

∫ ∞

0
dq2 ν11(q2)q2

(q2 − A)(q2 − C)2

+ A(A − C)2

π

∫ L

−∞
dk2 �11(k2)D11(k2)

(k2)3

× g11(A,k2,C; 2), (43)

N11(A) = ν
(11)
2 A + ν

(11)
3 A2 + A3

π

∫ L

−∞
dk2 �11(k2)D11(k2)

(k2)3(k2 − A)
.

(44)

The standard formalism for the coupled waves, given in
Eqs. (14) and (15), is employed with respect to the mixing
and 3F2 partial waves with �12 = 2 and �22 = 3, in order. As a
result, two and three subtractions are taken, respectively.

As usual for the P waves, ν
(11)
2 = 4πaV /m by re-

quiring the exact reproduction of the 3P2 scattering vol-
ume extracted from PWA93 [47], aV = 0.0964M−3

π , while
ν

(11)
3 is fitted to the results of this PWA. Regarding the

subtraction constants δ
(jj )
i , i = 1, 2, and 3, and j = 1

or 2, I follow the principle of maximal smoothness in
virtue of which δ

(jj )
2 = 0 and fit D

(1)
jj (−M2

π ).18 The result-
ing fitted values are given in Table III, while the free

18In the following I use D
(p−2)
ij (−M2

π ) as free parameter in terms of
which one can calculate δ(ij )

p from Eq. (16).
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FIG. 6. Phase shifts for (a) 3P2, (b) 3F2, (c) 3D3, (d) 3G3, and the mixing angles (e) ε2 and (f) ε3. The (red) hatched areas correspond to the
NNLO results and the (cyan) shaded ones to the perturbative phase shifts [46]. The meaning for the rest of the lines and points is the same as
in Fig. 5.

parameter associated with the mixing wave is fixed to
its pure perturbative value; cf. Sec. II C, D12(−M2

π ) = 1.
The resulting phase shifts are shown by the (red) hatched
areas in Figs. 6(a) and 6(b) and the mixing angle ε2 is shown
in panel(e). There, one can see a clear improvement at NNLO
in the reproduction of the 3P2 phase shifts compared with the
results at NLO, though this is achieved at the price of increasing
the number of subtractions taken. The 3F2 phase shifts and
mixing angle ε2 are reproduced with a quality similar to that
already achieved at NLO.

The perturbative phase shifts in one-loop ChPT [46] are
also shown by the (cyan) shaded bands in Fig. 6. I do not
show them for the 3P2 wave because a P wave cannot be
considered peripheral. One sees that the full results provide a
clear improvement in the reproduction of the PWA93 phase
shifts and mixing angle with respect to the pure perturbative
calculation. This improvement is obtained without dismissing
the strength of the TPE at NNLO, as advocated in Ref. [50].
One should mention that the Born approximation phase shifts

for 3F2 and 3F3 have a striking resemblance to the full NNLO
results of Ref. [33] obtained within the Weinberg scheme. In
addition, the (cyan) shaded bands in Fig. 6 for ε2 and the 3F2

phase shifts are also quite similar to those obtained in the
dispersive study of Ref. [51]. This means that the full results
are not so much sensitive to the particular set of ci’s taken as
previously thought in the literature from the conclusions of
Refs. [33,50].

XII. COUPLED 3D3-3G3 WAVES

For the study of the 3D3-3G3 coupled waves I follow
the formalism for coupled waves, Eqs. (14) and (15), with
�11 = 2, �12 = 3, and �22 = 4. Regarding the free parameters,
the principle of maximal smoothness is invoked, although
for the mixing wave the subtraction constants take their
pure perturbative values. Hence, I fit to data D11(−M2

π ) and
D

(2)
22 (−M2

π ); see Table III for the values obtained. The resulting
phase shifts are shown by the (red) hatched areas in Figs. 6(c)
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FIG. 7. Phase shifts for (a) 3F4, (b) 3H4, and the mixing angle (c) ε4. The meanings of the lines are the same as in Fig. 6.

and 6(d), and the mixing angle ε3 is shown in the last panel.
An important point is that at NNLO the phase shifts for the
3D3 wave follow closely the PWA93 phase shifts so that
a remarkable improvement is obtained in comparison with
both the NLO and perturbative results. Notice that this is
accomplished without any need of dismissing the strength
of TPE as directly obtained from the NLO πN amplitudes.
The situation has been improved by taking into account the
subtraction constant δ2 or D11(−M2

π ), whose presence is
required by the nonperturbative unitarity implementation19 at
NNLO; cf. Eq. (24). One also observes a good reproduction of
the PWA93 results for the waves 3G3 and ε3, which are already
well reproduced at NLO [44], as shown by the (magenta)
dot-dashed lines.

