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Spin-polarized neutron matter: Critical unpairing and BCS-BEC precursor
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We obtain the critical magnetic field required for complete destruction of S-wave pairing in neutron matter,
thereby setting limits on the pairing and superfluidity of neutrons in the crust and outer core of magnetars. We find
that for fields B � 1017 G the neutron fluid is nonsuperfluid—if weaker spin 1 superfluidity does not intervene—a
result with profound consequences for the thermal, rotational, and oscillatory behavior of magnetars. Because
the dineutron is not bound in vacuum, cold dilute neutron matter cannot exhibit a proper BCS-BEC crossover.
Nevertheless, owing to the strongly resonant behavior of the nn interaction at low densities, neutron matter
shows a precursor of the BEC state, as manifested in Cooper-pair correlation lengths being comparable to the
interparticle distance. We make a systematic quantitative study of this type of BCS-BEC crossover in the presence
of neutron fluid spin polarization induced by an ultrastrong magnetic field. We evaluate the Cooper-pair wave
function, quasiparticle occupation numbers, and quasiparticle spectra for densities and temperatures spanning
the BCS-BEC crossover region. The phase diagram of spin-polarized neutron matter is constructed and explored
at different polarizations.
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I. INTRODUCTION

A comprehensive understanding of the thermodynamic
properties of strongly magnetized baryonic matter is one of
the major challenges in the astrophysics of compact stars.
There is substantial observational evidence that anomalous
x-ray pulsars and soft-γ -ray repeaters are two manifestations
of strongly magnetized neutron stars, known as magnetars,
which are characterized by surface fields of order B ∼ 1015 G
[1]. These identifications are consistent with the measured slow
spins and large spin-down rates, as well as with the energetics
of observed magnetic activity associated with flares. Magnetic
fields play a secondary role in the structure and thermal
emission of ordinary neutron stars with fields B ∼ 1012 G,
whereas the fields in magnetars are large enough to impact
basic physical properties of the stellar matter, including its
equation of state, its crust composition, and its pairing and
superfluid properties.

In this work we focus on the behavior of pure neutron matter
in strong magnetic fields. Specifically, we have carried out a
detailed study of S-wave pairing in neutron matter as it exits
at relatively low densities. Our results are of twofold interest.
First, we compute the critical magnetic field for unpairing of
the S-wave condensate owing to the spin-alignment induced by
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the strong magnetic field, as measured by the spin polarization.
The results are of direct practical interest for the astrophysics of
magnetars, as the derived critical field for pair disruption limits
the occurrence of neutron superfluidity in the low-density
(outer core and crust) regions of a neutron star. Second, we
study the signatures of a BCS-BEC crossover [2] in dilute
neutron matter and the emergence of dineutron correlations
in a magnetic field, thus generalizing to the case of spin-
polarized neutron matter the previous studies of this clustering
phenomenon in infinite neutron matter [3–7] and in finite
nuclear systems [8].

The BCS-BEC crossover, in the sense of Nozières-Schmitt-
Rink theory [2], occurs naturally in the 3S1 - 3D1 channel
in isospin-symmetric [9–13] and isospin-asymmetric [14–16]
nuclear matter, where the bound pairs are deuterons in the low-
density limit. Neutron-neutron (nn) pairing in the 1S0 channel
comes into play in nuclear matter when the isospin asymmetry
of the system is large enough to suppress the (otherwise
dominant) attractive interaction the 3S1 - 3D1 pairing channel.
In pure neutron matter, isospin-triplet pairing in the 3S1 - 3D1

channel is prohibited by Pauli blocking; hence, the dominant
pairing channel must be an isospin-singlet state, necessarily 1S0

in the low-density regime, as implied by the nuclear phase-shift
analysis (see Ref. [17]).

The primary effect of a magnetic field on a neutron
Cooper pair is the alignment of their spins caused by the
Pauli paramagnetic interaction between B field and the spin
magnetic moments of the neutrons. Plainly, a large-enough
magnetic field will quench pairing. This nn pair-breaking
effect may be contrasted with that for proton pairs (and
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ultimately charged hyperons), which become unpaired at lower
field strengths owing to Landau diamagnetic currents [18–20].

The present description is constrained to the low-density
regime below the saturation density of symmetrical nuclear
matter, ρ0 = 0.16 fm−3. At higher densities the dominant
pairing state in neutron matter shifts to the 3P 2 - 3F 2 channel,
which induces a spin 1 condensate of neutrons [17]. In this
case, the spin-polarizing effect of the magnetic field on the
internal structure of the spin 1 pairs is nondestructive.

The two-neutron system has no bound state in vacuum,
so dilution of neutron matter does not lead automatically
to a state populated by tightly bound dineutrons that could
undergo Bose-Einstein condensation (BEC). (It should be
noted, however, that the bare neutron-neutron interaction
in the 1S0 channel supports a virtual state close to zero
energy, which is characterized by a large scattering length
−18.5 ± 0.4 fm. It thus implies a strongly correlated 1S0-wave
state at asymptotically low densities.) Nevertheless, on general
grounds one cannot expect a Bose condensate regime of
neutrons to be present in the low-density limit. This situation
stands in contrast to that for 3S1 - 3D1 neutron-proton (np)
pairing, where the phase diagram exhibits both a BCS-BEC
crossover region and a well-defined Bose condensate of
deuterons at asymptotically low density. Notwithstanding the
arguments above, it was shown in Refs. [3–6] that a BCS-BEC
crossover region may also arise in neutron matter under
dilution. In principle, this phenomenon occurs in full analogy
to its counterpart for 3S1 - 3D1 pairing, with the exception
that the asymptotical state of the system at low densities is
a weakly interacting neutron gas, instead of a Bose condensate
of neutron dimers.

