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Precisely measured electron-proton elastic scattering cross sections [Phys. Rev. Lett. 105, 242001 (2010)] are
reanalyzed to evaluate their strength for determining the rms charge radius (RE) of the proton. More than half
of the cross sections at lowest Q2 are fit using two single-parameter form-factor models, with the first based
on a dipole parametrization, and the second on a linear fit to a conformal-mapping variable. These low-Q2 fits
extrapolate the slope of the form factor to Q2 = 0 and determine RE values of approximately 0.84 and 0.89 fm,
respectively. Fits spanning all Q2, in which the single constants are replaced with cubic splines at larger Q2, lead
to similar results for RE. We conclude that the scattering data are consistent with RE ranging from at least 0.84
to 0.89 fm, and therefore is consistent with both of the discrepant determinations of RE made using muonic and
electronic hydrogen-atom spectroscopy.
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I. INTRODUCTION

Recent measurements of the n = 2 energy intervals of
muonic hydrogen, when compared to precise QED theory
for this exotic atom, lead to a determination [1,2] of the rms
charge radius of the proton (RE) of 0.84087(39) fm. This value
disagrees by 4.5 standard deviations with a value of 0.8758(77)
fm obtained from a similar comparison [3] between QED
theory and several precision measurements in the ordinary
hydrogen atom. A third determination of RE can be obtained
from precise measurements of the the cross sections for
elastic scattering between electrons and protons. The most
precise e-p scattering experiment is the recent measurement [4]
of the MAMI collaboration, and their analysis [5] leads to
RE = 0.879(8) fm, which disagrees with the muonic hydrogen
value by 4.6 standard deviations.

CODATA [3] uses a combination of the scattering and
hydrogen values to obtain RE, and its value differs from the
muonic hydrogen value by 7 standard deviations. This dis-
agreement has now widely been referred to as the proton size
puzzle [6]. Many papers have discussed this puzzle, including
many that have proposed physics beyond the standard model.1

Because of the importance of e-p scattering data to
this puzzle, the data have been extensively scrutinized and
discussed [5,7–19]. The present work reanalyzes the scattering
data and concludes that they are consistent with a much
larger range of RE values than obtained by others. This
range makes the data consistent with both the hydrogen and
muonic hydrogen determinations of RE, therefore removing
one component of the proton radius puzzle.

Our analysis shows that RE can be determined from the
low-Q2 portion of the MAMI data and that it can be fit using
simple one-parameter form-factor models. Our determinations
of RE are not strongly affected by two-photon exchange effects.
Two different simple models both fit well to the low-Q2 data,
but the two give discrepant values for RE. Since neither model
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1See reviews of these discussions in Refs. [16] and [11].

can be ruled out, the uncertainty in RE must, at minimum, be
expanded to encompass both values. Generalizations of both
models fit well to the entire MAMI data set, and give similarly
discrepant values for RE.

II. DETERMINATION OF RE FROM LOW- Q2 DATA

The differential cross section for elastic scattering of an e−
of energy E scattering by an angle θ from a stationary proton,
(after taking into account radiative corrections and two-photon
exchange) can be written [20] in terms of the squares of the
electric and magnetic form factors [GE(Q2) and GM(Q2)]:

σred = (1 + τ )
dσ

d�

/
dσMott

d�
= G2

E + τG2
M

ε
, (1)

where dσMott/d� is the Mott differential cross section,
ε = (1 + 2(1 + τ ) tan2 θ

2 )−1, τ = −t/(4m2
p), and t = −Q2 =

(pi − pf)2, with pi and pf being the initial and final e−
four-momenta. Here, mp is the proton mass, and we use units
with � = c = 1.

In principle, the quantity of interest for this work,
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could be determined using Eq. (1) from sufficiently-precise
measurements of dσ/d� for small Q2. In practice, for the
existing set of measurements, an extrapolation to Q2 = 0 is
required, and, for this extrapolation, a functional form for G2

E
and G2

M of Eq. (1) must be assumed.
The dipole form of the form factor has been used for many

decades2 and it approximates GE and GM/μp (where μp is the
magnetic moment of the proton in units of nuclear magnetons)
as

G2
E =
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)−4

,
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μ2
p

=
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1 + Q2

bM

)−4

. (3)

2See, for example, Ref. [21].
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FIG. 1. Fits to the low-Q2 data of Ref. [4] using single-parameter models for the form factors in Eq. (1). In (a), the dipole model of Eq. (3)
is used, and in (b) the linear model of Eq. (5) is used. Separate plots are required since the fits return different normalization constants, and
therefore the cross sections take on slightly (∼1%) different values for the two plots. The E = 180 MeV data and fits are continued in the
insets, and the other energies are offset for clarity of presentation.

