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Within a mean-field approximation, we study a nontopological soliton solution of the Polyakov quark-meson
model in the presence of a fermionic vacuum term with two flavors at finite temperature and density. The profile
of the effective potential exhibits a stable soliton solution below a critical temperature T � T c

χ for both the
crossover and the first-order phase transitions, and these solutions are calculated here with appropriate boundary
conditions. However, it is found that only if T � T c

d is the energy of the soliton MN less than the energy of the
three free constituent quarks 3Mq . As T > T c

d , there is an instant delocalization phase transition from hadron
matter to quark matter. The phase diagram together with the location of a critical end point has been obtained
in the T and μ plane. We notice that two critical temperatures always satisfy T c

d � T c
χ . Finally, we present and

compare the result of thermodynamic pressure at zero chemical potential with lattice data.
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I. INTRODUCTION

It is widely believed that at sufficiently high temperatures
and densities there is a quantum chromodynamics (QCD)
phase transition between normal nuclear matter and quark-
gluon plasma (QGP), where quarks and gluons are no
longer confined in hadrons [1,2]. The study of the QCD
phase transition is experimentally supported by the heavy-ion
collisions at ultrarelativistic energies, accomplished in the
most sophisticated accelerators, such as the Relativistic Heavy
Ion Collider at Brookhaven National Laboratory and the
Large Hadron Collider at CERN. These conducted experi-
ments provide us with the opportunity to infer fundamental
information about which type phase of matter, hadronic or
quark-gluon plasma, is stabilized in the various regimes.
To explore a wider range of the QCD phase transition up
to several times the normal nuclear-matter density, the new
Facility for Antiproton and Ion Research at Darmstadt, the
Nuclotron-based Ion Collider Facility at the Joint Institute for
Nuclear Research in Dubna, and the Japan Proton Accelerator
Research Complex at Japan Atomic Energy Research Institute
and Japan’s National Laboratory for High Energy Physics will
make such extreme conditions possible through collisions [3].
Therefore, it will be possible to test the theoretical predictions
about the hadron-quark phase transition at high density but
moderate temperature.

On the theoretical side, the property of confinement which
becomes relevant at large distances or equivalently low ener-
gies has hindered the development of analytical and numerical
methods capable of describing the low-energy nonperturbative
cases, especially if baryons are involved. Therefore, the
challenge for nuclear physicists remains to find models that can
bridge the gap between the fundamental theory and our wealth
of knowledge about low-energy phenomenology. Moreover,
these models should be successful in explaining empirical
facts at low energies, for example, the dynamical breaking
of chiral symmetry and the confinement, which are both
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intimately related to the nonperturbative structure of the QCD
vacuum. To mention a few, these effective models are the
MIT bag model [4], the Nambu-Jona-Lasinio (NJL) [5,6], and
the linear σ model [7] for quark matter, while others are the
Brueckner-Hartree-Fock (BHF) theory [8] and the relativistic
mean-field (RMF) models [9] for nuclear matter.

Because the strongly interacting matter at very high energy
should have quarks and gluons as the degrees of freedom, while
nucleons and mesons are the relevant degrees of freedom in
the hadron phase. On one hand, the phenomenology of the
hadron-quark phase transition is often studied with the above-
mentioned effective models [10–12], where the BHF theory
including the realistic baryon baryon interaction or the RMF
models is used to describe hadron phase, while on the other
hand, the quark phase is treated as a thermodynamic bag model
or simulated by the NJL model [or its modernized version,
the Polyakov-Nambu-Jona-Lasinio (PNJL) model] [13]. The
motivation for these studies, aims at rendering two models with
different degrees of freedom compatible. In more detail, the
MIT bag model and PNJL models do describe the very well-
known properties of quark matter, but they fail to reproduce
the bulk nuclear matter and finite nuclei properties. However,
the BHF theory and the RMF models which are constructed
for nuclear matter are often questionable when extending to
investigate high-density regimes as it is common for neutron
stars. Then the approach of considering the mixed phase of
hadron and quark matter becomes important, and the proper
equation of state for the hadron-quark phase transition could be
derived based on the Gibbs conditions for phase equilibrium.
Unfortunately, this kind of study is applicable only if the QCD
phase transition is of first order. According to a recent study
on the QCD phase diagram based on chiral effective models,
including quark and meson fluctuations via the functional
renormalization group [14], the biggest part of the QCD
phase diagram shows crossover transitions rather than true
first-order ones. Thus, it is necessary to search for an alternative
effective model which can provide a proper description of
hadron-quark phase transition beyond the first-order transition
cases, including the crossover situations, while keeping at the
same time the correct degrees of freedom in quark phase and

2469-9985/2016/93(1)/015202(13) 015202-1 ©2016 American Physical Society

http://dx.doi.org/10.1103/PhysRevC.93.015202


JINSHUANG JIN AND HONG MAO PHYSICAL REVIEW C 93, 015202 (2016)

hadron phase intact. The nontopological soliton model rooted
on the Polyakov quark-meson model [15] appears to fulfill the
requirement.

The Polyakov quark-meson model has so far facilitated
the investigation of the full QCD thermodynamics and phase
structure at zero and finite quark chemical potential, while
it has been shown that the bulk thermodynamic predictions
of the model agree well with the lattice QCD data [14–23].
However, starting from the same Lagrangian, bound states
(solitons) of valence quarks can be constructed through the
interaction with σ and π mesons [24,25]. Such a nontopo-
logical soliton gives rise to nucleons in the hadron phase.
Moreover, the nontopological soliton model has been proven
to be a successful approach for the description of the static
properties of nucleons in vacuum [24,26–30]. Combining these
two features together, while also requiring a soliton embedded
in a thermal medium, the model provides a suitable working
scheme to simultaneously study both the restoration of chiral
symmetry and the possible dissolution of the soliton, which
simulates the deconfinement transition of nuclear matter to
quark matter.

In fact, the nucleon has been previously investigated in
Ref. [31] by employing the chiral soliton model and viewing
it as a B = 1 chiral soliton in a cold quark medium. However,
the parameters fπ , mπ , and mσ were chosen to be the medium-
modified meson values within the NJL model. For finite
temperature, Abu-Shady and Mansour have studied nucleon
properties [32] by employing the one-loop phenomenological
mesonic potential [33] and the coherent-pair approxima-
tion [29,30]. Furthermore, the nucleon properties as well as the
thermodynamics of the system both at finite temperature and
density are examined in Refs. [34–36]. However, these studies
based on the chiral soliton model or other nontopological
soliton models [37–40] suffer from two problems: The one
is that they only predict a first-order phase transition and
the other is that the critical temperature is extremely low
(Tc ∼ 110 MeV) as compared with lattice data. In this work,
we improve these previous studies by combing the chiral
soliton model with the Polyakov-loop field. Such an extension
will allow us to inspect both the crossover and first-order QCD
phase transitions and compare directly with the lattice QCD
simulations.