The phase diagram of dilute neutron matter may contain
anisotropic or nonhomogeneous phases such as the Larkin-
Ovchinnikov-Fulde-Ferrell (hereafter LOFF) phase or a phase-
separated phase (see Refs. [15,16] and references therein).
Below we provide a theoretical framework which incorporates
such phases; however, our numerical studies are confined to
homogeneous, isotropic solutions.

Neutron-neutron pairing plays a prominent role in the
physics of the inner crust of a neutron star (Ref. [17] and
references therein). Other systems characterized by strong
neutron excess are neutron-rich nuclei near the drip line
[21–23] and halo nuclei such as 11Li [24] that feature halo
neutrons. There are conspicuous phenomenological signatures
of neutron superfluidity in neutron stars, providing strong
evidence that a neutron pairing condensate in the star’s inner
crust plays a prominent role in neutrino cooling and in
glitch-type timing behavior in pulsars [17].

This paper is structured as follows. In Sec. II we give
a brief presentation of the theory of spin-polarized neutron
matter in terms of imaginary-time finite-temperature Green’s
functions. In Sec. III we discuss the results of extensive
calculations based on this microscopic many-body approach,
namely the phase diagram of neutron matter over the relevant
low-density domain at various degrees of polarization, the
temperature-polarization dependence of the gap in the weak-
coupling regime, the kernel of the gap equation in various
coupling regimes, the Cooper-pair wave function across the
BCS-BEC crossover, and quasiparticle occupation numbers

and dispersion relations. Section IV is concerned with the
critical magnetic field required for unpairing of the condensate
in the context of magnetars. Readers interested only in
astrophysical implications of this work can skip directly to
this section. Our conclusions are summarized in Sec. V.

II. THEORY

The theory of spin-polarized pair-correlated neutron matter
in equilibrium can be formulated in the language of the
imaginary-time Nambu-Gorkov matrix Green’s function

iG12 = i

(
G+

12 F−
12

F+
12 G−

12

)
=

(
〈Tτψ1ψ

+
2 〉 〈Tτψ1ψ2〉

〈Tτψ
+
1 ψ+

2 〉 〈Tτψ
+
1 ψ2〉

)
, (1)

where the indices 1,2, . . . stand for the continuous space-time
variables x = (t,r) of the neutrons; thus, G+

12 ≡ G+
αβ(x1,x2),

etc., and greek indices label discrete variables in general. In
spin-polarized neutron matter the isospin is fixed, so within
the discrete nucleonic degrees of freedom only the Pauli spins
play a dynamical role. Therefore, each operator in Eq. (1) is
a spinor, e.g., ψα = (ψn↑,ψn↓)T , where the internal variables
↑,↓ denote a particle’s spin state. Accordingly, the propagators
live in a 4 × 4 space owing to the doubling of degrees of
freedom in the Nambu-Gorkov formalism and owing to the
breaking of the spin SU(2) symmetry.

The matrix propagator (1) obeys the standard Dyson
equation, which we write in momentum space as

[G0(k, Q)−1 − �(k, Q)]G (k, Q) = 14×4, (2)

where �(k, Q) is the matrix self-energy. To accommodate in
our formalism the appearance of the LOFF phase, we do not
assume translational invariance from the outset. Hence, the
Green’s functions and self-energies are allowed to depend
on the center-of-mass momentum Q of Cooper pairs. The
relative (four-)momentum of pairs is of the form k ≡ (ikν,k),
in which the zeroth component assumes discrete values kν =
(2ν + 1)πT , where ν ∈ Z and T is the temperature. Further
reductions are possible by virtue of the fact that the normal
propagators for the particles and holes are diagonal in the spin
space, the off-diagonal elements of the free matrix propagator
G −1

0 being zero. Writing out the nonvanishing components in
the Nambu-Gorkov space explicitly, we obtain

G −1
0 =

⎛
⎜⎜⎜⎝

ikν − ε+
↑ 0 0 0

0 ikν − ε+
↓ 0 0

0 0 ikν + ε−
↑ 0

0 0 0 ikν + ε−
↓

⎞
⎟⎟⎟⎠, (3)

where

ε±
↑/↓ = 1

2m∗

(
k ± Q

2

)2

− μ↑/↓. (4)

These single-particle energies can be separated into symmet-
rical and antisymmetrical parts with respect to time-reversal
operation by writing

ε±
↑ = ES − δμ ± EA, (5)
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ε±
↓ = ES + δμ ± EA, (6)

where

ES = Q2/4 + k2

2m∗ − μ̄, (7)

EA = k · Q
2m∗ , (8)

are respectively the spin-symmetrical and spin-
antisymmetrical parts of the quasiparticle spectrum and
δμ ≡ (μ↑ − μ↓)/2 determines the shifts of chemical
potentials of up-spin and down-spin neutrons from the mean
μ̄ ≡ (μ↑ + μ↓)/2. The effective mass m∗ is computed from
a Skyrme density functional, with SkIII [25] and SLy4
[26] parametrizations yielding nearly identical results. The
quasiparticle spectra in Eq. (3) are written in a general
reference frame moving with the center-of-mass momentum
Q relative to a laboratory frame at rest. The spectrum of
quasiparticles is seen to be twofold split owing to finite Q and
further split owing to spin polarization, which breaks the spin
SU(2) internal symmetry of neutron matter.

