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Dynamical net-proton fluctuations near a QCD critical point
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We investigate the evolution of the net-proton kurtosis and the kurtosis of the chiral order parameter near
the critical point in the model of nonequilibrium chiral fluid dynamics. The order parameter is propagated
explicitly and coupled to an expanding fluid of quarks and gluons in order to describe the dynamical situation in a
heavy-ion collision. We study the critical region near the critical point on the crossover side. There are two sources
of fluctuations: noncritical initial event-by-event fluctuations and critical fluctuations. These fluctuations can be
distinguished by comparing a mean-field evolution of averaged thermodynamic quantities with the inclusion of
fluctuations at the phase transition. We find that while the initial state fluctuations give rise to flat deviations
from statistical fluctuations, critical fluctuations reveal a clear structure of the phase transition. The signals of
the critical point in the net-proton and σ -field kurtosis are affected by the nonequilibrium dynamics and the
inhomogeneity of the space-time evolution but they develop clearly.
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Introduction. At large temperatures and densities, strongly
interacting matter is expected to change from a confined
hadronic phase to a deconfined phase of quarks and gluons
where chiral symmetry is restored. As the partition function
of quantum chromodynamics (QCD) cannot be solved pertur-
batively in the region of the phase transition, we have to rely
on other techniques to study the QCD phase diagram. Lattice
QCD has successfully discovered the crossover nature of the
transition [1,2] and established continuum-extrapolated results
for the QCD equation of state, both at small baryochemical
potential μB [3,4]. Due to the fermionic sign problem, standard
lattice QCD methods become computationally ineffective in
the regime of large densities. A couple of methods have been
developed to extend the region of current lattice QCD calcula-
tions to finite baryochemical potential [5–7], but quantitative
conclusions cannot yet be drawn. A QCD critical point has
been excluded up to values of μB/T � 1. Another approach
to the QCD phase diagram, which reproduces lattice results
at vanishing baryochemical potential and can be extended to
larger densities, comes from solving a coupled set of Dyson-
Schwinger equations for the quark and gluon propagators
[8,9]. Here, a potential critical point is found to be located
at (T c,μc

q) = (115,168) MeV.
Ratios of cumulants of conserved quantities like the net-

baryon number or net-electric charge are sensitive to a critical
point [10–12] signaling the singularity of thermodynamic
quantities via their relation to susceptibilities [13–16]. In this
context higher-order cumulants are of special interest because
they are more sensitive to the correlation length of fluctuations
[17,18]. From universality arguments it has been demonstrated
that the critical contributions to the kurtosis, in particular,
may become negative approaching the critical point from the
crossover side in heavy-ion collision experiments [19]. This
leads to the expectation of measuring a decreasing kurtosis
lowering the beam energies, followed by a more complicated
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nonmonotonic structure depending on the interplay of the
location of the QCD critical point and freeze-out conditions
for fluctuation measures.

Measurements of the net-proton and net-charge kurtosis
and skewness have been reported by the STAR Collaboration
[20,21], where significant deviations from the hadron reso-
nance gas and ultrarelativistic quantum molecular dynamics
(UrQMD) calculations were found at lower beam energies. To
understand the experimental data, it is important to develop
dynamical models which are able to describe nonequilibrium
effects of the QCD phase transition. Even if thermalization
times are small during the evolution of the system created in
a heavy-ion collision and local equilibrium is thus achieved,
near the critical point the thermalization time diverges with a
certain power of the correlation length given by the dynamical
universality class [22]. This phenomenon is called critical
slowing down and limits the divergence of fluctuations due
to finite-time effects. A phenomenological approach has been
applied in [23] to understand the growth of the correlation
length in an evolving system. It was found that the correlation
length does not grow beyond 1.5–2 fm, but memory effects let
the system remain correlated for a longer period than expected
in equilibrium. Expanding Fokker-Planck dynamics in terms
of powers of the correlation length over the system size in
the scaling regime, the importance of memory effects was
underlined in [24]. In a real-time evolution of non-Gaussian
moments the magnitude and the sign of the critical contri-
butions could be significantly different from the equilibrium
expectations. In this model a simplified and homogeneous
expansion was assumed and the back-reaction of the order
parameter fluctuations on the surrounding matter was not taken
into account.

