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I have used the low-energy data of the new Nijmegen ESC08 baryon-baryon interactions for the systems with
strangeness 0, −1, and −2 to construct a separable potential model of the ��N -�NN system to study the
position and width of the three-body (I,J P ) = ( 1

2 , 1
2

+
) resonance. I found that the ( 1

2 , 1
2

+
) tribaryon has a mass

of 3194 MeV, just below the �d threshold, and a width of only 0.09 MeV.
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I. INTRODUCTION

The only known three-body bound state with strangeness,
the strangeness −1 �NN hypertriton, arises as a result of the
attractive nature of the S-wave N� and NN interactions at low
energy, in particular to the presence of the NN 3S1 deuteron
bound state. In the case of the strangeness −2 ��N system
the �� and �N interactions are attractive but not enough to
bind the system. However, because the ��N system and the
�NN system are coupled together, the interactions acting in
the last component, i.e., �N and NN , could provide sufficient
attraction to give rise to a strangeness −2 three-body bound
state or resonance because in the NN subsystem one has the
3S1 deuteron bound state and the 1S0 virtual state. In the �N
subsystem the (i,j ) = (1,1) channel is bound in the Nijmegen
ESC08c model [1] and almost bound in the Salamanca chiral
quark model [2]. In addition, in the Salamanca model the
�N(1,0) channel and the ��-�N (0,0) channel (the H
dibaryon) are bound.

In a series of previous works [3–5] the bound-state problem
of the ��N -�NN system was studied using as input the
two-body interactions obtained from the Salamanca chiral
quark model [6]. When the interactions for the ��, N�, NN ,
and N� subsystems given by this model were used in a full
three-body calculation of the ��N -�NN system, the channel
(I,J P ) = ( 1

2 , 1
2

+
), the so-called strangeness −2 hypertriton,

was found to be bound by ≈0.5 MeV [3–5].
The very recent baryon-baryon extended-soft-core ESC08c

model of the Nijmegen-Wako group [1,7,8], on the other hand,
has much less attraction in the strangeness −2 sector such
that the ��-�N subsystem is unbound and there is only one
N� bound state in the (1,1) channel. This drastic reduction of
attraction in the strangeness −2 sector arises because they have
incorporated into their analysis the Nagara event [9], which is
the most important piece of information for the Ŝ = −2 sector
because it identified uniquely the double hypernucleus 6

��H
and determined the binding energy of two � hyperons and the
�� interaction energy which was found to be much smaller
than that obtained by previous experiments. Thus, one expects
that the ��N -�NN three-body system will also be unbound
and it will appear as a resonance.
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The purpose of this paper is to extend the study of the three-
body bound state into the continuum region, which requires the
extension of the integral equations into the complex plane, but
this can only be done if the interactions are known in analytical
form. This is not easy to do with the interactions obtained from
the Nijmegen ESC08 models, which have a large number of
terms and different kinds of corrections given in numerical
form. I have, therefore, constructed separable potential models
of the ��, N�, NN , and N� subsystems adjusted to the
low-energy parameters of each channel. This, first of all, leads
to integral equations in one continuous variable for the ��N -
�NN system that are easier to handle and, secondly, because
they are based on simple analytical functions they allow me to
extend the three-body equations into the complex plane.

II. TWO-BODY INTERACTIONS

Because the �� and �� two-body channels have a very
small effect in the strangeness −2 three-body system [5] I do
not include them in this work. Thus, the two-body channels that
contribute to the (I,J P ) = ( 1

2 , 1
2

+
) three-body state are given

in Table I. As one sees from this table the strangenes −2 ��
and N� two-body systems are coupled together in the (i,j ) =
(0,0) channel and therefore it is through this interaction that
also the ��N and �NN components get coupled together.