As already stressed in the Introduction, low-density neutron
matter interacts attractively in the 1S0 channel, leading to
isovector nn spin-singlet pairing. Accordingly, the anomalous
propagators have the property (F+

12,F
−
12) ∝ iσy , where σy is

the second Pauli matrix in spin space. This implies that in
the quasiparticle approximation, the self-energy � has only
off-diagonal elements in Nambu-Gorkov space. The inverse
full Green’s function on the left-hand side of Eq. (2) is then
given by

G −1 =G −1
0 − �

=

⎛
⎜⎜⎜⎝

ikν − ε+
↑ 0 0 i�

0 ikν − ε+
↓ −i� 0

0 i� ikν + ε−
↑ 0

−i� 0 0 ikν + ε−
↓

⎞
⎟⎟⎟⎠. (9)

Thus, the Dyson equation takes the form⎛
⎜⎜⎜⎝

ikν − ε+
↑ 0 0 i�

0 ikν − ε+
↓ −i� 0

0 i� ikν + ε−
↑ 0

−i� 0 0 ikν + ε−
↓

⎞
⎟⎟⎟⎠

⎛
⎜⎜⎜⎝

G+
↑ 0 0 F−

↑↓
0 G+

↓ F−
↓↑ 0

0 F+
↑↓ G−

↓ 0

F+
↓↑ 0 G−

↑ 0

⎞
⎟⎟⎟⎠ = diag(1,1,1,1), (10)

where we use shorthand G+
↑ ≡ G+

↑↑ and so on. The solutions
of this equation provide the normal and anomalous Green’s
functions

G±
↑/↓ = ikν ± ε∓

↓/↑
(ikν − E+

∓/±)(ikν + E−
±/∓)

, (11)

F±
↑↓ = −i�

(ikν − E+
± )(ikν + E−

∓ )
, (12)

F±
↓↑ = i�

(ikν − E+
∓ )(ikν + E−

± )
, (13)

where the four branches of the quasiparticle spectrum are given
by

Ea
r =

√
E2

S + �2 + rδμ + aEA, (14)

in which a,r ∈ {+,−}. In mean-field approximation, the
anomalous self-energy (pairing gap) is determined by

�(k, Q) = T

4

∫
d3k′

(2π )3

∑
ν

V (k,k′)

× Im[F+
↑↓(k′

ν,k
′, Q) + F−

↑↓(k′
ν,k

′, Q)

−F+
↓↑(k′

ν,k
′, Q) − F−

↓↑(k′
ν,k

′, Q)], (15)

where V (k,k′) is the neutron-neutron interaction potential.
After partial-wave expansion in the potential we keep the
1S0 component, compute the Matsubara sum and continue
analytically to the real axis; as a result we find the gap equation

�(Q) = 1

4

∑
a,r

∫
d3k′

(2π )3
V (k,k′)

× �(k′,Q)

2
√

E2
S(k′) + �2(k′,Q)

[
1 − 2f

(
Ea

r

)]
, (16)

where f (E) is the Fermi function. The densities of up-spin
and down-spin particles are given by

ρ↑/↓( Q) = T

∫
d3k

(2π )3

∑
ν

G+
↑/↓(kν,k, Q). (17)

Performing the same operations as for the gap function, we
obtain

ρ↑/↓(Q) =
∫

d3k

(2π )3

⎧⎨
⎩1

2

⎛
⎝1 + ES√

E2
S + �2

⎞
⎠f (E+

∓ )

+ 1

2

⎛
⎝1 − ES√

E2
S + �2

⎞
⎠[1 − f (E−

± )]

⎫⎬
⎭. (18)

At finite temperature T , the system minimizes its free
energy by choosing the optimal values of the magnitude Q
of the center-of-mass momentum and the gap in Eqs. (16) and
(18). As a reference free energy we use the same quantity
evaluated in the normal state with Q and � both zero, labeling
it with an N subscript as opposed to the S subscript used for
the superfluid state. Thus,

FS = ES − T SS versus FN = EN − T SN, (19)

where E denotes the internal energy (statistical average of the
system Hamiltonian) and S the entropy.

We measure the spin polarization by the parameter

α = ρ↑ − ρ↓
ρ↑ + ρ↓

, (20)

where ρ↑ and ρ↓ are, respectively, the number densities of
the up-spin and down-spin components of the neutron-matter
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system and ρ = ρ↑ + ρ↓ is its total particle (or baryon) density.
The possible solutions, or phases, of the variational problem
so defined can be classified according to the alternatives

Q = 0, � = 0, x = 0, BCS phase,

Q = 0, � = 0, x = 1, unpaired phase,

Q = 0, � = 0, x = 0, LOFF phase,

Q = 0, � = 0, 0 < x < 1, phase-separated phase.

(21)

The ground state corresponds to the phase with lowest free en-
ergy. Below we consider exclusively homogeneous, isotropic
solutions corresponding, respectively, to the first two lines in
Eq. (21); i.e., the anisotropic or inhomogeneous phases (the
LOFF phase and the phase-separated phase) is not considered.

III. BCS PHASE, SEARCH FOR LOFF PHASE,
AND CROSSOVER TO BEC

Based on calculations performed within the theoretical
framework summarized in Sec. II, we have generated the
temperature-density (T − ρ) phase diagram of dilute neutron
matter at various spin polarizations [Eq. (20)]. A number of
key quantities of the neutron condensate were studied at fixed
T and ρ corresponding to the different coupling strengths
which characterize the BCS versus quasi-BEC nature of the
condensate. Table I collects several quantities of interest at
fixed T = 0.25 MeV and vanishing spin polarization α, for
three values of the density ρ that span the regimes studied
numerically. The computations were carried out for the rank
3 separable Paris potential (PEST 3) in the 1S0 partial-wave
channel, with parameters given in Ref. [27].