A second approximation for the form factors is to use a Taylor
expansion in t about t = 0. This Taylor expansion has a limited
radius of convergence due to a negative-Q2 pole at t = 4m2

π

(where mπ is the mass of the charged pion), which results
from the two-pion production threshold. A conformal mapping
variable [22]

z =
√

tc − t − √
tc√

tc − t + √
tc

, (4)

with tc = 4m2
π leads to a much larger radius of convergence.

Thus,

G2
E = 1 − cEz and G2

M/μ2
p = 1 − cMz (5)

are good approximations to the form factors at low Q2.
Other functional forms for GE and GM have been used to

extrapolate to Q2 = 0 to determine RE. These other forms
include polynomials in t [4,5], polynomials in z [14,15,17],
inverse polynomials in t [4,5], dipole functions [Eq. (3)] times
polynomials in t [5], dipole functions plus polynomials in t [5],
cubic splines in t [4,5], dipole functions times cubic splines in
t [5], continued fractions in t [9], and the Friedrich-Walcher
parametrization (two dipole functions plus two symmetric
gaussian features) [5]. In this work, we restrict ourselves to
the forms of Eqs. (3) and (5) for low-Q2 data, and extensions
of these forms for higher-Q2 data.

The highest-accuracy e-p scattering experiment [4] by
the MAMI collaboration yields 1422 cross sections (with
typical relative uncertainties of 0.35%) spanning a range of
180 MeV � E � 855 MeV and 16◦ � θ � 135.5◦, corre-
sponding to 0.0038 GeV2 < Q2 < 1 GeV2 and 0.06 < ε < 1.
The 1422 cross sections are divided into 34 data groups, with
each data group having a separate normalization constant.
These normalization constants are known to an absolute

accuracy of a few percent, and are related to one another in
such a way that there are only 31 independent constants [4,5].

The normalization constants add a further complication to
the Q2 = 0 extrapolation needed to determine RE. The few-
percent absolute accuracy of the measured cross sections is not
sufficient for performing a precise extrapolation, and thus the
31 normalization constants need to be floated when performing
least-squares fits of the entire data set for this extrapolation.
We include these normalization constants in all of our fits.
Floating these constants adds considerable flexibility to the
extrapolations. Although we do not impose the few-percent
absolute uncertainty of the normalization constants in our fits,
all of our fits return constants near unity and well within this
few-percent uncertainty.

Other least-squares fits [4,5,9,14,15,17] of this data use
seven- to 12-parameter models for GE and for GM, and obtain
least-squares fits with reduced χ2 values of as low as 1.14 for
fitting the 1422 data points. The 1.14 value is much too large
for the number of degrees of freedom in the fit, but can easily be
explained by either a 7% underestimation of the uncertainties,
or a systematic effect that is not fully accounted for. We only
include fits that have a reduced χ2 < 1.14 in this work.

As indicated by Eq. (2), the rms charge radius of the
proton is a small-Q2 concept. Thus, if possible, it should be
determined from low-Q2 data. Therefore, we attempt to make
a determination of RE using fits to only the lower-Q2 data. In
addition to the fact that such fits use data nearer to Q2 = 0, the
fits have the advantages that simpler, fewer-parameter models
can be used for G2

E and G2
M, and that, since fewer of the data

groups are used, fewer normalization constants need to be
included in the fits.

Fits using single-parameter models for the form factors are
shown in Fig. 1. These fits include data with Q2 � Q2

max =
0.1 GeV2, from 19 data groups, which require 17 normalization
constants. A data group is only included if there are more
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FIG. 2. The range of RE predicted from the dipole fits (lower
bands) and conformal-mapping fits (upper bands) as a function of
the cutoff value Q2

max. The red bands correspond to single-parameter
dipole and linear fits of Eqs. (3) and (5), and the other colors show
extensions to these fits for which the single parameters are replaced
with cubic splines (with the number of nodes, Nkn, as indicated) at
larger Q2. All fits shown have a reduced χ 2 < 1.14.

than ten data points in the group, and a total of 761 of
the 1422 cross sections (53%) are used. The value of RE is
directly obtainable from the slope of the curves in Fig. 1 at
Q2 = 0, and the fits provide the necessary extrapolation to
Q2 = 0.