The structure of the paper is as follows. In the next section
we introduce the Polyakov-quark-meson model with two quark
flavors. In Sec. III, after obtaining the effective potential in
the mean-field approximation, we explore the possible stable
soliton solutions in the model. Section IV is devoted to derive
the equations of motion of the nontopological soliton model
both in vacuum and at finite temperature and density. Section V
contains the static properties of nucleon at finite temperature
and density and the phase diagram at the T -μ plane. The study
of the hadron-quark phase transition is presented in Sec. VI.
We conclude with a summary and discussions in Sec. VII.

II. THE MODEL

We work in a generalized Lagrangian of the quark-
meson model for Nf = 2 quarks and Nc = 3 color degrees
with quarks coupled to a spatially constant time-dependent

background gauge field representing Polyakov-loop dynamics
(the Polyakov-quark-meson model or the PQM in short). The
Lagrangian reads [15]

L = ψ[iγ μDμ − g(σ + iγ5 �τ · �π )]ψ

+ 1
2 (∂μσ∂μσ + ∂μ �π · ∂μ �π) − U (σ,�π ) − U(	,	∗,T ).

(1)

Here we have introduced a flavor-blind Yukawa interaction
of strength g, coupling the isodoublet spin- 1

2 quark fields
ψ = (u,d) with the spin-0 isosinglet σ and the isotriplet
pion field �π = (π1,π2,π3). In addition, there exists a spatially
homogeneous time-dependent gauge field represented by the
Polyakov-loop potential. The coupling of the quarks with
the uniform temporal background gauge field is implemented
through the covariant derivative Dμ = ∂μ − iAμ and the spa-
tial components of the gauge fields have vanishing background
Aμ = δμ0A0.

The purely mesonic potential for the σ and �π is defined as

U (σ,�π ) = λ

4
(σ 2 + �π2 − ϑ2)2 − Hσ − m4

π

4λ
+ f 2

π m2
π , (2)

and the minimum energy occurs for chiral fields σ and �π
restricted to the chiral circle in the physical vacuum,

σ 2 + �π2 = f 2
π , (3)

where fπ = 93 MeV, corresponds to the pion decay constant
and mπ = 138 MeV is the pion mass. The last two constant
terms in Eq. (2) are used to guarantee that the energy of the
vacuum in the absence of quarks is zero. The constant H is
fixed by the partially conserved axial-vector current relation,
which gives H = fπm2

π .
The quantity U(	,	∗,T ) is the Polyakov-loop effective

potential. The Polyakov-loop field 	 is defined as the thermal
expectation value of the color trace of the Wilson loop along
the temporal direction,

	 = (TrcL)/Nc, 	∗ = (TrcL
†)/Nc. (4)

The Polyakov loop L is a matrix in color space and explicitly
given by

L(�x) = Pexp

[
i

∫ β

0
dτA4(�x,τ )

]
, (5)

with β = 1/T being the inverse of temperature and A4 = iA0.
In the so-called Polyakov gauge, the Polyakov-loop matrix can
be given as a diagonal representation [41]. Within this diagonal
representation, 	 and 	∗ are complex scalar fields. Their mean
values are related to the free energy of a static, infinitely heavy
test quark (antiquark) at spatial position �x. The Polyakov-loop
expectation value 〈	〉 vanishes in the confined phase where
the free energy of a single heavy quark diverges, while in
the deconfined phase it takes a finite value because the center
symmetry becomes spontaneously broken [42].

The temperature-dependent effective potential U(	,	∗,T )
is constructed to reproduce the thermodynamical behavior of
the Polyakov loop for the pure gauge case in accordance with
lattice QCD data, and it has the Z(3) center symmetry like the
pure gauge QCD Lagrangian. In the absence of quarks, we have
	 = 	∗ and the Polyakov loop is taken as an order parameter
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for deconfinement. For low temperatures, U has a single mini-
mum at 	 = 0, while at high temperatures it develops a second
one which turns into the absolute minimum above a critical
temperature T0 and the Z(3) center symmetry is spontaneously
broken. The simplest Z(3) symmetric polynomial form based
on a Ginzburg-Landau ansatz is proposed in Ref. [43],

U(	,	∗,T )

T 4
= −b2(T )

4
(|	|2 + |	∗|2) − b3

6
(	3 + 	∗3)

+ b4

16
(|	|2 + |	∗|2)2, (6)

with

b2(T ) = a0 + a1

(
T0

T

)
+ a2

(
T0

T

)2

+ a3

(
T0

T

)3

. (7)

A precise fit of the constants ai,bi is performed to reproduce
the lattice data for the pure gauge theory thermodynamics,
as also the behavior of the Polyakov loop as a function of
temperature. The corresponding parameters are

a0 = 6.75, a1 = −1.95, a2 = 2.625,
(8)

a3 = −7.44, b3 = 0.75, b4 = 7.5.

Originally, the critical temperature T0 for deconfinement in the
pure gauge sector is fixed at 270 MeV, in agreement with the
lattice results. However, in fully dynamical QCD, fermionic
contributions and the matter backreaction modify the pure
gauge potential to an effective glue potential, which carries
a flavor and chemical potential dependence of T0. The actual
value of T0 for two quark flavors is T0 = 208 MeV [15,18].

A convenient framework of studying phase transitions is
the thermal field theory. Within this framework, the finite-
temperature effective potential is an important and useful
theoretical tool. In this section, to investigate the temperature
and the chemical potential dependence of the nontopological
soliton, let us consider a spatially uniform system in thermo-
dynamical equilibrium at temperature T and quark chemical
potential μ. In general, the grand partition function reads

Z = Tr exp[−(Ĥ − μN̂ )/T ]

=
∫ ∏

a

DσDπa

∫
DψDψ̄exp

[ ∫
x

(L + μψ̄γ 0ψ)

]
, (9)

where
∫
x

≡ i
∫ 1/T

0 dt
∫
V

d3x, V is the volume of the system,
and μ = μB/3 for the homogeneous background field.