Our findings concerning the BCS-BEC crossover are the
following. No change of sign of the chemical potential was
observed. The chemical potential μ̄ remains positive down
to the lowest density considered. Specifically, the lowest
value found for μ̄, 0.24 MeV, was obtained at the point
ln(ρ/ρ0) = −3.57 and T = 0.05, where � vanishes within
the numerical accuracy of our model. Our calculations indicate
that the chemical potential vanishes asymptotically as the
density tends to zero, without changing its sign. The absence
of clear evidence of a BEC of dineutrons is the consequence
of the fact that their mutual interaction in free space does
not support a bound state. In other words, the free-space
Schrödinger equation for neutrons does not have eigenvalues
that correspond to a dineutron bound state. Even so, it should
be acknowledged that we do find that the ratio of interneutron
distance d and the condensate coherence length ξa satisfies

-2.5 -2 -1.5 -1 -0.5
log10(ρ/ρ0)

0

0.5

1

1.5

T 
[M

eV
]

α=0.0
α=0.1
α=0.2
α=0.3

BCS

Unpaired

FIG. 1. Phase diagram of neutron matter in the temperature-
density plane for several spin polarizations α induced by magnetic
fields. The BCS phase is naturally favored over the unpaired phase
at lower temperatures and smaller polarizations. The red diamonds
locate different points in the phase diagram at which some intrinsic
features of low-density neutron matter have been evaluated.

the conditions d/ξa � 1 at high density (in the range under
consideration) and d/ξa � 1 at low densities, consistent with
the initial studies [3,4]. The values of interparticle spacing d
and coherence length ξa are shown for our model in Table I for
the case of low temperature (T = 0.25 MeV) and vanishing
spin polarization at three values of the density covering the
low-, intermediate-, and high-density regimes. It is seen
that d/ξa ∼ 1 at low densities, which is a clear sign of a
BEC precursor. We address the effects of polarization on the
BCS-quasi-BEC crossover in the following sections.

A. Phase diagram

The phase diagram was computed by solving Eqs. (16)
and (18) self-consistently for the input pairing interaction in
the 1S0 channel. After the solutions were found we evaluated
the free-energy (19) and found its minimum. The resulting
phase diagram of neutron matter is shown in Fig. 1. Broadly
speaking, we obtain the same structure as in the case of nuclear
matter (cf. Fig. 1 of Ref. [15]). At low densities the critical
temperature increases with increasing density, because the
increase in the density of states of neutrons compensates for
the decrease in the attractive interaction strength in the S-wave
channel with the increasing Fermi energy of the neutrons.

TABLE I. Tabulated values of characteristic parameters related to the 1S0 condensate in dilute, unpolarized neutron matter at temperature
T = 0.25 MeV for selected values of the total particle density ρ (in units of the nuclear saturation density). Other table entries: Fermi momentum
kF = (3π 2ρ)1/3, pairing gap �, effective mass (in units of bare mass), chemical potential μn, interparticle distance d , and coherence lengths
ξrms and ξa .

log10(ρ/ρ0) kF (fm−1) � (MeV) m∗/m μn (MeV) d (fm) ξrms (fm) ξa (fm)

−1.0 0.78 2.46 0.967 12.94 2.46 4.87 4.33
−1.5 0.53 1.91 0.989 5.65 3.61 3.55 3.71
−2.0 0.36 1.07 0.997 2.49 5.30 2.36 4.48
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This trend reverses at higher densities, and the pairing ceases
at the point where the interaction in the 1S0 channel becomes
repulsive. Spin polarization suppresses pairing more efficiently
in the high-density sector, where large portions of the phase
diagram are converted from the superfluid to the normal phase
already at moderate spin polarizations.

An interesting feature revealed in Fig. 1 is that the
transition line separating unpaired and BCS phases is not a
single-valued function of density in the range of densities
considered. This behavior is well understood. Consider, for
example, the dot-dash (light blue) transition line in the phase
diagram corresponding the fixed polarization α = 0.2. At low
temperatures and not too low density, pairing is precluded
because the reduced thermal smearing of the Fermi surfaces
of the major and minor spin components cannot provide
sufficient phase-space overlap of the corresponding Fermi
quasiparticle distributions. The system remains in the normal,
unpaired phase. Increasing the temperature at fixed density
and polarization asymmetry increases the smearing effect,
thereby enhancing the overlap enough to restore the BCS
phase. We anticipate that some form of the LOFF phase may
fill in the low-temperature “pocket” formed by the inward turn
of the phase separation boundary (cf. Fig. 1 of Ref. [15]).
Note, however, that the pairing interaction in neutron matter
is weaker than in nuclear matter; therefore, the stability of the
LOFF phase is not guaranteed.

B. Intrinsic properties of the neutron condensate

We now proceed to examine some intrinsic features of the
isospin-triplet 1S0 neutron condensate.

1. Pairing gap

In Figs. 2 and 3 we display the gap at fixed density
log10(ρ/ρ0) = −1.5. In Fig. 2 the gap is plotted as a function
of temperature for several polarization values. For zero
polarization, i.e., the case of the symmetrical BCS state, the
value of the gap is maximal owing to perfect overlap of

0 0.2 0.4 0.6 0.8 1
T [MeV]

0

0.5

1

1.5

2

Δ 
[M

eV
]

α=0.1

α=0.0

α=0.2

log10(ρ/ρ0)=−1.5

FIG. 2. Pairing gap as a function of temperature at constant
density index log10(ρ/ρ0) = −1.5 for three choices of polarization
parameter α.