Figure 1(a) shows a fit using Eq. (1) and the one-parameter
dipole form factors of Eq. (3). The reduced χ2 for the fit is
1.11, and the fit returns RE = (12/bE)1/2 = 0.842(2) fm and
RM = (12/bM )1/2 = 0.800(2) fm.

A second fit to the same data uses the one-parameter linear
model (in z) of Eq. (5). This fit is shown in Fig. 1(b). It also has a
reduced χ2 of 1.11 and gives RE = ( 3

4cE/tc)1/2 = 0.888(1) fm
and RM = ( 3

4cM/tc)1/2 = 0.874(2) fm.
Figure 2 shows [red bands labeled Eqs. (3) and (5) at the left

of the figure] the error bands for RE for the dipole and linear
fits versus the cutoff Q2

max. The figure includes the range of
Q2

max for which a reduced χ2 < 1.14 is obtained.
The electric form factors predicted from the two fits of Fig. 1

are shown in Fig. 3. Also plotted in the figure are other low-Q2

measurements of these form factors (often referred to as the
world data, as summarized in Ref. [23]). It is clear from this
figure (and from the calculated χ2 for the comparison between
the data and the two curves) that the form factor from either
fit is also consistent with these other measurements.

III. EXTENSION OF FITS TO LARGER Q2

One concern that could be raised about the single-parameter
fits, which are based only on data with Q2 < Q2

max, is that they
may lead to inconsistencies for data with Q2 > Q2

max. Since
the low-Q2 fits of Fig. 1 determine 17 of the 31 normalization
constants, and since data groups using these normalization
constants include measured cross sections with Q2 > Q2

max,
the fits have a direct impact on data not included when fitting.
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FIG. 3. Electric form factor GE determined from the single-
parameter fits of Fig 1. The blue curve is from the dipole-model
fit, and the red curve is from the linear-model fit. Also shown on the
plots are the low-Q2 GE data from other experiments (from [23]),
and these data are consistent with the GE obtained from either fit.

It could, therefore, be possible that data at the same value
of Q2 > Q2

max from two of these data groups could be made
inconsistent when these normalization constants are used.

To ensure that such inconsistencies do not take place,
we extend the fits of the previous section to include all of
the MAMI data. Such an extension also allows for a direct
comparison of the quality of our fits to the quality of the fits
performed by others [5,9,14,15,17] who also include all of the
MAMI data. The extended fits include a range of Q2 in which
the functional form of G2

E and G2
M becomes more complicated,

and, as with the fits performed by others, more parameters are
necessary to obtain a good fit.

The fit using Eq. (3) can be generalized by allowing the
constants bE and bM to become functions of z. We do this by
using cubic splines, with the b values each being a constant for
z < z0 = 0.1, and with Nkn equally spaced knots between z0

and zmax. The values of b, and their first and second derivatives
are continuous at z0 and at the other knots. The number of knots
needed to achieve a good fit increases with increasing zmax.

The results of such fits with Nkn = 1 to 10 (2 to 11
parameters per form factor) are given in Fig. 2. Again, only
fits with a reduced χ2 < 1.14 are shown. The fits return values
of RE of approximately 0.84 fm for all values of Q2

max, similar
to the single-parameter dipole fit. The fits at the right of the
plot include all of the MAMI data, and still return a value near
0.84 fm.

Equation (5) would predict negative values for G2
E and

G2
M at larger z. This problem can be avoided by using a

denominator to cause a cutoff at higher z values:

G2
E = 1 − cEz

1 − (cEz)P
and

G2
M

μ2
p

= 1 − cMz

1 − (cMz)P
. (6)

We use P = 4 for our fits, but any P from 4 to 14 gives similar
results. This function is very nearly linear up to z = 0.2, while
avoiding negative values at larger z. A fit of the data to these
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FIG. 4. The sensitivity of the fit results of Fig. 2 to two-photon
exchange corrections is illustrated by redoing the analysis with poorer
approximations for these corrections. The change in RE when the
Feshbach corrections (solid curves) and a low-Q2 approximation [35]
(dashed curves) are applied shows that the radius extracted from both
the dipole model (a) and conformal-mapping model (b) is not very
sensitive to these corrections.

form factors is performed by allowing cE and cM to become
functions of z by using the same form of cubic splines as are
used for bE and bM.