We evaluate the partition function in the mean-field ap-
proximation similar to the work of Ref. [44]. Thus, we replace
the meson fields with their expectation values in the action. In
other words, we neglect both quantum and thermal fluctuations
of the meson fields. The quarks and antiquarks are retained
as quantum fields. The integration over the fermions yields a
determinant which can be calculated by standard methods [45].
This generates an effective potential for the mesons. Finally,
we obtain the thermodynamical potential density as

�(T ,μ) = −T lnZ
V

= U (σ,�π) + U(	,	∗,T ) + �ψ̄ψ, (10)

with the quarks and antiquarks contribution

�ψ̄ψ = �v
ψ̄ψ

+ �th
ψ̄ψ

= −2Nf Nc

∫
d3 �p

(2π )3
Eq

− 2Nf T

∫
d3 �p

(2π )3
[lng+

q + lng−
q ], (11)

where, Nf = 2, Nc = 3, and Eq =
√

�p2 + M2
q is the valence

quark and antiquark energy for u and d quarks, and the
constituent quark (antiquark) mass Mq is defined as Mq = gσv

together with σv ≡ √
σ 2 + �π2. The first term of Eq. (11) de-

notes the fermion vacuum one-loop contribution, regularized
by the ultraviolet cutoff. In the second term g+

q and g−
q are

defined as taking trace over color space:

g+
q = [1 + 3(	+ 	∗e−(Eq−μ)/T ) × e−(Eq−μ)/T + e−3(Eq−μ)/T ],

(12)

g−
q = [1 + 3(	∗ + 	e−(Eq+μ)/T ) × e−(Eq+μ)/T + e−3(Eq+μ)/T ].

(13)

The fermion vacuum one-loop contribution �v
ψ̄ψ

is fre-
quently omitted. In this work, we include the effect of vacuum
fluctuation on the thermodynamics. This term can be properly
renormalized by using the dimensional regularization scheme
as done for the two-flavor case in Refs. [18–20], and the
renormalized contribution of the fermion vacuum loop reads

�v
ψ̄ψ

= �
reg
ψ̄ψ

= −NcNf

8π2
M4

q ln

(
Mq

�

)
, (14)

where � is the arbitrary renormalization scale. It is worth
noting that the thermodynamic potential and all physical
observable are independent of the choice of �, and the �
dependence can be neatly canceled out by redefining the
parameters in the model.

Now the first term in the right-hand side of Eq. (11),
describing the vacuum contribution, is replaced with the appro-
priately renormalized fermion vacuum contribution as given in
Eq. (14). Accordingly, the thermodynamic grand potential in
the presence of appropriately renormalized fermionic vacuum
contribution in the Polyakov quark-meson model is written as

�MF(T ,μ,σv,	,	∗) = �M(σv) + U(	,	∗,T ) + �th
ψ̄ψ

. (15)

Here, for convenience, we define a new mesonic potential,

�M(σv) = U (σ,�π ) + �
reg
ψ̄ψ

, (16)

which is independent of the temperature T and the chemical
potential μ. Minimizing the thermodynamical potential in
Eq. (15) respective to σv , 	, and 	∗, we obtain a set of
equations of motion:

∂�MF

∂σv

= 0,
∂�MF

∂	
= 0,

∂�MF

∂	∗ = 0. (17)
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FIG. 1. The normalized chiral order parameter σ̄v and the
Polyakov-loop expectation values 	̄, 	̄∗ as functions of temperature
for μ = 0 MeV and μ = 320 MeV. The solid curves are for μ =
0 MeV and the dashed curves are for μ = 320 MeV.

The set of equations can be solved for the fields as functions of
temperature T and chemical potential μ, and the solutions of
these coupled equations determine the behavior of the chiral
order parameter σ̄v and the Polyakov-loop expectation values
	̄, 	̄∗ as a function of T and μ.

There are two values of the constants left in the model
which we need to fix, namely, mσ and g. Unlike the pion
meson, the mass of the σ meson still has a poorly known
value, but the most recent result of the Particle Data Group
considers that mσ can vary from 400 to 550 MeV with full
width 400–700 MeV [46]. The coupling constant g is usually
fixed by the constituent quark mass in vacuum within the range
of 300–500 MeV, which gives g 	 3.3–5.3. In this work we
take mσ = 472 MeV and g = 4.5 as the typical values. It has
been proved in Ref. [34] that this set of parameters can describe
the properties of nucleon in vacuum successfully.

In Fig. 1, the temperature dependence of the normalized
chiral order parameter σ̄v and the Polyakov-loop expectation
values 	̄, 	̄∗ at μ = 0 MeV and μ = 320 MeV are shown
in relative units. The temperature behaviors of the chiral
condensate and Polyakov loop condensate show that the
system experiences a smooth crossover transition at zero
chemical potential, while there is a first-order phase transition
for larger chemical potential because both the chiral order
parameter and the Polyakov-loop expectation values make
jumps across the gap of the condensates near the critical tem-
perature. Traditionally, the temperature derivative of the chiral
condensate σ̄v for u and d quarks has a peak at some specific
temperature, which is established as the critical temperature
for the chiral phase transition for both the crossover and the
first-order transitions. Thus, for zero chemical potential, the
chiral restoration occurs at T c

χ 	 201 MeV, whereas for a
relatively larger chemical potential μ = 320 MeV, the critical
temperature moves to the lower temperature region around
T c

χ 	 105 MeV.
Although different from the chiral phase transition, we are

still not in a position to conclusively identify the deconfine-
ment phase transition through the Polyakov loop expectation

values 	̄, 	̄∗ or their temperature derivatives [21,47]. The
temperature derivatives 	̄′ and 	̄∗′ do show one peak or
more peaks for zero chemical potential or finite chemical
potentials in calculations, but unfortunately these peaks are
fake signals for defining the critical temperature of the
deconfinement. In the next section, based on the effective
potential at finite temperature and finite chemical potential,
we explain that there is no obvious clue to define the critical
temperature of the deconfinement phase transition simply by
using the Polyakov-loop expectation values 	̄, 	̄∗ or their
temperature derivatives if T < T0, even in the first-order
transition region. This is a serious problem which appeared
already in the Polyakov quark-meson model [15,21] or the
PNJL model [41,47] and still persists in more recent theories.
In the following, based on the nontopological soliton model,
we provide a distinct clarification on this point which will allow
us to propose a convincing definition of the deconfinement
critical temperature.