I assume separable potentials for all the uncoupled interac-
tions of the form

V
ρ
i = g

ρ
i 〉λ〈gρ

i , (1)

such that the two-body t matrices are of the form

t
ρ
i = g

ρ
i 〉τρ

i 〈gρ
i , (2)

with

τ
ρ
i = λ

1 − λ
〈
g

ρ
i

∣∣G0(i)
∣∣gρ

i

〉 . (3)

In the case of the ��-N� coupled-channel state (i,j ) = (0,0),
I follow the approach used by Carr, Afnan, and Gibson [10]
for an older version of the Nijmegen potential, i.e.,

V
ρσ
ij = g

ρ
i 〉λij 〈gσ

j , (4)

such that

t
ρσ
ij = g

ρ
i 〉τρ−σ

ij 〈gσ
j , (5)
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TABLE I. S-wave two-body channels (i,j ) of the various subsys-
tems that contribute to the (I,J P ) = ( 1

2 , 1
2

+
) three-body state.

Subsystem Strangeness (i,j )

�� −2 (0,0)
N� −2 (0,0),(0,1),(1,0),(1,1)
N� −1 ( 1

2 ,0),( 1
2 ,1)

NN 0 (0,1),(1,0)

with

τ��-��
11 = −λ2

13G
N� − λ11(1 − λ33G

N�)

λ2
13G

��GN� − (1 − λ11G��)(1 − λ33GN�)
,

(6)

τN�-N�
33 = −λ2

13G
�� − λ33(1 − λ11G

��)

λ2
13G

��GN� − (1 − λ11G��)(1 − λ33GN�)
,

(7)

τ��-N�
13 = τN�-��

31

= −λ13

λ2
13G

��GN� − (1 − λ11G��)(1 − λ33GN�)
,

(8)

and

G�� = 〈
g��

1

∣∣G0(1)
∣∣g��

1

〉
, (9)

GN� = 〈
gN�

3

∣∣G0(3)
∣∣gN�

3

〉
. (10)

I used Yamaguchi form factors [11] for the separable
potentials of Eqs. (1) and (4), i.e.,

gσ
i (p) = 1

α2 + p2
. (11)

Thus, for each uncoupled two-body channel I have to fit the
two parameters α and λ to the low-energy parameters a and
r0. I give in Table II the low-energy parameters of the different
uncoupled channels obtained from the new ESC08 models
[1,7,8] and the corresponding separable-potential parameters
α and λ. In the case of the low-energy parameters of the �N
subsystems, I took the average values of �n and �p and
for the NN subsystem the values of the np. Because these
separable potentials are adjusted to the scattering length and

TABLE II. Low-energy parameters a and r0 (in fm) of the ESC08
models [1,7,8] and the corresponding separable potential parameters
α (in fm−1) and λ (in fm−2) for uncoupled partial waves.

Subsystem (i,j ) a r0 α λ

N� (0,1) −5.357 1.434 2.3168 −2.4537
N� (1,0) 0.579 −2.521 1.1641 0.1837
N� (1,1) 4.911 0.527 5.4067 −39.161
N� ( 1

2 ,0) −2.54 3.155 1.3270 −0.3614
N� ( 1

2 ,1) −1.725 3.525 1.3414 −0.3190
NN (0,1) 5.4384 1.7481 1.4198 −1.0336
NN (1,0) −23.7316 2.6983 1.1654 −0.3950

TABLE III. Parameters of the separable-potential model of the
(i,j ) = (0,0) coupled ��-N� subsystem fitted to the effective-range
parameters of the �� system, a = −0.853 fm and r0 = 5.126 fm [1],
and the N� (complex) effective-range parameters, a = 0.0455 −
i0.348 fm and r0 = −25.38 − i1.618 fm (see the text).

α β λ11 λ33 λ13

1.25 4.287 −0.0959 1.302 1.243

effective range of each channel, the deuteron bound state lies
at 2.184 MeV and the N� (1,1) D∗ bound state of the ESC08c
model lies at 1.655 MeV.