In this work, we focus on the real-time evolution of the
fluctuations of the order parameter for chiral symmetry, the
σ field, as obtained in a coupled dynamics. While the σ field
is propagated explicitly via a stochastic-relaxational equation,
it interacts with a fermionic heat bath which expands fluid
dynamically [25]. It has been demonstrated in [26–29] that
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this model is able to describe critical slowing down as well as
spinodal decomposition within a dynamical setup.

We follow the evolution of the system over various
hypersurfaces of constant energy density of the coupled system
and compare the fluctuations in the σ field to the fluctuations
in net-proton numbers which are obtained from a Cooper-Frye
particlization prescription. We furthermore give a comparison
to a mean-field evolution in order to pin down the fluctuations
stemming from the initial state versus dynamical fluctuations
near the phase transition.

We begin with a description of nonequilibrium chiral fluid
dynamics (NχFD), including the equations of motion and a
brief description of the implementation of initial state and par-
ticlization. We then investigate the dynamics of the net-proton
and σ -field kurtosis for an evolution in the crossover regime
near the critical point. Our conclusions include a brief outlook.

Nonequilibrium chiral fluid dynamics. We study the fluid
dynamical evolution in a heavy-ion collision using a quark-
meson model with dilaton field,

L = q
(
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as introduced in [30]. In addition to the breaking and
restoration of chiral symmetry it accounts for scale symmetry
via the dilaton or glueball field χ that is identified with a gluon
condensate. In the present version of this model we consider
light quarks only, so q = (u,d). The two condensates σ and
χ dynamically generate masses for the constituent quarks
and gluons, thus allowing us to fix the coupling parameters
gq = 3.37 and gA = 850 MeV from the ground-state nucleon
and glueball masses. The additional parameters of the chiral
σ model are standard values: the pion decay constant of fπ =
93 MeV, the pion mass mπ = 138 MeV, the explicit symmetry-

breaking term h = fπm2
π , and the self-coupling λ2 = m2

π −m2
σ

2f 2
π

.
For more details, the reader is referred to Refs. [29,30].

In mean-field approximation, the effective thermodynamic
potential reads

Veff = 	qq̄ + 	A + Uσ + Uχ + 	0, (2)

with the quark and gluon contributions

	qq̄ = −2Nf NcT

∫
d3p

(2π )3

{
ln

[
1 + e− Eq−μ

T

]

+ ln
[
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]}
, (3)

	A = 2(N2
c − 1)T

∫
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(2π )3

{
ln

[
1 − e− EA

T

]}
, (4)

which depend on temperature T and quark chemical potential
μ = μB/3; 	0 in Eq. (2) is an unimportant constant to set the
total energy to zero in the ground state. The quasiparticle en-
ergies of constituent quarks and gluons are generated via their

effective masses as Eq =
√

p2 + m2
q and EA =

√
p2 + m2

A.

The mean-field values of the condensate fields 〈σ 〉 and
〈χ〉 are obtained by minimizing the effective thermodynamic
potential Veff via

∂Veff

∂σ

∣∣∣∣
σ=〈σ 〉

= 0,
∂Veff

∂χ

∣∣∣∣
χ=〈χ〉

= 0. (5)

In what we will call the mean-field evolution, the order
parameter fields are set to their mean-field values neglecting
fluctuations and the pressure is given by p = −Veff . The energy
and quark number density of the system are thus evaluated as
e = T ∂p/∂T + μnq − p and nq = ∂p/∂μ. This is equivalent
to conventional deterministic fluid dynamical calculations
using a chiral equation of state (EOS).