III. EFFECTIVE POTENTIAL
AND NONTOPOLOGICAL SOLITON

The basic ideas behind the nontopological soliton are best
illustrated by considering the original model: the Friedberg-
Lee model [48] or its descendant models [24,25,49]. In
these models, the confinement of quarks is approximated
through their interaction with the phenomenological scalar
field, σ , which is introduced to describe the complicated
nonperturbative features of the QCD vacuum. In mean-field
approximation, the σ field has a baglike soliton solution,
named as a nontopological soliton. This is in contrast to
topological defects which are stabilized by the topological
properties of the vacuum manifold. The existence of this
kind of solution is closely related to a potential describing
the nonlinear self-interactions of the σ field. In general, the
potential leading to the soliton solution has three extrema: one
local minimum corresponding to a perturbative vacuum state
located at σ 	 0, one absolute minimum corresponding to a
physical vacuum at its vacuum value σ̄v , and a local maximum
lying between 0 and σ̄v . Therefore, the soliton solution has
a spherical cavitylike structure: At large radius r , the σ field
assumes its vacuum value σv , but at small r , the σ field has a
value close to the second minimum of the potential near zero.
In the Friedberg-Lee model the quarks interact with a mean
σ field only; this means that in the physical vacuum state the
quark mass is more than 1 GeV, which makes it energetically
unfavorable for the quark to exist freely, so that the effective
heavy quarks have to be confined in hadron bags. Sometimes
it is also called as “absolute” confinement, similar to the MIT
bag model. However, as it is known for the chiral soliton
model, pions can produce strongly attractive forces among
the quarks. Including mean pion fields also allows the meson
fields to remain close to the minimum of the Mexican hat
potential, and so quarks possess physical constituent masses
in the physical vacuum. The state is to be bound if only the
total energy of system is lower than the energy of three free
constituent quarks in the system, making it thus transparent
for considering the chiral soliton as a bound state in this work.
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FIG. 2. (a) The grand-canonical potentials �MF as a function of the chiral order parameter σ for μ = 0 MeV by fixing the Polyakov loop
on their expectation values. (b) The grand-canonical potentials �MF as a function of the chiral order parameter σ for μ = 380 MeV by fixing
the Polyakov loop on their expectation values. �MF is scaled by a factor of f 4

π .

Normally, the self-interaction potential of the σ field is
chosen to have a quartic form in the nontopological soliton
model, and the coefficients in the quartic potential can be
chosen so that they belong to the three typical forms as
described in a seminal work done by Goldflam and Wilets [50].
In their work, they have shown that to ensure the stability
of the two vacuum states and guarantee the existence of the
stable soliton solution, it is indispensable for the potential of
the σ field to exhibit three distinct extrema. In the following
discussion, this is also considered as a key criterion for
determining whether there exist stable soliton solutions for
the mesonic fields and the Polyakov-loop fields. Then with
employing the thermodynamic grand potential in the presence
of appropriately renormalized fermionic vacuum contribution
in Eq. (15), we can explore the possible nontopological soliton
solutions owned by the model under this criterion.

However, in contrast to the chiral soliton and the Friedberg-
Lee models, in the present study there are three order parameter
variables σv , 	, and 	∗ in the grand-canonical potential �MF

in Eq. (15), so it is extremely difficult to investigate and
demonstrate the effective potential at finite temperature and
chemical potential via evolving these variables simultaneously
in such a large parameter space. To simplify the problem and
provide a more intuitive insight into the physics, we separate
the study into two cases: (1) the mesonic field direction and
(2) the Polyakov-loop field direction. For the first case, we
treat the σ field as a variable in the grand-canonical potential
�MF while fixing the Polyakov-loop fields on their expectation
values 	̄ and 	̄∗. In contrast, for the second case, the Polyakov
loops 	 and 	∗ are considered as variables, while the σ field
maintains its expectation value σ̄v all the time.

The first case is shown in Fig. 2, where the left panel is for
zero chemical potential and the right panel for μ = 380 MeV.
Here the expectation value of the pion field is chosen in
the standard way as 〈 �π〉 = 0. For μ = 0 MeV, one clearly
observes a smooth crossover of the symmetry-breaking pat-
tern. The energy difference �ε between the global minimum
and the local maximum of the potential decreases upon the
increase of the temperatures. When a critical temperature

T c
χ 	 201 MeV is reached, �ε vanishes, which indicates that

the chiral symmetry is restored. Moreover, according to the
above criterion for the existence of the stable soliton solution,
for zero chemical potential, we can find the stable soliton
solutions at various temperature from zero temperature to the
critical temperature for the chiral phase transition T c

χ . The
result is believed to be held for all crossover transition regions
in the QCD phase diagram.

For μ = 380 MeV, one clearly observes the characteristic
pattern of a first-order phase transition: Two minima corre-
sponding to phases of restored and broken symmetry are sep-
arated by a potential barrier and they will become degenerate
at T = T c

χ . Chiral symmetry is approximately restored for
T > T c

χ , where the minimum at perturbative vacuum σ ∼ 0
becomes the absolute minimum, as shown in the right panel
in Fig. 2. The bag constant B is now negative; then it is
physically prohibited to support the existence of the stable
soliton solution, so that there is no soliton solution anymore.
Therefore, we can only obtain the stable soliton solution for
T � T c

χ , and this is also applicable for the whole first-order
transition region in the QCD phase diagram. Moreover, the
barrier between the two local minima of the effective potential
around T c

χ , shown in the right panel in Fig. 2, will decrease
with decreasing μ. At a specific chemical potential, μc, the
barrier will finally disappear and the transition will become of
second order. The point C (T c

χ , μc) of the phase diagram is
termed as the critical end point (CEP).

Let us now investigate how the grand-canonical potentials
�MF evolve with the Polyakov-loop field 	 for different
chemical potentials by fixing the chiral order parameters on
their expectation values. The scaled grand-canonical potential
is shown in Fig. 3 as a function of 	. From Fig. 3 it is
obvious that these effective potentials share similar behaviors
for both μ = 0 MeV and μ = 380 MeV: There is only one
minimum for each of the effective potentials, and these minima
correspond to the expectation values 	̄ of the Polyakov-loop
field at specific temperature and density. In the crossover
transition region, with the raising of the temperature, the
expectation value 	̄ moves to its higher value smoothly and
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FIG. 3. (a) The grand-canonical potential �MF as a function of the Polyakov loop 	 (or 	∗) for μ = 0 MeV by fixing the chiral order
parameters on their expectation values. (b) The grand-canonical potential �MF as a function of the Polyakov loop 	 for μ = 380 MeV by
fixing the chiral order parameter on their expectation values. �MF is scaled by a factor of T 4.

slowly. However, in the first-order transition region at high
density, accompanied by the jump of chiral order parameter
σ , the expectation value 	̄ develops a disconnection across
the gap from relatively small value to its maximum, which
indicates that there exists a degenerate value of the Polyakov-
loop variable 	 along the first-order transition line in the
QCD phase diagram for very high chemical potential. This
implies that the integration of the quark and meson fields
in the grand-canonical potential �MF would only result in a
trivial Polyakov-loop effective potential at finite T and μ, and
such a naive potential does not tell anything about the critical
point at which the deconfinement transition should definitely
happened. Therefore, the jump induced by the chiral order
parameter is not to be supported by the effective potential of the
Polyakov-loop field itself; then it certainly cannot be treated
as a signal for the deconfinement phase transition. This is the
reason why we argue that there exists no obvious criterion for
defining the critical temperature for the deconfinement phase
transition in terms of using the Polyakov-loop variables 	, 	∗
or their temperature derivatives, as long as the temperature T
is smaller than the critical temperature T0 for deconfinement
in the pure gauge sector.