0 0.05 0.1 0.15 0.2 0.25
α

0

0.5

1

1.5

2

Δ 
[M

eV
]

T=0.5 MeV

T=0.25 MeV

T=0.75 MeV

log10(ρ/ρ0)=−1.5

FIG. 3. Pairing gap as a function of polarization at constant den-
sity index log10(ρ/ρ0) = −1.5 for selected reference temperatures.

the Fermi surfaces of up-spin and down-spin particles. The
temperature dependence of the gap corresponds to the standard
BCS behavior. Increasing the spin asymmetry has two effects.
First, the gap is decreased owing to the separation of the Fermi
surfaces, and so is the critical temperature Tc. Second, the
maximum of the gap is shifted from T = 0 to nonvanishing
temperatures. For large-enough polarizations, this shift can
lead to the appearance of a lower critical temperature.
Figure 3 shows the gap as a function of the polarization
asymmetry parameter α over a range of temperatures. For
α = 0, increasing the temperature decreases the gap, as it
should, according to BCS theory. The crossing of constant-
temperature curves at finite α reflects the fact that raising
the temperature from a relatively low value favors pairing
in asymmetrical systems, by virtue of the increased overlap
between the Fermi surfaces of the opposite-spin components.
Of course, at high-enough temperatures this effect must
give way instead to the destruction of the superconducting
state. These competing effects are reflected in the Fig. 3. At
high-enough polarizations, the increase of temperature from
T = 0.25 MeV to T = 0.5 MeV increases the gap, whereas the
increase of temperature from T = 0.5 MeV to T = 0.75 MeV
acts to reduce the gap. Note that allowing for the LOFF phase
will modify the low-temperature behavior seen in Figs. 2
and 3 in a well-known manner [15,16,28].

2. Kernel of the gap equation

In Figs. 4–7 we present the kernel of the gap equation for
various values of density, temperature, and polarization in the
BCS phase. The kernel of the gap equation is defined as

K(k) = 1

4

∑
a,r

1 − 2f
(
Ea

r

)
√

E2
S(k) + �2(k)

. (22)

Figures 4–6 show the kernel at T = 0.25 MeV for several
values of the polarization, the density being fixed for each
figure. As expected in the case of α = 0 we find a single
peak centered at the Fermi level. This peak separates into
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log10(ρ/ρ0)=−1. T=0.25 MeV

FIG. 4. Dependence of the kernel K(k) on momentum (in units
of Fermi momentum) for fixed log10(ρ/ρ0) = −1, T = 0.25 MeV,
and polarization values color coded in the inset.
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FIG. 5. Same as Fig. 4, but for log10(ρ/ρ0) = −1.5 and three
polarization values color coded in the inset.
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FIG. 6. Same as Fig. 4, but for log10(ρ/ρ0) = −2 and more
polarization values.
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FIG. 7. Dependence of the kernel K(k) on momentum (in units
of Fermi momentum) for fixed log10(ρ/ρ0) = −1, α = 0.2, and
temperature values color coded in the inset.

two for nonvanishing polarizations, simply reflecting the fact
that there are now the two Fermi surfaces for up-spin and
down-spin particles. In these figures one also observes that
at high densities the peak of the kernel is located exactly
at k = kF , whereas for low densities the peak is shifted
to momenta below the corresponding kF . Additionally, at
lower densities the polarization-induced two-peak structure
is smeared; this is naturally attributed to the weakening of
the degeneracy of the system. The kernel evaluated at constant
density and polarization is exhibited in Fig. 7 for three different
temperatures. One clearly recognizes a thermal smearing of the
polarization-induced two-peak structure, which evolves into a
one-peak structure at high temperatures.

3. Cooper-pair wave function

Next we discuss the Cooper-pair wave function �(r) and
the quantity r2|�(r)|2, which determines the second moment
of the density distribution of Cooper pairs. With the wave
function at our disposal, we also have numerical access to
the correlation length ξrms of the condensate, which can then
be compared with the analytical BCS expression for the
coherence length ξa and with the interparticle distance d. The
wave function is obtained by the Fourier transformation as

�(r) =
√

N

2π2r

∫ ∞

0
dpp[K(p,�) − K(p,0)] sin(pr), (23)

with normalization satisfying

1 = N

∫
d3r|�(r)|2. (24)

The root-mean-square (rms) value for the coherence length is
given by

ξrms =
√

〈r2〉, (25)

where

〈r2〉 ≡
∫

d3rr2|�(r)|2. (26)
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FIG. 8. Plots of �(r) versus r at fixed temperature T = 0.25 MeV
for three reference densities log10(ρ/ρ0) = −1 (a), log10(ρ/ρ0) =
−1.5 (b), and log10(ρ/ρ0) = −2 (c) and polarization values α = 0
(solid line), 0.1 (dashed line), 0.2 (dash-dotted), and 0.3 (dashed-
double-dotted).

The analytical BCS result for the coherence length is given by

ξa = �
2kF

πm∗�
, (27)

where now � is the pairing gap in the 1S0 channel and m∗ is the
effective mass of neutrons. Finally, the interparticle distance
is simply related to the total particle density of the system by

d =
(

3

4πρ

)1/3

. (28)

Table I displays the quantities defined above at vanishing
polarization and fixed temperature T = 0.25 MeV. For each
of three representative densities, corresponding values are
entered for kF ,�,m∗/m,μn,d,ξrms, and ξa . At high density
it is seen that ξrms � ξa; i.e., the BCS analytical expression is
a good approximation to the numerically computed coherence
length. This is not the case at low densities, where one can only
rely on the numerical value ξrms produced by our theoretical
treatment. At any rate, comparison of the numerically gener-
ated coherence length with the interparticle distance shows a
clear signature of a BCS-BEC crossover: For log10(ρ/ρ0) =
−1 we find ξrms/d � 2, whereas for log10(ρ/ρ0) = −2 the
pertinent ratio is ξrms/d � 0.45. Below we trace, in other
variables, further signatures of a BCS-BEC crossover in
spin-polarized neutron matter.