From the curvature of the effective potential at the equi-
librium value, the mass of the σ field and thus the inverse
correlation length are obtained as

m2
σ = 1

ξ 2
eq

= ∂2Veff

∂σ 2
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σ=〈σ 〉

. (6)

In order to study nonequilibrium effects, we follow our
previous works [25,28,29,31] and propagate both order param-
eters explicitly. For the chiral condensate we derive a stochastic
relaxation equation from the two-particle irreducible effective
action as

∂μ∂μσ + ησ ∂tσ + δVeff

δσ
= ξ, (7)

which takes into account interactions with the surrounding
quark heat bath via a dissipative term and a stochastic noise
field ξ . In the simplest approximation the noise is Gaussian

〈ξ (t,�x)ξ (t ′,�x ′)〉ξ = δ(�x − �x ′)δ(t − t ′)mσησ coth

(
mσ

2T

)
, (8)

and has a vanishing expectation value 〈ξ (t,�x)〉 = 0. Due to the
discretizing of the space-time δ function, the noise term will
be dependent on the lattice spacing [32]. In order to avoid this
numerical cutoff dependence, we coarse-grain the noise term
over the spatial extension of the equilibrium estimate for the
correlation length as given in Eq. (6).

The damping coefficient ησ depends on temperature and
chemical potential,

ησ = 12g2

π

[
1 − 2nF

(
mσ

2

)]
1

m2
σ

(
m2

σ

4
− m2

q

)3/2

, (9)

and vanishes near the critical point, where the mass of the σ
field becomes zero and the constituent quarks massive. Below
the phase transition we use a damping coefficient of ησ =
2.2/fm as has been estimated for the σ -π interaction in [33].

In the temperature regime of interest the dilaton field
only fluctuates minimally around its equilibrium value, as
the restoration of scale symmetry occurs only at much
higher temperatures. We therefore propagate small fluctuations
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according to the classical Euler-Lagrange equation of motion

∂μ∂μχ + δVeff

δχ
= 0. (10)

The relaxation times of the constituent quarks and gluons
are assumed to be much smaller than the long-wave length σ
mode and can thus be treated in local thermal equilibrium with
the pressure

p(T ,μ; σ,χ ) = −	qq̄ − 	A. (11)

To conserve the total energy and momentum of the coupled
system, the divergence of the energy-momentum tensor of the
quark-gluon fluid T μν equals a source term from the σ and
dilaton fields

∂μT μν = −∂μ

(
T μν

σ + T μν
χ

)
, (12)

∂μNμ
q = 0. (13)

Thus, the fluid dynamical fields become stochastic as the
evolution of the σ field follows a stochastic differential
equation.

Recently, we used this model to study the dynamical
evolution through a first-order phase transition, where spinodal
decomposition plays an important role [34–38]. We demon-
strated the formation of nonuniform structures in the energy
and baryon density [26] and the dynamical enhancement of
fluctuations in the medium [29]. Such effects are especially
interesting for upcoming experiments at the GSI Facility for
Antiproton and Ion Research (FAIR) [39] and the Nuclotron-
based Ion Collider Facility (NICA) at the Joint Institute for
Nuclear Research in Dubna, Russia [40], which will make
the region of high baryon densities in the phase diagram
accessible.

Initial state. In this paper, we use event-by-event initial
conditions, as opposed to previous publications where we used
an averaged initial state, usually a smooth sphere or ellipsoid.
The initial energy and baryon density profiles are obtained
from the UrQMD transport model [41,42] run at a center-
of-mass energy per nucleon pair of

√
sNN = 19.7 GeV/c.

However, as the underlying EOS is different from that of the
effective chiral model used here, we have to scale the resulting
quantities such that we can investigate the region around the
critical point during the fluid dynamical evolution. With this
set of initial conditions from UrQMD the fields are initialized
at their local equilibrium values according to the temperature
and baryochemical potential profiles. All events are generated
with zero impact parameter.

The UrQMD initial state has been used in recent hybrid
model calculations at lower beam energies [43] looking at
observables like elliptic and triangular flow. It has been noted
that it becomes less reliable at lower energies where different
space-time regions might not thermalize along a contour of
proper time, but gradually during the evolution. Also the
impact of the core-corona separation is more important. We
apply the UrQMD initial state on the crossover side left of the
critical point, where the system traverses the critical region, but
does not extend to extreme baryonic densities. Our study is of
exploratory nature to investigate the effect of initial state fluc-
tuations versus dynamical fluctuations near the critical point.
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FIG. 1. Event-averaged trajectory near the critical point (black
dot). Lines of constant energy density are drawn to indicate the
position of the particlization procedures.