In the case of the coupled-channel subsystem (0,0) given
by Eqs. (4)–(10) I take

g��
1 (p) = 1

α2 + p2
, (12)

gN�
3 (p) = 1

β2 + p2
, (13)

so that I have the five parameters α, β, λ11, λ33, and
λ13. These five parameters were fitted to the �� effective-
range parameters a = −0.853 fm and r0 = 5.126 fm and to
the N� (complex) effective-range parameters a = 0.0455 −
i0.348 fm and r0 = −25.38 − i1.618 fm, where the last set
of parameters were extracted from the N� phase shift and
inelasticity of the ESCO8c model given in Fig. 14 of Ref. [1].
I give the parameters of this model in Table III and in Fig. 1
I show its prediction for the �� phase shift up to the N�
threshold and compare it with the ESC08c phase shift. As
one can see from this figure a resonance in this energy region
does not exist. This separable potential model of the ��-N�
subsystem takes into account the effect of the �� channel

FIG. 1. The �� phase shift in the (i,j ) = (0,0) channel for
energies up to the N� threshold. The dots are the results of the
ESC08c model [1].
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indirectly because it was fitted to the ESC08c results where
this channel has been included.

III. THREE-BODY EQUATIONS

The coupled ��N -�NN system has the peculiarity that
each three-body component consists of two identical fermions
and a third one that is different. The integral equations of this
system were first derived by Miyagawa, Kamada, and Glöckle
using the extended Pauli principle [12,13]. An alternative
derivation using a graphical method is presented in Ref. [4].
The Ŝ = −2 three-baryon sector has also been approached
through the Alt-Grassberger-Sandhas equations to study the
breakup process �d → ��N in Ref. [14].

In Ref. [4] we have used the convention that particles 2
and 3 are two identical particles and particle 1 is the different
one in each three-body component. After the reduction for
identical particles the three-body equations take the following
forms:

〈1|T1〉 = 2〈1|t��
1 |1〉〈1|3〉G0(3)〈3|T3〉

+〈1|t��−N�
13 |3〉〈3|1〉G0(1)〈1|U1〉

−〈1|t��−N�
13 |3〉〈2|3〉G0(3)〈3|U3〉,

〈3|T3〉 = −〈3|tN�
3 |3〉〈2|3〉G0(3)〈3|T3〉

+〈3|tN�
3 |3〉〈3|1〉G0(1)〈1|T1〉,

〈1|U1〉 = 2〈1|tNN
1 |1〉〈1|3〉G0(3)〈3|U3〉,

〈3|U3〉 = −〈3|tN�
3 |3〉〈2|3〉G0(3)〈3|U3〉

+〈3|tN�
3 |3〉〈3|1〉G0(1)〈1|U1〉

+2〈3|tN�−��
31 |1〉〈1|3〉G0(3)〈3|T3〉. (14)

Using Eqs. (2) and (5) in the integral equations (14)
and introducing the transformations 〈i|Ti〉 = 〈i|gαi

i 〉〈i|Xi〉
and 〈i|Ui〉 = 〈i|gαi

i 〉〈i|Yi〉, one obtains the one-dimensional
integral equations

〈1|X1〉 = 2τ��
1

〈
g��

1

∣∣1
〉〈1|3〉G0(3)

〈
3
∣∣gN�

3

〉〈3|X3〉
+τ��−N�

13

〈
gN�

3

∣∣3
〉〈3|1〉G0(1)

〈
1
∣∣gNN

1

〉〈1|Y1〉
−τ��−N�

13

〈
gN�

3

∣∣3
〉〈2|3〉G0(3)

〈
3
∣∣gN�

3

〉〈3|Y3〉,
〈3|X3〉 = −τN�

3

〈
gN�

3

∣∣3
〉〈2|3〉G0(3)

〈
3
∣∣gN�

3

〉〈3|X3〉
+τN�

3

〈
gN�

3

∣∣3
〉〈3|1〉G0(1)