Nevertheless, the advantage is that we do not have a baglike
soliton solutions for the Polyakov-loop variables 	, 	∗,
because there is only one minimum in the effective Polyakov-
loop potential. However, the Polyakov-loop variables 	, 	∗
will always develop their expectation values 	̄ and 	̄∗ in
whole space, such that these fields should be regarded as
homogeneous background thermal fields on top of which the
chiral soliton is to be added.

IV. NONTOPOLOGICAL SOLITON SOLUTION
IN THE MODEL

In vacuum, the Polyakov-loop variables 	, 	∗ are set to
zero and the thermodynamic grand potential �MF reduces to
the purely mesonic potential �M. Following Ref. [34], in the
mean-field approximation, the σ and π are taken as time-
independent, classical c-number fields, which only differ from
their vacuum values in the neighborhood of the quark sources.

The state of the quarks {φn(r)} with energy {εn} and the σ (r),
π (r) meson fields satisfy the coupled set of the Euler-Lagrange
equations of motion,

− i �α · �∇φn(r) − gβ[σ (r) + iγ5 �τ · �π(r)]φn(r) = εnφn(r),

(18)

− ∇2σ (r) + ∂�M(σv)

∂σ
= −g

∑
nocc

φ̄n(r)φn(r), (19)

−∇2 �π (r) + ∂�M(σv)

∂ �π = −g
∑
nocc

φ̄n(r)iγ5 �τφn(r), (20)

with ∫
φ†

n(r)φn(r)d3r = 1, (21)

where �α and β are the conventional Dirac matrices.
The ground state of the chiral soliton is the state with N

quarks in the same lowest Dirac state φ0, with energy ε. In
the following, our discussions are constrained in the case of
N = 3 for baryons. To obtain solutions of minimum energy,
we adopt the “hedgehog” ansatz, where the meson fields are
spherically symmetric and valence quarks are in the lowest
s-wave level,

σ = σ (r), �π = r̂π (r), (22)

φ0 =
(

u(r)

i �σ · r̂v(r)

)
χ, (23)

where χ is a state in which the spin and isospin of the quark
couple to zero:

(�σ + �τ )χ = 0. (24)

Now the system is spherical symmetric and the Euler-
Lagrange equations of motion (18)–(20) transform in radial
coordinates to

du(r)

dr
= −[ε + gσ (r)]v(r) − gπ (r)u(r), (25)

dv(r)

dr
= −

[
2

r
− gπ (r)

]
v(r) + [ε − gσ (r)]u(r), (26)
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d2σ (r)

dr2
+ 2

r

dσ (r)

dr
− ∂�M

∂σ
= Ng[u2(r) − v2(r)], (27)

d2π (r)

dr2
+ 2

r

dπ (r)

dr
− 2π (r)

r2
− ∂�M

∂π
= −2Ngu(r)v(r),

(28)

and the quark functions should satisfy the normalization
condition

4π

∫
r2[u2(r) + v2(r)]dr = 1. (29)

These equations are subject to the boundary conditions which
follow from the requirement of finite energy:

v(0) = 0,
dσ (0)

dr
= 0, π (0) = 0, (30)

u(∞) = 0, σ (∞) = f π , π (∞) = 0. (31)

The asymptotic vacuum value of the soliton field has to be
determined by an additional condition, i.e., that the physical
vacuum is recovered at infinity. In this “physical” vacuum
the quarks are free Dirac particles with the constituent mass
gσv , and the chiral symmetry is spontaneously broken. By
solving the coupled differential equations (25), (26), (27),
and (28) with the normalization and the appropriate boundary
conditions, in Fig. 4 we plot the σ , π , and quark fields profiles
in arbitrary units as functions of r for zero temperature and
chemical potential.

If we put N quarks into the lowest state with energy ε, the
total energy of the hedgehog baryon is given by

E = Nε + 4π

∫
r2

[
1

2

(
dσ

dr

)2

+ 1

2

(
dπ

dr

)2

+ π2

r2
+ �M(σv)

]
dr, (32)

which is normally identified as the mass of the nucleon MN

below.
As a next step we consider a B = 1 localized bound

state (soliton) in a thermal medium. Customarily, the thermal
medium can be treated as a quark medium or a nuclear medium

FIG. 4. The quark fields in relative units and the σ , π fields scaled
with fπ as function of the radius r in vacuum.

owing to the interaction of the three valence quarks with the
quark Dirac sea and the nucleon Fermi sea via the meson
fields [51].

For the quark medium, the thermal medium is filled with
quarks of a constituent mass Mq , and the soliton energy is
given by the sum of the energy of the valence quarks, the
meson fields, and their interactions as shown in Eq. (32). Then
a new set of coupled equations of motion for the meson fields
could be derived by simply replacing the relevant mesonic
potential �M with the thermodynamic grand potential �MF.
Accordingly, a set of coupled equations for mesons can be
described as

d2σ (r)

dr2
+ 2

r

dσ (r)

dr
− ∂�MF

∂σ
= Ng[u2(r) − v2(r)],

(33)

d2π (r)

dr2
+ 2

r

dπ (r)

dr
− 2π (r)

r2
− ∂�MF

∂π
= −2Ngu(r)v(r).

(34)

For satisfying the requirement of finite energy of the soliton,
one of the boundary conditions in Eq. (31) should be modified
accordingly as r → ∞, σ (r) approaches to the expectation
value σ̄v , where thermodynamic grand potential �MF has an
absolute minimum.

As long as the unbound constituent quarks, treated as
the homogeneous background thermal fields with T and μ,
are allowed to penetrate into the soliton, they will bring an
additional contribution to the total baryon density. Thus, to
ensure that the solitonic baryon number is equal to one, the
normalization condition equation (29) should be modified as

4π

∫
r2[u2(r) + v2(r)]dr = 1 − Bm, (35)

with

Bm = 4π

∫
V

ρm
B r2dr. (36)

Here ρm
B = − 1

3
∂�MF
∂μ

and V is the volume of the soliton.
In contrast, when a soliton is embedded in the medium of

nucleons we have to consider a Fermi sea of nucleons instead
of quarks, owing to confinement. This is because the Dirac sea
consists of quarks and therefore only determines the vacuum
sector. Thus, in this case the mesons are directly coupled to the
nucleons of the Fermi sea. Accordingly, the terms representing
the thermal medium effects in Eqs. (33) and (34) should be
modified as

∂�MF

∂σ
→ gN 〈ψ̄NψN 〉, (37)

∂�MF

∂π
→ gN 〈ψ̄N iγ5 �τψN 〉. (38)

Here the bracket 〈 〉 denotes the expectation value of the
operator between the nuclear ground state, ψN is the nucleon
field, and gN is a coupling constant which relates the nucleon
mass to the nonzero expectation value of the scalar meson
field. Unluckily, both the coupling constant gN and the scalar
and pseudoscalar densities of nucleons and antinucleons in the
above equations cannot be obtained from the present model
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self-consistently. In fact, they have to be considered as input
parameters which could be taken from the RMF approximation
or the BHF theory [8,9]. Therefore, to avoid inconsistencies,
it is customary to treat a hot and dense thermal medium as a
uniform constituent quark and gluon medium (quark medium)
with solitons embedded, as in Refs. [34,51,52].