The second- and fourth-order moments of the event-by-
event volume-averaged σ -field fluctuations at initial proper
time τ0 are 〈�σ 2〉0 = 4 MeV2 and 〈�σ 4〉0 = 64 MeV4, re-
spectively. The initial kurtosis is thus given by κσ 2 = 4 MeV2.

Hypersurfaces of constant energy density and particliza-
tion. To follow the evolution of the initial and dynamical fluc-
tuations we average the σ field over hypersurfaces of constant
energy density and look at the event-by-event fluctuations. The
energy density is given by the sum of the local energy density
of the fluid and of the order parameter fields

e = efluid + 1

2

(
∂σ

∂t

)2

+ 1

2
(∇σ )2 + Uσ

+ 1

2

(
∂χ

∂t

)2

+ 1

2
(∇χ )2 + Uχ. (14)

To make a first qualitative connection to experimental ob-
servables we apply Cooper-Frye particlization prescriptions
[44,45] to produce protons and antiprotons from the fluid
dynamical fields, in particular from the energy density in
Eq. (14) by the help of the Cornelius hypersurface finder
developed in [46]. Besides (anti-)protons we produce all
nonstrange particles implemented in the UrQMD model such
that the fully integrated energy, momentum, net-charge, and
net-baryon number are conserved exactly in each event. In
general, the effect of σ -field fluctuations should couple to
particle production, in particular (anti-)protons and pions, via
an interaction term like gp̄σp [12,17,18]. Correlated emission
patterns of (anti-)protons over a fluid dynamical hypersurface
with estimates for critical fluctuations from thermodynamic,
equilibrium systems have been formulated in [47]. These
contributions will be considered in future work. In this study
we do not apply a subsequent hadronic cascade, but work in
this direction is underway.

Results. The goal of this work is to study the real-time
evolution of the kurtosis in a system which follows a trajectory
on the crossover side near the critical point as seen in
Fig. 1. We have calculated the respective temperatures and
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FIG. 2. Kurtosis of the net-proton number as function of freeze-
out energy for mean-field and nonequilibrium evolution.

quark chemical potentials as volume averages over different
hypersurfaces of constant energy density and then averaged
these values over a set of events. Along the phase boundary
we notice a bending which typically occurs in the crossover
fluid dynamical trajectories and isentropes of chiral effective
models in mean-field approximation [26,48,49]. We compare
mean-field, where σ = 〈σ 〉 and χ = 〈χ〉, from Eq. (5), and
nonequilibrium evolutions, i.e., with the order parameter
fields evolved according to Eqs. (7) and (10), of the system
to disentangle initial fluctuations and dynamically evolved
critical fluctuations. The hypersurface- and event-averaged
quantities T and μ for the trajectory do not differ significantly
between the mean-field and the nonequilibrium evolution.

First we extract the net-proton number kurtosis, a quantity
that is also studied in experiment. It is calculated as

κσ 2 = 〈�N4〉
〈�N2〉 − 3〈�N2〉, (15)

where �N = N − 〈N〉 is the event-wise fluctuation in the net-
proton number and 〈. . . 〉 denotes an average over events. For
each event we extract the multiplicity with the above-described
particlization procedure over several hypersurfaces of constant
energy density. Then, in order to observe fluctuations, we
apply a cut in the rapidity of |y| < 0.5 and in transverse
momentum 0.4 < pT < 0.8 GeV. This corresponds to the
experimental cuts in the published data from the STAR
Collaboration [20,21]. The results are shown in Fig. 2, with
a comparison between the mean-field and a nonequilibrium
evolution. We can immediately see that for the mean-field
scenario the values drop only slightly below unity, while
in nonequilibrium we obtain a clear minimum at e = 2.5e0

where the kurtosis reaches a value of about 0.3. Although
there are event-by-event initial-state fluctuations, they only
result in a flat behavior of the kurtosis as a function of the
particlization energy density. In the case of nonequilibrium,
where we explicitly propagate the order parameter and allow
for energy and momentum exchange between the field and
the quark-gluon fluid, fluctuations build up when the system
passes the crossover region, resulting in a dip in the net-proton
kurtosis. To compare this to the thermodynamic net-quark
number kurtosis, we calculate the ratio of the generalized
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FIG. 3. Kurtosis of the net-proton number as function of par-
ticlization energy for nonequilibrium evolution compared with
the thermodynamic equilibrium values calculated from generalized
susceptibilities c4/c2.

