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Importance-truncated large-scale shell model
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We propose an importance-truncation scheme for the large-scale nuclear shell model that extends its range
of applicability to larger valence spaces and midshell nuclei. It is based on a perturbative measure for the
importance of individual basis states that acts as an additional truncation for the many-body model space in
which the eigenvalue problem of the Hamiltonian is solved numerically. Through a posteriori extrapolations
of all observables to vanishing importance threshold, the full shell-model results can be recovered. In addition
to simple threshold extrapolations, we explore extrapolations based on the energy variance. We apply the
importance-truncated shell model for the study of 56Ni in the pf valence space and of 60Zn and 64Ge in the
pfg9/2 space. We demonstrate the efficiency and accuracy of the approach, which pave the way for future
applications of valence-space interactions derived in ab initio approaches in larger valence spaces.
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Introduction. The nuclear valence-space shell model is
one of the workhorses in nuclear structure theory. It is very
successful for the description of spectra and spectroscopic
observables over a large range of nuclei and plays an important
role in guiding and interpreting experiments from stable to
exotic nuclei [1–17]. Two critical aspects in the application
of the shell model (SM) are the construction of the effective
valence-space interaction as well as corresponding effective
operators and the solution of the eigenvalue problem in the
model space of the valence nucleons.

Traditionally, effective valence-space interactions are con-
structed using renormalized nucleon-nucleon interactions
combined with phenomenological fits of matrix elements to
nuclei within the valence space [1,3,18,19]. Though this phe-
nomenological approach allows for a rather accurate descrip-
tion, it lacks a rigorous connection to the underlying nuclear
interaction and does not provide a consistent framework for
the treatment of observables other than the energy. Recently, a
set of novel approaches to systematically derive valence-space
interactions and operators have emerged [20–23]. They offer
new insights into valence-space interactions and can be linked
to ab initio calculations.

Once the valence-space interaction is specified, the SM
reduces to the solution of a large-scale matrix eigenvalue prob-
lem. Its dimension grows combinatorially with the number of
valence orbitals and nucleons. Starting with valence spaces
covering the pf shell, the m-scheme model spaces reach
dimensions beyond 109 around midshell, which is approaching
the limits of present computational approaches for sparse
eigenvalue problems. When going to valence spaces covering
more than one major shell, the model-space dimension poses a
severe limitation to the applicability of the SM. In these cases
additional truncations or more sophisticated methods like the
Monte Carlo shell model (MCSM) [24,25] or a density matrix
renormalization group treatment of the SM [26] have to be
employed.
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We propose the importance-truncated shell model (IT-SM)
to overcome this limitation. It combines the SM with an
importance-truncation scheme that is successfully applied
in no-core configuration-interaction approaches for some
time [27]. In addition we use refined extrapolation schemes
based on the energy variance to reduce the uncertainties of
the IT-SM calculations. Together, importance truncation and
extrapolation provide an accurate tool for systems and valence
spaces beyond the reach of standard SM calculations.

Importance truncation. The importance truncation is a
physics-driven, adaptive truncation of the many-body model
space based on a measure for the importance of individual basis
states for the description of a specific set of eigenstates of a
given Hamiltonian. The importance measure is defined through
the amplitude of the individual basis states in the expansion of
the eigenstates, obtained a priori in lowest-order many-body
perturbation theory. By imposing a threshold with respect to
this importance measure we define an importance-truncated
model space tailored specifically for the target eigenstates and
Hamiltonian under consideration. Eventually, variations of the
importance threshold and extrapolations to vanishing threshold
can be used to extract observables in the limit of the full model
space. This scheme is applied very successfully in the context
of the no-core shell model (NCSM) [27,28].

The construction of the importance-truncated space is based
on a set of reference states |�(m)

ref 〉, which are obtained from
a previous diagonalization in a small space, that represent
the target eigenstates. The basis states that contribute to the
reference states |�(m)

ref 〉 span the reference space Mref. We
estimate the importance of basis states |�ν〉 outside Mref

by means of the amplitudes κ (m)
ν = −〈�ν | H |�(m)

ref 〉 /�εν

of the first-order perturbative correction to |�(m)
ref 〉, where

the energy denominator �εν corresponds to the unperturbed
single-particle excitation energy of the basis state |�ν〉. Only
basis states with importance measure |κ (m)

ν | larger than a given
importance threshold κmin for at least one reference state |�(m)

ref 〉
are included in the importance-truncated model space.