In Fig. 8 the Cooper-pair wave function �(r) is plotted
against radial distance at fixed temperature T = 0.25 MeV
and various polarization values for the three fiducial densities
adopted in Table I. In all cases we find strongly oscillating
wave functions. For nonvanishing polarization, the wave
function experiences a sign change; the oscillations are then
in counterphase to the unpolarized case. With increasing
polarization, the amplitude of �(r) decreases in accord with
the consequent reduction of the pairing gap. Furthermore, as
the oscillation periods are given roughly by 2π/kF , a decrease
of density and hence of Fermi momentum leads to an increase

0
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2×10-4

0

5×10-5

1×10-4

r2 |Ψ
(r

)|2

0 10 20 30 40 50
r [fm]

0
2×10-5

4×10-5

6×10-5

T=0.25 MeV (a)

(b)

(c)

FIG. 9. Same as Fig. 8, except r2|�(r)|2 is plotted versus r .

of oscillation period. The degree of polarization does not
affect the period, which is determined by kF values. Figure 9
shows r2|�(r)|2 as a function of radial distance, the oscillatory
behavior observed in Fig. 8 being reflected quite naturally in
this quantity. However, two features are made more apparent in
Fig. 9. At the lowest density considered, (i) the maxima of this
wave function measure plotted for different polarizations are
shifted with respect to each other and (ii) the overall maximum
attained for each polarization is not situated at the same value
of r (although this does become the case at higher densities).

4. Quasiparticle occupation numbers

In this section, we analyze the behavior of the occupation
numbers of up-spin and down-spin neutrons in spin-polarized
pure neutron matter. The occupation numbers are given by the
integrand of Eq. (18). Explicitly,

n↑/↓(k) = 1

2

⎛
⎝1 + ES√

E2
S + �2

⎞
⎠f (E∓)

+ 1

2

⎛
⎝1 − ES√

E2
S + �2

⎞
⎠[1 − f (E±)], (29)

with Ea
r → Er for BCS pairing with Q = 0, i.e., EA = 0 in

Eq. (8). It may be noted in passing that the functions n↑/↓(k)
have maximum value 1, rather than the value 2 appropriate to
nuclear matter (which reflects a summation over spin).

Figures 10–12 display the occupation numbers of up-spin
and down-spin neutrons at fixed temperature T = 0.25 MeV
and fixed densities log10(ρ/ρ0) = −1, − 1.5, and −2 respec-
tively. The chosen polarization values are indicated in each
figure. We observe that in the case of vanishing polarization
(solid lines), the Fermi-step-like occupation present in the
high-density limit has evolved into an increasingly flatter
distribution at low densities, the Fermi surface growing ever
more diffuse with decreasing density. At finite polarizations,
the occupation numbers (or occupation probabilities) of up-
spin and down-spin neutrons “split,” or separate from one
another, into distinct curves in the region around kF . In fact,
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log10(ρ/ρ0)=−1. T=0.25 MeV

FIG. 10. Dependence of the up-spin and down-spin neutron
occupation numbers on momentum k (in units of Fermi momentum)
for fixed log10(ρ/ρ0) = −1, T = 0.25 MeV, and polarization values
color coded in the inset.

the locations of the drop-offs in the occupancies of these two
spin populations agree well with their corresponding Fermi
wave numbers. At high densities, the polarization-induced
splitting results in a “breach” for large asymmetries with
nn↑ ≈ 1 and nn↓ ≈ 0 around kF . (The notion of breach and
“breached pairing” in the same context was introduced for
ultracold atoms in Ref. [29]). The breach remains intact at
lower densities, but the slope of the corresponding occupation
probabilities declines, as already remarked for the case of
unpolarized matter.

In Fig. 13 we show the occupation numbers of up-spin
and down-spin neutrons at fixed density log10(ρ/ρ0) = −1.5
and fixed polarization α = 0.2 for different temperatures. As
clearly seen, the occupation probabilities are subjected to
greater smearing with increasing temperature.

0.6 0.8 1 1.2 1.4
k/kF

0

0.2

0.4

0.6

0.8

1

n

α=0.0
α=0.1
α=0.2

log10(ρ/ρ0)=−1.5. T=0.25 MeV

FIG. 11. Same as Fig. 10, but for log10(ρ/ρ0) = −1.5 and an
additional polarization value.
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0.8

1
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α=0.0
α=0.1
α=0.2
α=0.3

log10(ρ/ρ0)=−2. T=0.25 MeV

FIG. 12. Same as Fig. 11, but for log10(ρ/ρ0) = −2 and an
additional polarization value.

5. Quasiparticle spectra

Turning to the final intrinsic property of interest, we
examine the dispersion relations for quasiparticle excitations
about the 1S0 pairing condensate. Because a LOFF phase does
not enter the picture here, the quasiparticle branches E−

± and
E+

± coincide and the superscript may be dropped, leaving just
two branches,

E±(k) =
√(

k2

2m∗ − μ̄

)2

+ �2 ± δμ. (30)

These dispersion relations are plotted in Fig. 14 for vari-
ous values of density and polarization at fixed temperature
T = 0.25 MeV. In each case the spectrum has a minimum at
kF . At finite polarization there is a splitting of the spectra
of up-spin and down-spin neutrons. A special feature that

0.6 0.8 1 1.2 1.4
k/kF

0

0.2

0.4

0.6

0.8

1

n

T=0.25 MeV
T=0.50 MeV
T=0.75 MeV

log10(ρ/ρ0)=−1.5. α=0.2

FIG. 13. Dependence of the up-spin and down-spin neutron
occupation numbers on momentum k (in units of Fermi momentum)
for fixed log10(ρ/ρ0) = −1.5, α = 0.2, and temperatures color coded
in the inset.
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FIG. 14. Dispersion relations for quasiparticle spectra in the BCS
condensate, as functions of momentum (in units of Fermi momentum)
for three densities log10(ρ/ρ0) = −1 (a), log10(ρ/ρ0) = −1.5 (b), and
log10(ρ/ρ0) = −2 (c). The polarization values are α = 0 (solid line),
0.1 (dashed line), 0.2 (dash-dotted), 0.3 (dashed-double-dotted). For
each polarization, the upper branch corresponds to the E+ solution,
the lower branch to the E− solution.

deserves notice is that at low densities the spectrum of the
minority component (e.g., the down-spin neutrons) crosses
zero, which implies that its spectrum is gapless.