〈
1
∣∣g��

1

〉〈1|X1〉,
〈1|Y1〉 = 2τNN

1

〈
gNN

1

∣∣1
〉〈1|3〉G0(3)

〈
3
∣∣gN�

3

〉〈3|Y3〉,
〈3|Y3〉 = −τN�

3

〈
gN�

3

∣∣3
〉〈2|3〉G0(3)〈3|gN�

3 〉〈3|Y3〉
+τN�

3

〈
gN�

3

∣∣3
〉〈3|1〉G0(1)

〈
1
∣∣gNN

1

〉〈|Y1〉
+2τN�−��

31

〈
g��

1

∣∣1
〉〈1|3〉G0(3)

〈
3
∣∣gN�

3

〉〈3|X3〉,
(15)

where one should keep in mind that

τ��
1 = τ��-��

11 (16)

and

τN�
3 = τN�-N�

33 , (17)

for the (i,j ) = (0,0) channel.

IV. RESULTS

To obtain the results I took the nucleon mass as the average
of the proton and the neutron masses and the � mass as
the average of the �0 and �− masses. Thus, the �NN and
�d thresholds are 25.604 and 23.420 MeV above the ��N
threshold, respectively. I extended the three-body integral
equations into the complex plane by following the well-known
procedure where the integration path is rotated into the fourth
quadrant as qi → qie

−iφ . If any of the two-body amplitudes
contains a resonance there is a branch cut starting at the
resonant pole and one must be careful that the integration
contour dos not cross this cut [15]. However, none of the
two-body amplitudes of my model contains a resonance
as shown in Fig. 1 for the case of the coupled ��-N�
amplitude. Of course, I checked that the eigenvalue obtained
from the integral equations does not change when I use
different values for the rotation angle φ of the contour, which
guarantees that this is a true eigenvalue of the equations.

I found that the three-body resonance lies at

E0 = 23.408 − i0.045 MeV, (18)

measured with respect to the ��N threshold, i.e., just
0.012 MeV below the �d threshold. Thus, the binding energy
of the state, 12 keV, is smaller than that of the strangeness
−1 hypertriton (130 keV). This means that the strangeness
−1 hypertriton is a loosely bound state of a � and a
deuteron while the strangeness −2 hypertriton is a loosely
bound state of a � and a deuteron with a small decay width
into ��N .

The result (18) is somewhat intriguing, in particular, the
very small width, because the ��N threshold is open.
Therefore, to understand that result I have studied the effect
of the two-body (0,0) channel on the three-body eigenvalue
because this two-body channel is responsible for the coupling
between the �NN and ��N three-body channels. First of all,
I should point out that near the �NN threshold the dominant
two-body channels are the N� (1,1) channel with the bound
D∗ state [1], the NN (0,1) channel with the bound deuteron
state, and the NN (1,0) singlet channel with a virtual state
just below threshold. If I disconect the �� channel, i.e., if I
make λ13 = 0 in Eq. (8) the three-body eigenvalue becomes
E0 = 23.413 MeV. If I now, in addition, disconect completely
the two-body (0,0) channel by making also λ33 = 0 I get an
eigenvalue of E0 = 23.386 MeV. Thus, while the coupling to
the �� channel is important for the N� (0,0) channel, the
effect of the full ��-N� (0,0) channel is negligible in the
three-body system near the �NN threshold. The change in
the mass of the three-body resonance due to the (0,0) channel
is just a few keV and therefore it is not surprising that the
change in the width should be of the same order of magnitude.

Thus, if I now add the rest masses to the result (18) I get
that the three-body ( 1

2 , 1
2 ) resonance lies at W0 = 3194 MeV

and has a very small width of � = 0.09 MeV, so that
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it is practically a stable bound state like the ( 3
2 , 1

2 ) state
previously discussed [16], both states lying near the �NN
threshold.
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