XIII. COUPLED 3F4-3H4 WAVES

The discussion of the 3F4-3H4 coupled-wave system follows
the standard formalism for coupled waves, Eqs. (14) and (15),
with �11 = 3, �12 = 4, and �22 = 5. The free parameters are
then fitted to data according to the principle of maximal
smoothness, though for 3H4 and the mixing partial wave, the
subtraction constants are fixed to their pure perturbative values.
Then one only needs to fit at the end D

(1)
11 (−M2

π ) to the PWA93
results, which value is given in Table III. The phase shifts and
mixing angle obtained are shown by the (red) hatched areas in
Fig. 7, and the width of each band reflects the dependence on
the values of the πN NLO counterterms.

One can observe a clear improvement in the description
of the 3F4 phase shifts compared with the results from OPE
(blue dotted lines), NLO (magenta dot-dashed lines), and
perturbative approximation (cyan shaded areas). Analogously
to the 3D3 wave in the previous section, this improvement is
related to the effect of the subtraction constant δ

(11)
3 without

any need to modify �(A) as calculated at NNLO in ChPT. Let
us recall that the subtraction constants δ

(ij )
p arise because of

the rescattering process that the N/D method allows to treat
in a clear and well-defined way, overcoming the obscurities
that still remain in the literature associated with the use of the
cutoff regularized Lippmann-Schwinger with a higher-order

19In more general terms, this is done by keeping the right analytical
properties of NN partial waves while respecting unitarity in the full
amplitudes.

NN potential. For the mixing angle ε4 the quality in the
reproduction of data is similar to that obtained by the other
approximations just quoted. However, for the 3H4 phase shifts
the outcome at NNLO is a bit worse than at NLO and OPE,
though one should also notice the tiny values for the 3H4

phase shifts so that this discrepancy is certainly small in
absolute value. It also cannot be removed by releasing the
other subtraction constants δ(22)

p , with p = 2, 3, and 4. Likely,
the origin of this difference in the 3H4 phase shifts between the
full results and PWA93 can be tracked back to the change in
the leading Born approximation once the O(p3) two-nucleon
irreducible contributions are included in �22(A).

XIV. CONCLUSIONS

I have discussed in this paper the application of the N/D
method when its dynamical input, namely, the imaginary part
of the NN partial waves along the LHC, is calculated in ChPT
up to NNLO. It then comprises OPE, leading and subleading
two-nucleon irreducible TPE, and once-iterated OPE [46]. A
quite good reproduction of the Nijmegen PWA phase shifts
and mixing angles has been obtained, in better agreement
than the one achieved in the previous lower-order studies at
LO [42,43] and NLO [44]. In particular, the NNLO results,
without increasing the number of subtractions, provide clearly
improved phase shifts for the partial waves 1P1, 1D2, 3D2, 3F3,
3S1, ε1, ε2, 3D3, and 3F4 compared to the NLO case. This
indicates that increasing the accuracy in the calculation of
�(A) by performing the ChPT calculation at O(p3) has a neat
impact in increasing the quality of the results, clearly indicating
the importance of chiral symmetry in NN dynamics. Especially
notorious is the systematic improvement for the triplet partial
waves with with �11 = J − 1, 3P2, 3D3, and 3F4, such that now
the associated phase shifts are accurately reproduced while at
NLO they were not properly accounted for. To obtain such a
good agreement with the Nijmegen PWA, one does not need to
fine-tune the low-energy pion-nucleon constants ci , contrarily
to common wisdom, but just take directly their values from
pion-nucleon scattering. The point that stems from this study
is that one should perform in a well-defined way the iteration
of diagrams along the RHC, which are responsible for unitarity
and analyticity attached to this cut, rather than reshuffling the
NN potential with contributions from higher orders. In this
respect, the use of DRs allows one to perform the iteration
of two-nucleon intermediate states independently of regulator.
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I have also compared the full results for the higher partial
waves with the perturbative phase shifts from the one-loop
ChPT calculation of Ref. [46], which typically is much more
dependent on the values of the ci’s than the final results.
From this comparison, as well as from the direct study of
the importance of the different contributions of �(A) to the
dispersive integrals, it follows that the NN D waves cannot be
treated perturbatively.