IV. CRITICAL UNPAIRING IN NEUTRON MATTER

It is elementary that spin polarization in pure neutron matter
can be induced by a magnetic field. A given polarization
corresponds to shifts—having equal magnitude |δμ|—of the
chemical potentials μ↑ and μ↓ of the up-spin and down-spin
components relative to their common chemical potential at
zero polarization. The required field magnitude is then given
by

|δμ| = |μ̃N |B, (31)

where

μ̃N = gn

mn

m∗
n

μN (32)

is the spin magnetic moment of the neutron, with gn = −1.91
its g factor and m∗ its effective mass, μN = e�/2mc being
the nuclear magneton (in cgs units). Thus, the magnetic field
involved is linearly related to the shift of chemical potentials
for a specified spin polarization.

In Fig. 15 we display results for the requisite magnetic
field as a function of density at constant polarization and
temperature. In the main, this figure tells us that a larger
magnetic field is needed to obtain a given spin polarization
as the density increases. In other words, dense neutron matter
is harder to polarize than low-density neutron matter. However,
this trend reverses at and above approximately one-tenth the
saturation density ρ0. The underlying physical content of
this observation is difficult to access because the chemical
potential shift is nontrivially related to both the polarization

0

1×1017

2×1017

3×1017

B
 [G

]

T=0.25 MeV
T=0.50 MeV
T=0.75 MeV

-2.5 -2 -1.5 -1
log10(ρ/ρ0)

0

1×1017

2×1017

B
 [G

]

α=0.1

α=0.2(b)

(a)

FIG. 15. Magnetic field required to create a specified spin
polarization as a function of the density for two polarization values
α = 0.1 (a) and 0.2 (b) and temperatures T = 0.25 (solid line), 0.5
(dashed line), and 0.75 (dash-dotted line).

(the density asymmetry of up-spin and down-spin components)
and the pairing gap. It is further seen from Fig. 15 that
higher-temperature neutron matter is more easily polarizable
at low densities, but this trend may again reverse at higher
densities. Figure 16 provides an alternative view of the same
information, now with the temperature fixed in each panel and
lines of fixed polarization color coded. From this view we
infer that a larger magnetic field is needed to achieve a larger
polarization in low-density neutron matter. However, this trend
may again reverse at higher densities.

It is conceptually interesting to examine the ratio of the
magnetic energy (associated with the neutron spin’s interaction

0
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2×1017

3×1017

B
 [G

]

α=0.1
α=0.2
α=0.3

-2.5 -2 -1.5 -1
log10(ρ/ρ0)

0

1×1017

2×1017

B
 [G

]

(a)    T=0.25 MeV

(b)     T=0.50 MeV

FIG. 16. Same as Fig. 15 for two temperatures T = 0.25 MeV
(a) and 0.5 MeV (b) and for several polarizations α = 0 (solid line),
0.2 (dashed line), 0.3 (dash-dotted line).
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FIG. 17. Ratio of magnetic energy to temperature as a function
of density for two polarization values α = 0.1 (a) and 0.2 (b) and
temperatures T = 0.25 (solid line), 0.5 (dashed line), and 0.75 (dash-
dotted line).

with the magnetic field) to the temperature, i.e., the ratio

εB

T
� |μ̃N |B

T
. (33)

For degenerate neutrons the transport and radiation processes
involve neutrons located in the narrow strip of width ∼T
around the Fermi surface; the magnetic field influences these
processes when this ratio becomes of the order unity. It is
shown in Figs. 17 and 18, where the arrangement of the panels
and the color coding are analogous to those of Figs. 15 and 16,
respectively. It is seen that εB/T � 1 over almost the complete
range of the parameter space, with exceptions only at very low
densities. This implies that the dynamical processes in neutron
fluid will be strongly affected by the field if the blocking effect
of the pairing gap can be surmounted, e.g., when �(T ,α) � T .

Finally, we consider the critical magnetic field that com-
pletely destroys the 1S0 Cooper pairs in neutron matter by
aligning the neutron spins in each pair. As a function of density,
this field, shown in Fig. 19, has a shape that naturally reflects
the corresponding density dependence of the pairing field.
Accordingly, it is largest at T → 0 and decreases as the pairing
gap decreases with increasing temperature.

