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Nonrelativistic nucleon effective masses in nuclear matter: Brueckner-Hartree-Fock model
versus relativistic Hartree-Fock model
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The density and isospin dependencies of nonrelativistic nucleon effective mass (m∗
N ) are studied, which is a

measure of the nonlocality of the single particle (s.p.) potential. It can be decoupled as the so-called k mass (m∗
k ,

i.e., the nonlocality in space) and E mass (m∗
E , i.e., the nonlocality in time). Both k mass and E mass are determined

and compared by using the latest versions of the nonrelativistic Brueckner-Hartree-Fock (BHF) model and the
relativistic Hartree-Fock (RHF) model. The latter is achieved based on the corresponding Schrödinger equivalent
s.p. potential in a relativistic framework. We demonstrate the origins of different effective masses and discuss
also their neutron-proton splitting in the asymmetric matter in different models. We find that the neutron-proton
splittings of both the k mass and the E mass have the same asymmetry dependencies at the densities considered;
namely, m∗

k,n > m∗
k,p and m∗

E,p > m∗
E,n. However, the resulting splittings of nucleon effective masses could have

different asymmetry dependencies in these two models because they could be dominated either by the k mass
(then we have m∗

n > m∗
p in the BHF model), or by the E mass (then we have m∗

p > m∗
n in the RHF model). The

isospin splitting in the BHF model is more consistent with the recent analysis from the nucleon-nucleus-scattering
data, while the small E mass m∗

E in the RHF case as a result of the missing ladder summation finally leads to an
opposite splitting behavior.

DOI: 10.1103/PhysRevC.93.015803

I. INTRODUCTION

The nucleon effective mass m∗
N defines the nonlocal nature

of a single particle (s.p.) felt by a nucleon propagating in
a nuclear medium. It is both fundamentally important and
very much related to one of the main objectives of the
forthcoming new generation of radioactive beam facilities:
the isospin dependence of the nuclear force, which is crucial
for understanding the properties of neutron stars, symmetry
energy, and the dynamics of nuclear collisions [1–3]. However,
due to the difficulties from current experiments and the
conflicting conclusions from different model calculations [4],
it is hard to clarify the origins of effective masses and its
density, isospin, and model dependencies (see Ref. [5] for
recent progress).

There are generally two definitions of the effective mass
in the literature [6]. One is the so-called nonrelativistic
mass m∗/m = 1 − dV (k,ε(k))/dε(k), which measures the
nonlocality of the s.p. potential V as a function of the
momentum k and the s.p. energy ε(k) from a Schrödinger-like
equation. It can be decoupled as k mass (i.e., the nonlocality in
space) and E mass (i.e., the nonlocality in time). The other one
is the Dirac mass, which is determined by the scalar part of the
nucleon self-energy and is a genuine relativistic quantity. In
the present study, we focus on the first definition of the nucleon
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effective mass and aim to contribute to a deeper understanding
of this important quantity based on the calculations and the
comparisons of various most advanced nuclear many-body
models. In particular, we would like to address the isospin
dependence of nucleon effective masses from the nonlocality
in space and that in time, respectively, which have not been
discussed clearly before.

Our employed models include the nonrelativistic
Brueckner-Hartree-Fock (BHF) model [7,8] in combination
with a microscopic three-body force (TBF) [9,10], the
relativistic Hartree-Fock (RHF) [11] model with density-
dependent meson-nucleon couplings, compared with the re-
sults from the Dirac-Brueckner-Hartree-Fock (DBHF) model
[12,13]. For the last two models, the nonrelativistic masses are
derived by rewriting the Dirac equation in a Schrödinger-type
one, although they are presented in relativistic frameworks.

The BHF model can describe the equation of state (EoS)
of the nuclear matter in a way that is consistent with
the heavy-ion-flow investigations [14] and the observational
constrains from the two recent precisely measured heavy
pulsars masses [15,16]. In fact, it has been used in many
studies for the structures of the neutron stars [17–20] and
hybrid stars (neutron stars with quark matter in the cores)
[21,22]. The detailed modeling of the BHF nuclear many-body
approach is described elsewhere [7,8]. Here the input bare
nucleon force is the Argonne V18 two-body interaction [23],
accompanied by a microscopic three-body force constructed
from the meson-exchange-current approach [9,10]. It can give
satisfactory nuclear matter bulk properties, which are collected
in Table I.
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TABLE I. Nuclear matter bulk properties (the saturation density
ρ0, the binding energy per particle E/A, the symmetry energy Esym,
the compression modulus K), obtained from the BHF + TBF model
and the RHF model (PKA1) employed in the present work.