In the case of a two-body Hamiltonian, the simple first-order
importance measure cannot probe basis states that differ by
more than a two-particle-two-hole (2p2h) excitation from
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FIG. 1. Dimension of the importance-truncated model space (a)
and ground-state energy relative to the core (b) for 56Ni in the pf

valence space as a function of the importance threshold for reference
thresholds Cmin = {1 ( ), 2 ( ), 3 ( )} × 10−4 and Tmax = 16 using
the GXPF1A interaction. The model space has been constructed for
the simultaneous description of the six lowest eigenstates. For the
threshold extrapolation we use polynomials of order two and three.
The red lines denote the full m-scheme dimension and the ground-
state energy of the full SM [2].

any state in Mref. Therefore, we embed the construction
of the importance-truncated space into an iterative scheme.
For the valence-space SM, we use the number of valence
particles above the orbits that are (partially) occupied in the
lowest-energy configurations to define a truncation parameter
Tmax. For Tmax = 0, all Slater determinants with valence
nucleons distributed in the lowest accessible orbits are in
the model space. For Tmax = 2, up to two valence nucleons
are promoted to higher-lying orbits—this model space can be
generated through 1p1h and 2p2h excitations on top of the
Tmax = 0 space. Thus, we combine a sequential increase of
the truncation parameter Tmax with the importance-selection
procedure. This sequential IT-SM scheme is analogous to the
sequential IT-NCSM scheme discussed in Ref. [27].

The complete IT-SM calculation proceeds as follows: We
start with a conventional SM calculation for small Tmax, e.g.,
Tmax = 0, and select a set of target eigenstates. We define the
reference states |�(m)

ref 〉 by filtering the important components
of these eigenstates through a so-called reference threshold
Cmin with respect to the amplitudes from the SM calculation.
With these reference states we construct importance-truncated
spaces with Tmax = 2 for a sequence of importance thresholds
κmin. In each space we solve the eigenvalue problem and com-
pute the relevant observables. The eigenvectors for the largest
importance-truncated space define the new reference states,
again imposing a reference threshold Cmin, for constructing
the importance-truncated spaces for Tmax = 4. This procedure
can be iterated until Tmax reaches the number of valence
particles and thus probes the full model space. In the limit
(κmin,Cmin) → 0, this algorithm is guaranteed to reproduce
the results in the full model space at each Tmax.

The results of IT-SM calculations for different thresholds
κmin and Cmin are depicted in Fig. 1. As a test case, we consider
56Ni in a pf valence space using the GXPF1A interaction [29].
The full m-scheme dimension of this model space is 1.09 ×
109, which is at the limit of routine SM calculations. The results
presented in Fig. 1 show the dimensions and the lowest-energy

eigenvalues as function of κmin. Note that the energy axis is
extremely magnified and spans only 80 keV. The dimensions
of the importance-truncated spaces are reduced drastically, by
about two orders of magnitude as compared to the full SM
space. At the same time, the absolute energies in the largest
importance-truncated spaces, corresponding to the smallest
κmin and Cmin thresholds, differ by only about 10 keV from the
full SM. This demonstrates the efficiency of the importance
truncation—it separates the 107 basis states that determine the
bulk of the energy from the 109 basis states that are responsible
for the residual 10 keV.

Threshold extrapolation. We can approximately account
for the effects of basis configurations excluded from the
importance-truncated spaces by an a posteriori extrapolation
of the observables. The simplest extrapolation addresses
the importance threshold κmin. Since the energy eigenvalues
depend smoothly on κmin we can fit simple functions to
the set of energies obtained for different κmin values and
extract the energies for κmin → 0. Since we do not have
a theoretical model for the functional dependence on the
importance thresholds, we use simple polynomials, typically
of order two to four. Varying the order of the polynomials gives
an estimate for the uncertainty of this threshold extrapolation.
In Fig. 1(b) we have included examples for fits with second
and third-order polynomials for the ground-state energies of
56Ni. Note that the uncertainty of the κmin extrapolation is
small compared to the residual dependence on the reference
threshold Cmin.