The strengths of the B fields in the crust and outer-core
regions of magnetars are unknown, although it is anticipated
that their interior fields could be much larger than the surface
fields B ∼ 1015 G inferred from observations. A number of
magnetar models entertain the possibility that strong toroidal
B fields are confined to the crust of the magnetar. If large
enough (B > Bcr), the magnetic field will locally eliminate
neutron superfluidity. In particular, according to Fig. 19, the
neutron fluid in magnetars will be nonsuperfluid (i.e., in a
normal phase) for B > 3 × 1017 G. The nonsuperfluidity or
partial superfluidity of magnetars will clearly have profound
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ε B
/T
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log10(ρ/ρ0)

0

1
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3

ε B
/T

(a)     T=0.25 MeV

(b)     T=0.50 MeV

FIG. 18. Ratio of magnetic energy to temperature as a function
of density for two temperatures T = 0.25 MeV (a) and 0.5 MeV
(b) and for several polarizations α = 0 (solid line), 0.2 (dashed line),
0.3 (dash-dotted line).

implications for their neutrino emissivities, transport proper-
ties, and thermal evolution, as well such dynamical aspects
as the damping of stellar oscillations and the interpretation
of rotational anomalies such as glitches and antiglitches.
Note that the proton superconductivity in magnetar cores
will be destroyed by Landau diamagnetic currents for fields
even lower than those needed for the destruction of neutron
S-wave superfluidity [19,20]. Of course, the Pauli paramag-
netic destruction mechanism discussed here for S-wave paired
neutrons will apply to S-wave paired protons as well, but the
diamagnetic mechanism is more important for protons.
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FIG. 19. Unpairing magnetic field as a function of density (in
units of ρ0) for T = 0.05 (solid line) and T = 0.5 MeV (dashed line).
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V. CONCLUSIONS

We have studied the phase diagram of dilute, spin-polarized
neutron matter with a BCS-type order parameter. Because two
neutrons are unable to form a bound pair in free space, there
exists no a priori case for the BEC of neutron-neutron pairs.
However, the application of Nozières-Schmitt-Rink theory [2]
led us to establishing a number of signatures in neutron matter
that can be interpreted as a precursor of BCS-BEC crossover;
in the limit of zero polarization these findings are in agreement
with earlier studies of this phenomenon [3–7]. Our conclusion
can be summarized as follows.

(i) At low density, spin polarization does not affect the
pairing substantially, but for higher densities and
high polarizations, the pairing gap and hence the
critical temperature Tc are significantly suppressed.
At finite polarization and low temperatures, we find
a lower critical temperature that emerges from the
combined effects of a polarization-induced separa-
tion and temperature-induced smearing of the Fermi
surfaces involved. This feature tentatively indicates
the possibility of the LOFF phase filling the low-
temperature and high-density region of the phase
diagram.

(ii) We have analyzed some intrinsic features of the spin-
polarized neutron condensate, specifically the gap,
the kernel of the gap equation, the pair-condensate
wave function, and the quasiparticle occupation
numbers and energy spectra. Similarities to behav-
iors found in a corresponding study of low-density
isospin-asymmetric nuclear matter [15,16] have been
highlighted, along with their differences. We focus
below on the principal findings of this analysis.

(iii) Under significant polarization, the kernel of the gap
equation acquires a double-peak structure in momen-
tum space, in contrast to the single peak present in
the unpolarized case at the Fermi momentum kF .
This feature is most pronounced in the high-density
and low-temperature limits. Decreasing the density
(or increasing the temperature) smears out these
structures.

(iv) The Cooper-pair wave functions exhibit oscillatory
behavior. At finite polarization the oscillations are in
counterphase to those of the unpolarized case. The
period of the oscillations is set by the wave vector as
2π/kF and is not affected by the polarization.

(v) The quasiparticle occupation numbers show a sepa-
ration of the majority and minority-spin populations
by a breach around the Fermi momentum kF . This
is most pronounced in the high-density and low-
temperature limit, with the minority-spin component
becoming almost extinct. For high temperatures or
low densities, this breach is smeared out.

(vi) Study of the quasiparticle dispersion relations estab-
lishes that they have a standard BCS form in the
unpolarized case and split into two branches at finite
polarization, while retaining the general BCS shape.
These spectra have minima at k = kF , as required.

At large polarizations the energy spectrum of the
minority-spin particles crosses the zero-energy level,
which is a signature of gapless superconductivity.
In other words, the Fermi surface of the minority
particles features locations where modes can be
excited without any energy cost.

(vii) At low densities, a relatively low magnetic field is
sufficient to generate a given polarization. In general,
the magnetic field required to produce a certain
polarization increases with decreasing temperature
and with increasing polarization.

(viii) Finally, we have determined the critical field for
unpairing of the neutron condensate, which turns
out to be in the range B ∼ 1017 G. For larger fields
the neutron fluid is nonsuperfluid, which would have
profound consequences for the thermal, rotational,
and oscillatory behavior of magnetars.

Looking ahead, it should be mentioned that the present
discussion does not take into account modifications of the
pairing interaction in the medium, i.e., screening of the nuclear
interaction. In the case of unpolarized neutron matter, screen-
ing effects have been discussed extensively; see Ref. [17]
and references cited therein, and especially Refs. [4,12] in
the context of the BCS-BEC crossover. It is expected that
pairing correlations are suppressed by the spin-fluctuation
part of the screening interaction; hence, the magnitude of
the pairing gap and the range of densities over which pairing
correlations extend will be reduced compared to what we find
in the present study. This is strictly true if the spin-polarization
does not change the sign of the screening interaction between
neutrons. We anticipate that the changes will be of quantitative
nature, without affecting the topology and the shape of the
phase diagram of Fig. 1. Accordingly, the main implication
of the suppression of pairing by screening for the results we
report is that the critical unpairing magnetic field obtained
is an upper bound. A more complete application of our
microscopic analysis to neutron star crusts would require the
inclusion of nuclear clusters, as well as modifications of their
properties induced by strong B fields [30]. At those densities
where, apart from leading S-wave interaction, a subdominant
P -wave interaction exists, the suppression of the S-wave
pairing may give rise to P -wave superfluid, rather than normal
spin-polarized fluid.

Another relevant aspect of the many-body theory of this
problem is that neutron matter is close to the unitary limit
because of the large nn scattering length. Universal relations
can be obtained in this limit, in particular for critical fields,
with naive applications to neutron matter leading to estimates
[31] consistent with those derived here.
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