ρ0 E/A Esym K

[fm−3] [MeV] [MeV] [MeV]

BHF + TBF 0.20 −14.7 30.6 226
RHF 0.16 −15.8 36.0 230

On the other hand, the RHF model is another powerful
nuclear many-body model, which was developed based on
the covariant density functional theory [24]. It can describe
quantitatively both the finite nuclei and nuclear matter sys-
tems very well with new density-dependent meson-nucleon
coupling constants proposed by Long et al. [11], and has
been widely used for the studies of nuclei shell structure
[25,26], neutron stars [27,28], nuclei beta decay [29], and
so on. The s.p. potential in the RHF model is a nonlocal
quantity from the exchange term, and the corresponding k
mass and E mass can be easily defined. There are several very
successful density-dependent RHF parameter sets, such as
PKO1, PKO2, PKO3 [11,27], and PKA1 [25,30]. All of them
are fitted from the empirical properties of symmetric nuclear
matter at the saturation point and the ground-state properties of
stable finite nuclei. The effective masses at saturation densities
are m∗

N/mN = 0.59,0.60,0.59,0.55 for PKO1, PKO2, PKO3,
PKA1, respectively. The latest PKA1 parameter set includes
an extra tensor coupling between the ρ meson and the nucleon,
and could describe very well the nuclear shell structure [25,30].
Therefore, in the present study we would like to use PKA1
as one representative set to discuss the effective masses for
the RHF model. Its saturation properties are also collected in
Table I.

We provide the necessary formula of the effective mass
and discussions of our results in Sec. II, before drawing
conclusions in Sec. III.

II. FORMALISM AND DISCUSSION

In the nonrelativistic BHF approach, the effective mass m∗
is given by

m∗

m
= 1 − dV (k,ε(k))

dε(k)
=

[
1 + m

k

dV (k,ε(k))

dk

]−1

, (1)

where V (k,ε(k)) is the s.p. potential in the mean-field
level with ε(k) = k2/(2m) + V (k,ε(k)). The effective mass is
actually momentum dependent, but hereafter we only consider
its value at the Fermi momentum.

For the calculation of the nonrelativistic mass within the
RHF and the DBHF frameworks, a Schrödinger-type potential
can be derived. For completeness we briefly introduce how it
is done in the following.

The Dirac equation of a nucleon in the nuclear medium can
be written as

[ �γ · �k + m + �(k)]ψ = γ0Eψ, (2)

where E = ε + m and the nucleon self-energy should be
expressed by

�(k) = �S(k) + γ0�0(k) + �γ · �k�V (k) (3)

to be consistent with the rotational invariance of the infinite nu-
clear matter. �s, �0,�v are respectively the scalar, timelike-,
and spacelike-vector components of the self-energy. In order to
obtain an equivalent Schrödinger equation, the Dirac equation
(2) is transformed as follows:

[ �γ · �k + m + US + γ0U0]ψ = γ0Eψ, (4)

with the scalar and vector potentials defined as

US = �S − m�V

1 + �V

, U0 = �0 + E�V

1 + �V

. (5)

This Dirac equation implies the following frequency-
momentum relation:

k2 + (m + US)2 = (E − U0)2, (6)

which can be written in the Schrödinger-type form:

k2

2m
+ V (k,ε) − ε2

2m
= ε, (7)

with

V (k,ε) = US + E

M
U0 + U 2

S − U 2
0

2m
. (8)

We have omitted the ε2/(2m) term in Eq. (7) for the purpose
of the present work; namely, to compare the nonrelativistic
effective masses from the BHF model and the RHF model.
This term, generated by relativistic effects, could have evident
influences on the resulting effective mass and has been
thoroughly studied in Ref. [11].

The effective mass m∗ can be decoupled into two parts;
namely, k mass m∗

k and E mass m∗
E , as follows [6,31]:

m∗

m
= m∗

k

m

m∗
E

m
, (9)

m∗
k

m
=

[
1 + m

k

∂V

∂k

]−1

,
m∗

E

m
= 1 − ∂V

∂ε
, (10)

which represent respectively the nonlocalities of the s.p.
potential in space and that in time.