This simple threshold extrapolation does not require addi-
tional computations and can be applied to all observables on
equal footing (cf. Fig. 5). However, it exclusively addresses the
importance threshold κmin and uncertainties of the polynomial
extrapolations can be sizable. One can improve on this by
including additional information on the excluded basis states,
e.g., through a second-order perturbative estimate of their
contribution to the energy, as done successfully in the IT-
NCSM (see Ref. [27] for details).

Variance extrapolation. As an alternative to the simple
threshold extrapolation, we consider a more elaborate ex-
trapolation scheme based on the energy variance �E2 =
〈�|H2|�〉 − 〈�|H|�〉2, which was used in the SM context
before [30–33]. By construction, the energy variance vanishes
for the exact eigenstates and, thus, serves as a measure for
the distance of an approximate state obtained in a truncated
subspace from the energy eigenstate in the full space. As
discussed in Ref. [34], the energy is expected to show a
predominantly linear dependence on the energy variance, with
subleading quadratic corrections. We thus have a simple model
and a robust two- or three-parameter fit function at hand that
provides accurate extrapolations.

The calculation of the energy variance implies the evalua-
tion of the expectation value 〈�|H2|�〉. In our implementa-
tion, we rewrite the four-body operator H2 in normal-ordered
form obtaining zero- to four-body contributions in case of
a Hamiltonian constructed from a two-body valence-space
interaction plus Lawson-type center-of-mass Hamiltonian.
The individual contributions are computed on the fly, where
the four-body part is the costliest. We remark that the limiting
factor for the calculation of the energy variance is not memory
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FIG. 2. Energy-variance extrapolation of the ground-state energy
relative to the core for 56Ni obtained in IT-SM using the GXPF1A inter-
action. In panel (a) results for different reference thresholds Cmin =
{1 ( ), 2 ( ), 3 ( )} × 10−4 for Tmax = 16 are shown. In panel (b) cal-
culations for different truncations Tmax = {4( ), 6( ), 8( ), 10( )}
with Cmin = 1 × 10−4 are depicted. The red lines denote the exact
ground-state energy extracted from Ref. [2].

but computing time. For typical applications, the computing
time of the energy variance is an order of magnitude larger than
the computing time of the corresponding IT-SM calculation.

The energy variance captures nontrivial information on the
full model space through the expectation value 〈�|H2|�〉.
This is seen by inserting an identity operator represented
in the full model space in between the product of the two
Hamiltonians—the variance explicitly probes the coupling
to states outside of the truncated subspace. In practical
calculations we can choose the target space we wish to
extrapolate to. The most obvious choice, the full model space
spanned by all Slater determinants that can be constructed
from all possible combinations of single-particle valence
states, is employed unless otherwise stated. In this way, the
energy-variance extrapolation remedies all truncations used in
the IT-SM calculation, i.e., the κmin,Cmin, and Tmax truncations.
Therefore, the variance extrapolation is much more powerful
than the simple threshold extrapolation. However, other target
spaces are possible, e.g., a Tmax truncated many-body space.
In this case, the variance extrapolation will only account for
the κmin and Cmin truncations.

In Fig. 2 the variance extrapolation of the ground-state
energy of 56Ni is illustrated, where Fig. 2(a) shows κmin

sequences for different reference thresholds Cmin and Fig. 2(b)
shows κmin sequences for different Tmax truncations. The first
remarkable observation is that the κmin sequences for different
Cmin fall onto a straight line. Consequently, the variance
extrapolations for the different Cmin give the same result.
The variance-extrapolated energy is in excellent agreement
with the result for the full space reported in Ref. [2]. Even
with an additional Tmax truncation, as shown in Fig. 2(b), the
results beyond Tmax = 6 fall onto the same line. For severe
truncations, e.g., Tmax = 4, we observe larger energy variances
that cannot be extrapolated reliably.