susceptibilities c4/c2 = κσ 2 along the trajectory in Fig. 1.
These susceptibilities are defined as [50]

cn = ∂n(p/T 4)

∂(μq/T )n
. (16)

The result is shown in Fig. 3, together with the nonequilibrium
net-proton kurtosis. Note that in order to make a graphical
comparison possible, we scale c4/c2 by a factor of 10−5.
We see a sharp minimum with a negative quark-number
kurtosis at e = 2.6e0, around the same point where we have
the minimum in the net-proton kurtosis. We note two things:
First, the equilibrium signal for criticality survives even in
the dynamical environment of a heavy-ion collision, though
clearly less pronounced. Second, the resulting suppression of
the net-proton kurtosis is spread out over a larger range of
energy densities as a result of the inhomogeneous medium
and critical slowing down. It is important to remember that the
values of T and μ for the calculation of c4/c2 are averaged
over the whole volume of the fireball. Therefore, a strongly
negative kurtosis does not only occur at 2.6e0, but also around
this value, with the negative contribution dominating in an
inhomogeneous and dynamical medium.

In Fig. 4 we compare the net-proton kurtosis of the nonequi-
librium evolution to the kurtosis of the σ field. We extract the
latter one by volume-averaging the σ field on hypersurfaces
of constant energy density and subsequently calculating the
event-by-event fluctuations of the obtained values 〈σ 〉V . Here
we see a similar course in the two curves with a minimum at
nearly the same energy density of about 2.5e0. In addition we
observe a maximum of the σ -field kurtosis at lower energy
densities, which occurs below the equilibrium expectation for
the phase transition and can be attributed to the importance of
memory effects in a nonequilibrium evolution.

It is important to note that while the σ field is not, the net-
proton fluctuations are generally subject to global net-baryon
number conservation [51–53]. At the presently investigated
range of baryochemical potentials, however, baryon stopping
should only have a negligible effect.
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FIG. 4. Net-proton kurtosis and kurtosis of the volume-averaged
σ field in comparison. The σ -field kurtosis is shown in the unit MeV2.

Conclusions. We have studied the net-proton kurtosis
within the model of nonequilibrium chiral fluid dynamics,
including a particlization procedure. This model captures the
essential nonequilibrium dynamics of the order parameters at
the QCD phase transition and critical point. We evaluated the
kurtosis of both the σ field and the net-proton number along
an evolution near the critical point as a function of the energy
density on a hypersurface. Here we compared mean-field fluid
dynamical calculations to those with an explicit propagation
of the order parameter fields, the chiral and gluon condensates.
This takes into account the nonequilibrium evolution of
the fluctuations via a stochastic relaxation equation. In the
nonequilibrium case we found a minimum in both σ and
net-proton kurtosis at the same energy density. This minimum

occurs around the same energy density as the minimum
in the thermodynamic net-quark number kurtosis, implying
that the suppression of the net-proton kurtosis is a remnant
of the negative thermodynamic kurtosis. In comparison to
that, a mean-field evolution without propagation of the order
parameters shows a flat kurtosis as function of the energy
density on the hypersurface.

The aim of future work will be to use a more realistic
EOS, possibly including both hadronic and quark degrees
of freedom. Models including quarks and hadrons have been
studied in [54–56], its parameters constrained by both lattice
QCD data at small baryochemical potentials as well as neutron
star properties for compressed matter at small temperatures.
We will then study the kurtosis as a function of beam energy to
compare results with the beam energy scan program at STAR.
Finally, it is necessary to consider the evolution of produced
fluctuations in a hadronic cascade to account for such effects as
isospin randomization and charge diffusion processes [57–60].
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