As long as there is no baglike soliton solution for the
Polyakov-loop variables 	, 	∗ in whole space, the Polyakov-
loop variables 	, 	∗ take constantly their expectation values
	̄ and 	̄∗. Hence, these variables denote the contributions
only to the thermodynamic grand potential �MF rather than
to the equations of motion for the nontopological soliton
solutions. Consequently, the properties of a soliton placed
in a thermal medium can be investigated by solving the
four coupled Euler-Lagrange equations that arise from the
thermodynamic grand potential �MF in Eq. (15). This system
of equations does not possess analytic solutions, but is readily
solved numerically. Various numerical packages are available
for the solution of such equations. One that has been widely
used in this field is COLSYS [53].

V. NUCLEON STATIC PROPERTIES AT FINITE
TEMPERATURE AND DENSITY

We first study soliton solutions at finite temperature
and density by solving the coupled differential equa-
tions (25), (26), (33), and (34) with the normalization condition
and the appropriate boundary conditions. In Fig. 5, we plot the
u(r), v(r), σ (r), and π (r) fields at zero and finite chemical
potential (μ = 380 MeV) for different temperatures. These
two chemical potentials correspond to the typical crossover
and first-order phase transitions in the QCD phase diagram,
respectively. For both cases, it is shown that all the fields
are moving towards the trivial values while the temperature
increases. When T is lager than some critical temperature T c

χ ,
there only exist trivial solutions for the coupled equations of
motion and solitons are melted away. These trivial solutions
indicate the restoration of the chiral symmetry in full space.
Moreover, the lack of solitonic solutions is usually considered
as a signal for the delocalization of the baryonic phase.

FIG. 6. The total energy of system MN and the energy of three
free constituent quark 3Mq as functions of temperature T . Here one
set is for μ = 0 MeV and another set is for μ = 380 MeV.

Based on the above analysis, for both the crossover and
first-order transitions the effective potential supports the
existence of the stable soliton solution for the meson fields,
as long as T is lower than T c

χ . This implies that the baryonic
phase can be indeed found in the chiral symmetry-breaking
phase. However, the stability of such baryonic phase should
be checked carefully by comparing the total energy of the
system in the thermal medium with the energy of three
free constituent quarks in the system. By subtracting the
homogeneous medium contribution [34,51], the total energy
of system MN is plotted as a function of the temperature
for μ = 0 MeV and μ = 380 MeV in Fig. 6. Here one finds
that for a smooth crossover of the symmetry-breaking patten
at the low-density region, both MN and 3Mq fall smoothly
from the corresponding vacuum value as T goes to high
temperature. When T is close to some high critical temperature
T c

χ 	 201 MeV for μ = 0 MeV, both MN and 3Mq experience
a steep descent region. However, as shown in Fig. 6, in the
high-temperature regime 3Mq drops more quickly than that
of MN , as T > 177 MeV, 3Mq < MN . This implies that even
though the stable soliton solution still exists in the temperature
region T ∈ [177,201] MeV, it is energetically unfavorable.

FIG. 5. (a) The quark fields in relative units and the σ , π fields scaled with fπ as function of the radius r for T = 177 MeV as μ = 0 MeV.
(b) The quark fields in relative units and the σ , π fields scaled with fπ as function of the radius r for T = 56.1 MeV, while μ = 380 MeV.
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The baryonic phase will definitely melt away into three free
constituent quarks. In this way, we can identify this specific
temperature T c

d 	 177 MeV as a critical temperature of the
deconfinement phase transition.

Based on the right panel in Fig. 6, one can see that
in the large density region the total energy MN decreases
monotonically with increasing the temperature T from zero
to higher values. As the temperature approaches the critical
temperature T c

χ , MN starts to deviate from the ones in vacuum
significantly. When T > T c

χ , MN jumps to zero quickly, which
indicates the delocalization phase transition from nucleon
matter to quark matter owing to the fact that the effective
potential does not support the existence of the stable soliton
solution. The energy of three free constituent quark 3Mq (or
σv) shows similar behavior as MN . By comparing the two
energies in Fig. 6, we can show that for T < T c

χ the nucleon
bound sate is stable and 3Eq is larger than MN , but the
difference decreases with the increase of temperature, and the
two energies begin to cross over at the critical temperature
T c

χ . Therefore, the critical temperature for the deconfinement
phase transition is coincident with that of the chiral phase
transition for the first-order phase transition.

We infer the occurrence of the chiral phase transitions
of u and d quarks and the deconfinement phase transition
at finite temperature and finite density, and show the T -μ
phase structure of the Polyakov quark-meson model in Fig. 7
based on the nontopological soliton picture. For two light
flavors, there is a crossover in the low-density region and
a first-order phase transition in the high-density region, and
in the middle position there exists a CEP. From Fig. 7, the
critical temperature for the deconfinement phase transition
T c

d is lower than that of the chiral phase transition, and both
critical temperatures decrease smoothly as μ goes to high
value. With the increasing of μ, the difference between T c

χ

FIG. 7. Two-flavor phase diagram in the T -μ plane in the
Polyakov quark-meson model based on the nontopological soliton
picture. The dash-dotted curve is the critical line for T c

d , which
characterizes the confinement phase transition, and the dashed lines
are the critical line for conventional chiral phase transition in the
region of crossover. The solid lines indicate the first-order phase
transitions, and the solid circle indicates the CEPs for chiral phase
transitions of u and d quarks.

and T c
d becomes smaller and smaller, while at some critical

chemical potential μc it becomes zero, which identifies the
CEP for a second-order phase transition. The corresponding
values are (T c,μc) 	 (119,302) MeV.

Here are several remarks on the phase diagram presented in
Fig. 7. From the above discussions on the effective potential
and nontopological soliton concerning the deconfinement and
chiral phase transition, we conclude that the effective potential
always supports the existence of the stable soliton solution in
the system if T � T c

χ , but not for T > T c
χ . It is required that

the critical temperature defined as the deconfinement phase
transition in a nontopological soliton model is usually less
than the critical temperature for the chiral phase transition,
as T c

d � T c
χ . In this study, in the first-order region, we take

the “=”. In contrast, in the crossover region we should have
the “<”. This conclusion is in qualitative agreement with the
result shown in Fig. 6 in Ref. [18] at relatively low and
middle densities. However, for high density, they produce
a very strange behavior for the deconfinement crossover
phase transition for the Polyakov-loop variables 	, 	∗. This
is different from the Friedberg-Lee model [37–39] and its
descendant models [34,40], which only predict a first-order
phase transition in the phase diagram. The chiral soliton
model combined with the Polyakov loop has an obvious
advantage in the description of QCD phase diagram, because
it can allow the prediction of the crossover transition at low
and middle chemical potentials. Nonetheless, it shows the
first-order phase transition for high chemical potential. The
result is in agreement with other predictions demonstrated in
effective models and lattice QCD data [1–3].