The advantages of the variance extrapolation are that
a simple and robust fit model is available and that the
extrapolation remedies all truncations inherent to an IT-SM
calculation. The disadvantage is that substantial computational
effort goes into the evaluation of the energy variance, typically
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FIG. 3. Energy-variance (a) and threshold (b) extrapolation of
the energies of the six lowest natural-parity states of 56Ni using
the GXPF1A interaction with Cmin = {1 ( ), 2 ( ), 3 ( )} × 10−4 and
Tmax = 16. For the variance and threshold extrapolations, polynomi-
als of order two and three have been employed, respectively. The red
lines show the full SM results extracted from Ref. [2].

the computation of the variance needs more computing time
than the complete IT-SM calculation.

Applications. Using the IT-SM with threshold and variance
extrapolation we now discuss the spectroscopy of 56Ni in the
pf shell with the GXPF1A interaction [29]. We demonstrate
the robustness of the IT-SM by comparing energies and
electromagnetic observables with full SM results obtained with
the ANTOINE code [1,35,36] or extracted from Ref. [2].

Figure 3 shows the excitation spectrum of 56Ni for three
different reference thresholds as function of energy variance
and importance threshold. On the scale of typical excitation
energies the κmin and Cmin dependence is very weak. Both
the variance- and the threshold-extrapolated energies are in
excellent agreement with the full SM results where available.
The second 0+ state, however, shows a quite distinct behavior.
Its κmin and Cmin dependencies are stronger than for all other
states and the energy variances are significantly larger. This
indicates a particularly complicated structure, in this case
due to deformation, resulting in many small components in
the basis expansion of the eigenstate and, thus, a less accurate
approximation in the importance-truncated space. The simple
threshold extrapolation does not capture the contribution of all
these small components and cannot correct for the sizable Cmin

dependence. The variance extrapolation, however, provides
a reliable extrapolation and even restores the correct level
ordering in excellent agreement with the full SM. Particularly
for these fragile states, the variance extrapolation offers
significant advantages.

Figure 4 summarizes the extrapolated energies for the
lowest six natural parity states of 56Ni. The results of threshold
extrapolations for a sequence of Tmax-truncated calculations
are shown in the main part of the plot, followed by the spectrum
obtained from the variance extrapolation with Tmax = 8 and
the full SM result [2]. Starting from Tmax = 8 the spectrum
is rather stable and in good agreement with the full SM
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FIG. 4. Natural-parity spectrum of 56Ni as a function of Tmax in
terms of absolute energies relative to the core computed in the IT-SM
with Cmin = 1 × 10−4 using the GXPF1A interaction. The right-hand
columns show the results of an energy-variance extrapolation (�E2)
and the full SM energies extracted from Ref. [2].

results, except for the second 0+ state discussed above. The
energy-variance extrapolation for Tmax = 8 yields excellent
agreement with the full SM for all states.

Since the IT-SM also provides the eigenstates in the
importance-truncated space, we have access to all other
observables, particularly to electromagnetic moments and
transitions relevant for spectroscopy. For each κmin we compute
the observable of interest using the respective eigenvector.
Figure 5 illustrates the dependence of the quadrupole moment
and the B(E2) transition strength from the first 2+ state to the
ground state in 56Ni on the importance threshold and the energy
variance. Also these observables show a smooth dependence
on κmin and allow for simple polynomial extrapolations to
vanishing importance threshold. There is a mild dependence
of the κmin-extrapolated results on Cmin, which is of the same
magnitude as the uncertainty of the κmin extrapolation. The next
step in this sequence, Cmin = 0, would recover the full refer-
ence space, and the difference between the κmin-extrapolated
results for Cmin = 2 × 10−4 and Cmin = 1 × 10−4 indicates
the residual effect, which is smaller than the uncertainty of
the κmin extrapolation and thus irrelevant. Within these small
uncertainties, the extrapolated quadrupole moment and B(E2)
transition strength are in excellent agreement with full SM
calculations proving that spectroscopic observables are also
directly accessible in the IT-SM. However, the corresponding
energy-variance extrapolations using linear and quadratic
fit functions do not improve these results. The variance
extrapolation for electromagnetic observables is lacking the
rigorous formal foundation that it has for energies and a
simple linear dependence is neither guaranteed nor observed.
Moreover, for electromagnetic transitions the energy variances
of two states need to be combined into one control parameter
for the extrapolation in a heuristic way. As in Ref. [30], we
use the mean of the energy variances of the two states as
control parameter. It is evident from Figs. 5(b) and 5(d) that
the sequences for different Cmin approximately collapse onto
one line; however, the systematic deviations are larger than
for the energies (cf. Fig. 2). A linear fit does not yield an
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FIG. 5. Threshold dependence and extrapolation for the
quadrupole moment of the 2+