We first present in Fig. 1 the resulting nucleon effective
masses m∗

N/mN as a function of the density ρ for isospin
symmetric matter, with the BHF model with or without TBF
and the RHF model. The result from the DBHF model is
also plotted here for comparison [13]. We first notice that
the repulsive nature of the TBF [9,10] brings the increase
of the effective mass m∗

N , especially at high densities. The
DBHF result is similar to the BHF results, as pointed also
in Ref. [13]. However, the RHF result exhibits a rapidly
decreasing behavior, which is strikingly different from the
other three. This can be understood as follows: The interaction
in the RHF model is mainly determined by the properties
of infinite nuclear matter and finite nuclei system around the
nuclear saturation density, so the constraint at high densities
is missing. Furthermore, there are no high-order terms for σ
and ω mesons in the RHF model, which might suppress the
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FIG. 1. Nucleon effective mass m∗
N/mN as a function of the

density ρ for isospin symmetric matter, with the BHF model with
(dashed line) or without TBF (solid line), the RHF model (dash-dotted
line), to be compared with the DBHF model (dotted line).

contribution of the scalar potential �S on effective masses,
like in the TM1 parameter set [32]. On the contrary, the ladder
diagram considered in the Brueckner pair can take the strong
short-range correlation into account, which would become
increasingly important in the high-density region [13]. This
short-range correlation can generate a strong enhancement of
the E mass, as can be seen immediately in Fig. 2.

In Fig. 2, both k mass and E mass are compared in the
BHF + TBF model and the RHF model for isospin symmetric
matter. The RHF E mass is indeed much smaller than the
BHF one and also decreases rapidly with the density. It then
leads to a quick drop of the effective mass m∗

N with the
density (shown in Fig. 1), despite the corresponding k mass
actually being larger than the BHF result. The latter is the case
because the spatial nonlocality (characterized by k mass) in
the relativistic case is a combined effect from both the scalar
and the vector components, �S and �0, of the self-energy [6].
Later we will see that it is just because of the combined effect
of the Brueckner ladder correlations and the mild Fock-term
contribution in the BHF case that results in a more consistent
splitting behavior for the nucleon effective mass m∗

N with the
experimentally extracted one [5].

Next, we show in Fig. 3 the results for asymmetric matter.
That is, the proton effective masses m∗

p/mN as a function of
the proton fraction xp, for both the BHF model and the RHF
model. The calculations are done for two densities: ρ = ρ0

and ρ = 2ρ0. We find that the results have a flatter behavior
with the TBF included in the BHF model than those without

FIG. 2. Density dependence of both k mass and E mass are
compared in the BHF + TBF model and the RHF model for isospin
symmetric matter.

the TBF. This may be seen as a suppression effect of the
TBF on the change of the effective mass with the particle
density. In addition, except at small xp, m∗

p/mN increase with
xp in the BHF model, while in the case of the RHF model,
m∗

p/mN decreases monotonically with xp for the considered
densities here. We can then expect that in the RHF model, with
the increase of the asymmetry parameter β = 1 − 2xp, m∗

p

increases while m∗
n decreases, and we always have m∗

p > m∗
n,

as demonstrated in Fig. 4.
In Fig. 4, both neutron effective mass and proton effective

mass vs the asymmetry parameter are compared in the BHF +
TBF model and the RHF model for two densities: ρ = ρ0 and
ρ = 2ρ0. As expected, the RHF model has a mass-splitting
feature of m∗

p > m∗
n for both two cases of the densities. Only

the enhanced density will result in a pronounced splitting. This
is also true in the BHF case. However, in the BHF model, the
splitting is opposite; namely, m∗

n > m∗
p. The BHF result is

more consistent with the recent analysis [5] based on a large
number of nucleon-nucleus scattering data with an isospin-
dependent optical model. And the dependence of the splitting
on the asymmetry parameter β is extracted as (m∗

n − m∗
p)/m =

(0.41 ± 0.15)β [5] at normal density, to be compared with
(m∗

n − m∗
p)/m � 0.17β in the BHF case. We mention here

that, in the RHF model, the splitting at very low densities
(<0.8ρ0) is actually different [11] from that at high densities,
such as ρ = ρ0 or 2ρ0 employed in the present work.