At the end of this section, the proton charge rms radii
R of a stable chiral soliton as a function of temperature for
μ = 0 MeV and μ = 380 MeV are illustrated in Fig. 8; it
gives a signal of a swelling of the nucleon when temperature
and density increase. In both cases, R increases slightly at low
temperatures while the latter is increased. As T approaches T c

d ,

FIG. 8. The proton charge “rms” radius of a stable chiral soliton
as a function of temperature T at μ = 0 MeV and μ = 380 MeV.
The solid curve is for μ = 0 MeV, while the dash-dotted curve is for
μ = 380 MeV. The dotted curve is for the unstable baryonic phase
existing in the crossover phase transition when T c

χ � T > T c
d .
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R sharply grows and disappears. Another interesting result
displayed in Fig. 8 is that the maximal radius R at various
densities are almost the same when T is near T c

d , which
hints that solitons start to overlap each other with the similar
expansion rate at T c

d for different densities.

VI. QCD THERMODYNAMICS AT ZERO
CHEMICAL POTENTIAL

To investigate the influence of the Polyakov loop on the
equilibrium thermodynamics of the system, we calculate the
pressure of the system P during the QCD phase transition
form hadron phase to quark phase according to two different
models as follows.

First, we adopt the mean-field approximation as usual
by replacing σ , �π , and the Polyakov-loop variables 	, 	∗
with their expectations values. In other words, we neglect
both quantum and thermal fluctuations of the meson fields
and the Polyakov-loop variables but retain the quarks and
antiquarks as only quantum fields in the entire phase diagram.
This is, of course, not a realistic scheme, especially at low
T and μ, because, owing to the confining forces, quarks
and antiquarks will recombine into mesons, baryons, and
antibaryons. Hence, the character of the chiral phase transition
described by the mean-field approximation could be drastically
changed in hadronization process from quark phase to hadron
phase. However, if we discard these affects, all thermodynamic
quantities can be obtained from the grand-canonical potential
in a spatially uniform system �MF in Eq. (15), which is
determined as the logarithm of the partition function. The
negative of grand potential which is normalized to vanish at

T = μ = 0 gives the thermodynamic pressure in the PQM
model,

PPQM = −�MF(T ,μ). (39)

The pressure obtained in the above equation can be directly
compared with lattice data.

However, the hadron and quark phases can be distinguished
by empirical facts and phenomena at low and high energies.
At low temperature and low baryon density, the hadronic
phase exhibits a dynamical breaking of chiral symmetry
and the confinement, and the baryon and meson act as the
active degrees of freedom here. On the contrary, at very high
temperature or baryon density, quarks and gluons will be set
free to play the dominant roles in QGP. Such a scenario can
be realized in the nontopological soliton (NS) model vividly
as follows. In the hadron phase, the state of the free quarks is
not the ground state of the strongly interacting matter, and as
a result three valence quarks will form the bound state of the
nucleon. Therefore, the hadron phase only possesses baryons
and mesons. However, when T > T c

d , the solitons are going
to dissolve, and the hadronic phase will eventually evolve to
quark phase with free quarks.

For simplicity, within the NS model, we assume an ideal
case of the system by taking the hadronic phase as a noninter-
acting hadron gas composed of nucleons and π , σ mesons with
the effective masses MN , Mπ , and Mσ in thermal medium.
The Polyakov-loop variables are treated as the background
thermal fields and, accordingly, the Polyakov-loop potential
has been subtracted already. It is then straightforward to write
the normalized pressure of the system in terms of nucleons
and mesons for the hadronic phase [2,45],

P H
NS = νNT

∫
d3 �p

(2π )3
{ln[1 + e−(EN −μB )/T ] + ln[1 + e−(EN +μB )/T ]}

− νπT

∫
d3 �p

(2π )3
{ln[1 − e−Eπ /T ]} − νσT

∫
d3 �p

(2π )3
{ln[1 − e−Eσ /T ]} − B∗(MN ), (40)

where νN = 4 for nucleon, νπ = 3 for pion, and νσ = 1 for σ meson. The last term B∗(MN ) is introduced to recover the
thermodynamical consistency of the system, because the nucleons are treated as the chiral solitons with a temperature-dependent
masses [54]. The explicit expression of this term can be evaluated by the additional constraint (∂PHP /∂MN )T = 0, which gives

B∗[MN (T )] = B∗[MN (0)] − νN

∫ T

0
dT ′ dMN (T ′)

dT ′ MN (T ′)
∫

d3 �p
(2π )3

1

E′
N

[
1

e(E′
N −μB )/T ′ + 1

+ 1

e(E′
N+μB )/T ′ + 1

]
, (41)

with E′
N =

√
�p2 + MN (T ′)2. The energies in Eq. (40) EN =

√
�p2 + MN (T )2, Eπ =

√
�p2 + Mπ (T )2, and Eσ =

√
�p2 + Mσ (T )2

are corresponding to nucleon, pion, and σ mesons, respectively. MN is obtained as the energy of soliton, whereas the σ and π
masses are determined by the curvature of �MF in Eq. (15) at the global minimum:

M2
σ = ∂2�MF

∂σ 2
, M2

π = ∂2�MF

∂π2
. (42)

Because it is unfavorable for solitonic nucleons to survive at high energy when the temperature is across the deconfinement
critical temperature T c

d ∼ 177 MeV, the baryonic bound state formed by three constituent quarks will definitely dissolve and the
system should now be regarded as a quark phase including the free quarks, mesons and the gluons mimicked by the Polyakov
loop. Consequently, the pressure of the NS model in terms of free quarks and mesons incorporating with the Polyakov-loop
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potential in quark phase results in

P
Q
NS = νqT

∫
d3 �p

(2π )3
{ln[1 + e−(Eq−μ)/T ] + ln[1 + e−(Eq+μ)/T ]} − νπT

∫
d3 �p

(2π )3
{ln[1 − e−Eπ /T ]}

− νσ T

∫
d3 �p

(2π )3
{ln[1 − e−Eσ /T ]} − U(	,	∗,T ). (43)

Here νq = 2NcNf = 12 is the number of internal degrees of

freedom of the quarks and Eq =
√

�p2 + M2
q is the valence

quark and antiquark energy for u and d quarks, and the
constituent quark (antiquark) mass Mq is given by Mq = g�σv .