It is worth noting that a chiral power counting for the
subtraction constants has been established, so that twice-
subtracted DRs are appropriate when �(A) is calculated at
NLO and NNLO. From these considerations it turns out that
the chiral power expansion is made over a scale � ≈ 400 MeV.
Let us notice that a close reproduction of data for all the
partial waves is obtained once the criteria exposed at the
end of Sec. III B are fulfilled, that is, either (i) having two
subtractions at NNLO according to the chiral power counting
for the subtraction constants [Eq. (24)], (ii) having � � 3
subtractions (J � 3 for the mixing partial waves) to satisfy
the right threshold behavior for the higher partial waves, or
(iii) introducing as many subtractions as needed to end with a
meaningful IE. Owing to this last requirement, three-times-
subtracted DRs are needed for the P waves, because for
them λ > 0 [Eqs. (30) and (42)], except for the 1P1 wave,
for which twice-subtracted DRs are enough. This could be
a specific feature for the NNLO calculation of �(A) for the
P waves that has to be investigated at higher orders.20 The
only case where one more subtraction is included without
being necessary according to the points (i)–(iii) above is for
the wave 3D1. This is studied at the end of Sec. X to show
that the remaining disagreement with data at NNLO might be
considered naturally a NNNLO effect. Twice-subtracted DRs,
according to (i), have been finally used for the waves 1S0, 1P1,
1D2, 2D2, 3S1-3D1, ε2, and 3D3.

Last but not least, up to the order studied here one confirms
the long-range correlation between the effective ranges and
the scattering lengths for the NN S waves when only once-
subtracted DRs are applied. In this way one can predict values
for the S-wave effective ranges in agreement with experiment
up to around a 10%. For future prospects, one should consider
the impact of higher in �(A), which are partially calculated
already in the literature, as an interesting extension of the
present work to settle the applicability of the approach based
on the N/D method to NN scattering in ChPT with a high
degree of accurateness. Another issue that requires more
study is to establish the relationship between the subtraction
constants and the counterterms present in the NN chiral
Lagrangians.
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APPENDIX: CALCULATION OF HIGHER-ORDER SHAPE
PARAMETERS

Let us explain first the method for the 1S0 partial wave,
which is then straightforwardly generalized to the 3S1 case.
Taking into account elastic unitarity, one has that

H (A) ≡ 4π

mT (A)
+ i

√
A =

√
A cot δ (A1)

is an analytical function of A that has no (elastic) unitarity
cut because it obeys the Schwarz reflection principle and it
is real for A > 0. Then it admits a Taylor expansion around
A = 0 with a radius of convergence equal to M2

π/4 because
its first singularity is attributable to the onset of the LHC at
A = −M2

π/4. This expansion is the so-called ERE. One can
calculate the function H (A) for complex A in a direct way from
the DRs employed above to calculate T (A) = N (A)/D(A).
Nonetheless, care has to be taken when employing g(A,k2)
from Eq. (7) because one should guarantee that

√
A is defined

in the first Riemann sheet; that is, Im
√

A > 0 must be enforced
for all A ∈ C. The same requirement should be also fulfilled
by the

√
A that appears explicitly in the definition of H (A).

The nth-order derivative of H (A) at A = 0 can be calculated
by making use of the Cauchy integral formula

H (n)(0) = n!

2πi

∮
γ

dz
H (z)

zn+1
, (A2)

where γ is a close contour inside the ball of radius M2
π/4

and taken counterclockwise. In practical terms the contour γ
is taken as a circle of radius R < M2

π/4 with z = R exp iφ
and φ ∈ [0,2π ]. A good numerical check of the procedure
is the stability of the derivative calculated from the previous
equation independently of the value taken for 0 < R < M2

π/4.
Thus, one obtains

a−1
s = − 1

2iπ

∮
dz

H (z)

z
, rs = 1

iπ

∮
dz

H (z)

z2
,

vi = 1

2iπ

∮
dz

H (z)

zi+1
. (A3)

One can proceed in the same way for the 3S1-3D1 coupled
wave system in terms of the eigenvalue S0 given by

S0 = 1

2

[
S11 + S22 + (S11 − S22)

√
1 +

(
2S12

S11 − S22

)2 ]
.

(A4)
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Then one defines in terms of it the corresponding uncoupled
partial wave,

T0(A) = S0 − 1

2iρ(A)
, (A5)

where the definition of ρ(A) in Eq. (3) should be taken in
the first Riemann sheet. An analogous function to H (A) in
Eq. (A1) is then constructed from T0(A) and one can calculate
the different parameters in the ERE of Eq. (39) as in Eq. (A3).
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