In order to analyze further the uncertainties at different
models for the isospin dependencies of the neutron and proton
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FIG. 3. Proton effective mass m∗
p/mN as a function of the proton

fraction xp at two densities: ρ = ρ0 (shown as lines) and ρ = 2ρ0

(shown as symbolled lines), for both the BHF model (with TBF in
dashed lines, without TBF in solid lines) and the RHF model (dotted
lines).

effective masses, we show in Fig. 5 the decoupled mass
splitting of both k mass (left panel) and E mass (right panel) in
the BHF + TBF model and the RHF model for two densities:
ρ = ρ0 and ρ = 2ρ0. From the left panel, we see that both
models have the same splitting behavior for the k mass,
namely m∗

k,n > m∗
k,p for the considered two densities, although

k mass in the RHF model is somewhat larger than unity and
increases with the density, while that in the BHF model is
smaller than unity and decreases with the density (already
seen in Fig. 2). From the right panel, we see a much larger
density effect in the RHF model for the E mass than in the
BHF model, and the RHF results are much smaller than the
BHF ones. Those are consistent with previous Figs. 1–4. Also,
the isospin mass splitting for the E mass is the same in two
models: m∗

E,p > m∗
E,n, but is opposite to the k mass splitting:

m∗
k,n > m∗

k,p.
The splitting of the effective mass m∗

N is determined by that
of the k-mass (E-mass) splitting in the BHF (RHF) model.
That is to say, it is determined by the one smaller than unity.
Essentially, the missing short-range correlations in the RHF
model leads to a small E mass m∗

E that finally results in
an opposite m∗

N splitting behavior with the experimental data
and the BHF model. This may suggest that the exchange of
Brueckner pairs are crucial for reproducing an experimen-
tally derived isospin dependence for the nucleon effective
mass.

FIG. 4. Asymmetry dependencies of the effective mass m∗
N/mN

are compared in the BHF + TBF model and the RHF model for two
densities: ρ = ρ0 (shown in lines with squares) and ρ = 2ρ0 (shown
in lines with dots). Results of neutrons (protons) are displayed with
solid (dashed) lines.

III. CONCLUSIONS

Summarizing, we presented a comprehensive analysis on
the so-called nonrelativistic nucleon effective mass m∗

N based
on calculations in the latest versions of both the nonrelativistic
BHF model and the RHF model. For the former one, we
incorporate also the microscopic TBF, and for the latter density
dependent meson-nucleon couplings are employed. Then both
of the model calculations can provide good descriptions of the
experimental data of nuclear systems.

The nonrelativistic nucleon effective mass m∗
N parametrizes

the momentum dependence of the s.p. potential and can
be decoupled into two differently defined effective masses:
the usually called k mass m∗

k and E mass m∗
E , which may

respectively trace back to the contribution of the exchange
Fock term and the Brueckner ladder correlations [13].

We have studied in details the effects of the density and the
asymmetry on the nucleon effective mass m∗

N , the k mass m∗
k ,

and the E mass m∗
E . We find that, in the RHF model, the effec-

tive mass m∗
N decreases monotonically with the density, which

is dominated by the rapid reduction of scalar and vector compo-
nents of nucleon self-energy, while in the BHF model and the
DBHF model m∗

N will finally at high densities increase with the
density as a result of the ladder diagram of the Brueckner pair.

Furthermore, the isospin mass splittings of k mass and E
mass have the same asymmetry dependencies in both two
models at considered densities. That is, m∗

k,n > m∗
k,p for the

k mass m∗
k , but m∗

E,p > m∗
E,n for the E mass m∗

E in both the
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FIG. 5. Mass splittings of both k mass (left panel) and E mass (right panel) with the asymmetry parameter are compared in the BHF + TBF
model and the RHF model for two densities: ρ = ρ0 (shown in lines with squares) and ρ = 2ρ0 (shown in lines with dots).

BHF model and the RHF model. However, the splitting of the
effective mass m∗

N could be different in different models and is
determined by the one smaller than unity; namely, the k mass in
the BHF case, and the E mass in the RHF case for the densities
considered in the present work. The smaller E mass m∗

E in the
RHF case without the ladder summation finally leads to an
isospin splitting opposite that obtained by the recent analysis
from nucleon-nucleus-scattering data, while the BHF model
might be a more favorable model for describing the isospin
dependence of m∗

N .
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