Thermodynamic pressures divided by the QCD Stefan-
Boltzmann (SB) limit are illustrated at μ = 0 MeV in Fig. 9
for three models, and the pressure has already been normalized
to vanish at T = μ = 0. For Nf massless quarks and N2

c − 1
massless gluons in the deconfined phase, the QCD pressure in
the SB limit is given by

PSB

T 4
= (

N2
c − 1

)π2

45

+NcNf

[
7π2

180
+ 1

6

(
μ

T

)2

+ 1

12π2

(
μ

T

)4]
, (44)

where the first term is the gluonic contribution and the rest
involves the fermions.

At very high temperature, e.g., around twice the chiral
critical temperature, the pressure of the PQM tends to approach
that of the NS model in the quark phase. This implies that there
only exists a weak interaction between particles in quark phase,
and the quasiparticles model is a good approximation for the
description of the weak-interaction QGP. However, when the
temperature decreases, the PPQM deviates from the pressure
P

Q
NS more and more. When the T reaches out to the chiral

critical temperature T c
χ ∼ 201 MeV, the gap between the two

FIG. 9. The normalized pressure variations with respect to tem-
perature for the PQM model and the NS model at μ = 0, with
T c

χ ∼ 201 MeV. The solid line corresponds to the pressure in the
PQM model, while the dash-dotted line is for the pressure in the NS
model. All calculations are compared to lattice data (Nτ = 6) from
Ref. [55].

pressures arrives at its maximum value and then decrease
smoothly until zero temperature is reached. For comparing
with lattice simulations with a temporal extent of Nτ = 6,
which is closer to the continuum limit in Ref. [55], the strong
interaction between the particles in the NS model cannot
be simply discarded and it really plays a dominant role in
producing a correct and reasonable thermodynamical pressure
of the system.

In Fig. 9, we also plot the pressure as a function of the
temperature starting from the hadron to the quark phase at
μB = 0 for the NS model, while varying the baryon masses
for various temperature and densities in the confined phase.
From the figure, the dash-dotted curve shows rapidly changed
discontinuities at the deconfinement critical temperature from
hadron matter to quark matter. This indicates a pseudo-first-
order phase transition for the delocalization transition and
signals a drastic structural change for nucleons when the
system goes with the diffusions of the solitons (nucleons) into
thermal medium simultaneously. This strange behavior of the
pressure PNS around the deconfinement critical temperature
T c

χ is believed to be removed by bringing in a self-consistent
interaction of σ , ω, ρ mesons with nuclear matter (solitons)
in hadron phase. The strong interactions between mesons and
nucleons, which are widely adopted in nuclear matter and finite
nuclei [56–61], would provide necessary suppressions on the
pressures for the mesons and nucleons in hadron phase, and the
remaining self-interaction of the mesons in quark phase could
give further suppression on the pressure around T c

χ , similar to
the PQM model. Finally, it is worth noting that, besides the
interactions, another important influence which was neglected
here is the center-of-mass (c.m.) correction to the nucleon
properties, which have been considered in soliton bag models
and the quark–meson coupling (QMC) model largely [61–64].
These two corrections are certainly out of the scope of our
current topic and we prefer leaving them for a future study.

Unlike the case in the quark phase, here the pressures of the
PQM model and the NS model are suppressed in the hadron
phase and start to increase when deconfinement sets in. The
small difference among the pressures of the PNS and PPQM

is attributable to the different treatment of the mesons in the
hadron phase. In the NS model the mesons are taken as the
active degrees of freedom, but for the PQM model they are
purely mean fields and should be restrained to the expectation
values when T is close to the T c

χ . From Fig. 6, it is shown
that the effective nucleon mass MN slightly deviates from
its vacuum value with increasing temperature; only at the
critical temperature T c

χ does MN experiences a sharp jump.
Consequently, the contribution of nucleons to the total pressure
in Eq. (40) is very small in hadron phase as far as the chemical
potential is small. To estimate, it only gives 8.6% contribution

015202-11



JINSHUANG JIN AND HONG MAO PHYSICAL REVIEW C 93, 015202 (2016)

to PNS when T is around T c
d ≈ 177 MeV for zero chemical

potential. On the contrary, if three bound quarks are set to be
free in quark phase, the valence quarks will give a dominant
contribution to the pressure in Eq. (43).

VII. SUMMARY AND DISCUSSION

In the present paper we have investigated possible NS
solutions in the effective potential of the PQM model in
the presence of renormalized fermionic vacuum. The results
show that as long as the temperature is not larger than the
chiral critical temperature T c

χ , there exist truly stable soliton
solutions in the model for both crossover and first-order phase
transitions.

Even though there are stable soliton solutions for the
Euler-Lagrange equations of the model at finite temperature
and density, the stability of the solitons (nucleons) have
to be checked and analyzed carefully in thermal medium
by comparing the effective masses of nucleons with the
energies of three free constituent quarks. Our results show
that the chiral phase transition and the delocalization phase
transition from nucleon matter to quark matter take place
simultaneously for the first-order phase transition. For T < T c

χ ,
the free constituent quarks are not the ground state of the
strongly interacting system, and the quarks will reorganize
so to form lower-energy bound states carrying the hedgehog
configuration. However, as soon as the temperature T crosses
over the T c

χ , such bound states cannot survive anymore, and the
system experiences a first-order hadron-quark phase transition
to the chirally symmetric phase.

The situation differs from the case of the first-order
transition, in the crossover transition, even though the effective
potential genuinely ensures the stable soliton solution in the
system, but it is energetically unfavorable for nucleons to exist
when T is across the deconfinement critical temperature T c

d .
The difference between T c

χ and T c
d is about 24 MeV for zero

chemical potential, but it will decrease to zero as μ increases to

some value around 302 MeV. This particular point sometimes
is denoted as the CEP, which appears as well in the phase
diagram of Fig. 7.

To compare our results with the lattice QCD simulations and
other models at zero chemical potential but finite temperature
directly, we have investigated the thermodynamic properties
of the NS model in the PQM model. It is found that the
inclusion of the Polyakov loop is necessary and important
when comparing with the lattice QCD simulations. When
compared with the previous studies in this field, we notice
quite an improvement on the topic by providing a reasonable
critical deconfinement temperature T c

d ∼ 177 MeV for μ = 0
and extracting a standard QCD phase diagram, in agreement
with the lattice data and other phenomenological models’ pre-
dictions [3]. However, the strange behavior of the performed
pressure in the hadron-quark phase transition indicates that the
description of the hadron phase as a noninteracting hadron gas
of the nucleons and mesons with medium-modified masses
has underestimated the important effects of their interactions,
and these interactions should be introduced to further suppress
the pressures of the mesons and nucleons in both hadron and
quark phases. In other words, the present form of study is a
prototype and still not suitable for the proper description of
nuclear matter and finite nuclei in hadron phase yet, and it
deserves further efforts on making the model applicable for
hadron-quark phase transition completely and satisfactorily.
Work in this direction is in progress.
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