1 state (a) and the B(E2 : 2+
1 → 0+

1 )
transition strength (c) for 56Ni. The wave functions have been obtained
in an IT-SM calculation using the GXPF1A interaction for Tmax = 8
and the reference thresholds Cmin = {1 ( ), 2 ( ), 3 ( )} × 10−4. The
red lines represent the full SM results obtained with the ANTOINE

code [1,35,36]. Panels (b) and (d) illustrate the corresponding
energy-variance extrapolations with respect to the target Tmax = 8
model space using linear and quadratic fit functions. For the transition
strength, the mean energy variance of the states considered is used.

adequate reproduction of the points and clearly misses the
exact result. The quadratic fit reveals a strong dependence on
Cmin for the quadrupole moment and also overestimates the
result. In conclusion, the energy variance extrapolation for
these electromagnetic observables is less robust and accurate
and computationally more expensive than the simple threshold
extrapolation.

We conclude this discussion with a first application of
the IT-SM in a valence space covering more than one major
shell. This will be an important future field of application
of the IT-SM in conjunction with the new valence-space
interactions derived in ab initio approaches. We consider a
pfg9/2 valence space using the PFG9B3 interaction [37,38]
and study 60Zn and 64Ge with full model-space dimensions of
2.2 × 1013 and 1.7 × 1014, respectively. Since these extended
model spaces are susceptible to center-of-mass spuriosities,
we use a Lawson prescription to diagnose center-of-mass
contaminations [39]. Particularly, 64Ge has been studied before
in the MCSM [32,33] using the same interaction. Very recently,
a study using the density-matrix renormalization group with
the SM targeted the same nucleus and valence space [26].
These competing approaches highlight the difficulty of these
calculations.

Figure 6 shows the absolute energies of the lowest states in
60Zn and 64Ge extracted from a simple threshold extrapolation
for a sequence of Tmax truncated spaces and from an energy-
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FIG. 6. Lowest natural-parity states of 60Zn (a) and 64Ge (b)
computed in the IT-SM for Cmin = 2 × 10−4 using the PFG9B3

interaction with subsequent threshold extrapolation for different
values of Tmax. The right-hand columns show the results obtained
from the energy-variance extrapolation (�E2) of the Tmax = 6 results.
The dashed line shows an approximation for the energy of the 2+

state calculated from the excitation energy obtained in the IT-SM for
Tmax = 10 and the �E2-extrapolated ground-state energy. For 64Ge,
the MCSM results [32,33] are shown for comparison.

variance extrapolation. Whereas the spectra seem converged
at Tmax = 8 for 60Zn there is still some dependence on Tmax for
64Ge. Moreover, for 64Ge the variance extrapolation gives the
ground-state energy about 0.5 MeV lower than the threshold-
extrapolated energy at Tmax = 10, due to effects of the Cmin

and Tmax truncations ignored in the threshold extrapolations.
The sensitivity to these truncations results from the strong
deformation of 64Ge, which requires many small components

in the SM basis expansion to be described. The variance
extrapolation captures these subtle effects and yields excellent
agreement with the MCSM results [32,33].

Conclusions. We have introduced the IT-SM approach and
demonstrated its ability to extend the reach of valence-space
SM calculations into the domain of large valence spaces and
midshell nuclei. In addition to the threshold extrapolation,
we adopted an extrapolation in terms of the energy variance
for the first time in the IT context. Generally, the thresh-
old extrapolation provides sufficiently accurate energies and
electromagnetic observables at no extra computational cost.
In specific cases, e.g., for states governed by deformation,
the energy-variance extrapolation provides better accuracy for
energies at significant extra cost.

The IT-SM framework is ideally suited to study valence
spaces spanning two or more major shells with effective
interactions derived in an ab initio framework, such as
the in-medium similarity renomalization group [20,21] or the
Lee-Suzuki approach [22,23]. Together, these new develop-
ments offer unique perspectives for detailed nuclear structure
investigations beyond the reach of the conventional SM.
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