The results of such fits with Nkn = 1 to 10 are also given in
Fig. 2. The fits return values of RE of approximately 0.89 fm,
similar to the single-parameter linear fit.

Figure 2 clearly indicates that the two types of fits produce
values of RE that disagree with each other. Since either type
of fit gives an extrapolation to zero Q2 that is equally valid,
and since the quality of the fits are similar, either value of RE

is possible. Therefore, at best, the determined value of RE can
range from 0.84 to 0.89 fm. At worst, other valid extrapolations
could lead to even a wider range of possible values, leading to
an even larger range for RE.

It is not the aim of this work to determine the rms
magnetic radius of the proton, RM, but we note that the
values from our fits range from about 0.80 to 0.90 fm,
and therefore this work cannot determine RM to any better
than this range. The consistency of the fits presented in this
work can be checked by comparing the quantity R2

E + R2
M to

the prediction from hydrogenic spectroscopy. The hydrogen
hyperfine interval determines R2

E + R2
M to be 1.35(12) fm2, and

the muonic hydrogen hyperfine interval determines R2
E + R2

M
to be 1.49(18) fm2 [24]. The two determinations are consistent,
and their weighted average gives R2

E + R2
M = 1.39(10) fm2.

The dipole fit of Fig. 1(a) gives R2
E + R2

M = 1.349(4), whereas
the linear fit of Fig. 1(b) gives 1.553(4). The dipole fit is
in excellent agreement with the spectroscopy result, and the
linear fit shows only a mild 1.6 standard deviation discrepancy.
Similar comparisons using the extended cubic-spline fits lead
to a similar level of agreement.

IV. TWO-PHOTON EXCHANGE

The extent to which two-photon exchange (TPE) affects
the extraction of RE from the MAMI data has been debated in
the literature [5,7,8,11,17,25–31]. The cross sections given in
Ref. [5] were corrected by the Coulomb corrections (Feshbach
corrections [32]) in place of the full TPE corrections. In

TABLE I. Comparison to other work.

Ref. model RE (fm)

this work dipole 0845(5)
this work linear z 0.885(5)
[17] z polynomial 0.895(20)
[5] Q2 cubic spline 0.879(8)
[15], Table III, row 2 z polynomial 0.91

this work, these Coulomb corrections are removed and
and replaced with TPE corrections calculated following the
prescription of [33,34]. This replacement leads to correction
factors of between 0.997 and 1.003 for the data of Fig. 1,
and of between 0.978 and 1.003 for the full MAMI set. The
correction factors agree with those shown in Fig. 5 of Ref. [15]
to within the 0.03% accuracy readable from their figure. To
test how sensitive our analysis is to TPE corrections, we repeat
our full analysis using the low-Q2 TPE approximation of
Ref. [35] and the Feshbach correction in place of the full TPE
correction. Figure 4 shows that using the Feshbach correction
would underestimate RE by only 0.004 fm, while the low-Q2

approximation would change RE by less than 0.001 fm. We
conclude that, although the best available TPE corrections
should be used, the sensitivity to using poorer approximations
is small in our analysis.

V. CONCLUSIONS

The fits in this work can be distinguished from fits
performed by others in that our fits can determine RE from
the low-Q2 data (using single-parameter models), while still
giving consistent results when being extended to the higher-Q2

data. Thus, our fits are robust against the possibility that
higher-Q2 data (at higher Q2 than that shown in Fig. 1) could
unduly influence the slope at Q2 = 0. We compare our fits
to those of others in Table I. Only fits of the MAMI data are
included in the Table, since at low-Q2 MAMI data are so much
more precise (Fig. 1) than the rest of the world data (Fig. 3). We
only include fits that float the MAMI normalization constants
and which give a reduced χ2 � 1.14. Our fits are the only ones
in the table that indicate that RE can span a large range and can
include values as low as 0.84 fm (consistent with the muonic
hydrogen value). Other works that obtain a low value of RE

incorporate constraints based on dispersion relations, but have
reduced χ2 values of 1.4 [15], or worse [12].

In summary, we have reanalyzed e-p elastic scattering data
using simple fits to the lowest-Q2 half of the data, and cubic-
spline extensions of these fits at higher Q2. We find that the
required extrapolation to Q2 = 0 can lead to values for the rms
charge radius RE ranging from 0.84 to 0.89 fm. This range is
consistent with both of the discrepant determinations of RE

from muonic hydrogen [1,2] and ordinary hydrogen [3].
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