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Structure of �(1405) and construction of K̄ N local potential based on chiral SU(3) dynamics
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We develop the single-channel local potential for the K̄N system, which is applicable to quantitative studies
of K̄ bound states in nuclei. Because the high-precision measurement of the kaonic hydrogen by SIDDHARTA
reduces the uncertainty of the K̄N amplitude below the K̄N threshold, the local potential should be calibrated
in a wide energy region. We establish a new method to construct the local potential focusing on the behavior
of the scattering amplitude in the complex energy plane. Applying this method, we construct the K̄N potential
based on the chiral coupled-channel approach with the SIDDHARTA constraint. The wave function from the
new potential indicates the K̄N molecular structure of �(1405).
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I. INTRODUCTION

The multinucleon systems with an antikaon draw significant
attention in hadron and nuclear physics. It is considered that
the strong attraction in the K̄N channel leads to various
interesting phenomena. The simplest example is the �(1405)
resonance as a K̄N quasibound state [1,2]. The difficulty
of the description of �(1405) by the three-quark picture
in the constituent quark model [3] is compatible with the
interpretation as the quasibound state of the K̄N system
slightly below the threshold. In the early days, �(1405) in
the K̄N scattering amplitude was analyzed with K-matrix
approaches and dispersion relations [4–10]. Later, coupled-
channel approaches with chiral SU(3) symmetry [11–15] were
applied, which confirmed the K̄N quasibound picture of
�(1405). In addition, a recent lattice QCD analysis supports
this picture based on the vanishing of the strange magnetic
form factor [16]. The K̄N molecule picture indicates that the
spatial structure of �(1405) is relatively larger than the usual
hadronic scale, which is shown by several approaches [17–21].
Experimentally, the �(1405) signal in the π� spectrum has
been studied with various reactions [22–26].

Another interesting example concerns the antikaon bound
states in nuclei, the K̄ nuclei [27–29]. Because of the strong
K̄N attraction, the K̄ nuclei may exhibit the qualitatively
different structure from the normal nuclei. Experimentally,
there have been some claims for the evidence of the K̄NN state
[30–33]. For instance, the J-PARC E27 experiment reported
a broad enhancement in the proton coincidence missing
mass spectra in the d(π+,K+) reaction at 1.69 GeV/c [33].
However, we have to note that quantitative results of these
experiments are not consistent with each other. Furthermore,
there are experiments which have found no such quasibound
structure [34–36]. To draw a definite conclusion, further
studies are needed. Theoretically, the rigorous three-body
calculations of the K̄NN system have recently been per-
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formed [17,37–44]. All calculations have obtained the qualita-
tively consistent result that the K̄NN system is bound between
the K̄NN and π�N thresholds. However, the quantitative
predictions of the mass and the width are substantially different
from each other and are not consistent with the experimentally
reported values. In this way, the quantitatively conclusive result
of the K̄NN system has not been achieved.

It is the K̄N interaction below the threshold that is
essential for the calculations of K̄-nuclear systems. However,
the subthreshold region cannot be directly accessible by
experiments, so we have to extrapolate the scattering amplitude
constrained by the experimental data above the K̄N threshold.
Previous studies of the K̄ nuclei have suffered from the
large uncertainty, mainly because the experimental data has
not been sufficient to constrain the subthreshold amplitude.
Recently, the SIDDHARTA Collaboration has measured the
precise energy-level shift of the kaonic hydrogen [45,46].
These data are related to the K−p scattering length [47],
which quantitatively constrains the scattering amplitude at the
K̄N threshold. This reduces the uncertainty of the amplitude
below the K̄N threshold significantly [48,49]. For a reliable
prediction of �(1405) and the K̄ nuclei, the constraint from
the SIDDHARTA data should be taken into account.

The base for the few-body calculations is the two-body
hadron interaction. Historically, the hadron interaction has
been constructed phenomenologically. In the case of the nu-
clear force, phenomenological interactions are quite successful
in reproducing the experimental data with the precision of
χ2/d.o.f � 1 [50,51]. Though the phenomenological inter-
actions have been successfully applied to various few-body
systems, the direct connection to QCD is not obvious. The first
principle calculation of QCD is the lattice simulation which
provides the promising approach to the hadron potentials [52].
However, the nuclear force in the realistic setup is yet to be
constructed. Another approach is based on chiral perturbation
theory, which is the effective field theory of QCD with
chiral symmetry being the guiding principle [53,54]. In
this approach, the potential can be systematically improved
with the higher-order contributions. In the state-of-the-art
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calculations, it is possible to construct the nuclear force as
precise as the phenomenological ones.

In this work, we construct the K̄N potential using a chiral
unitary approach which is based on chiral perturbation theory
and unitarity of the scattering amplitude. Thanks to the system-
atic improvement, the low-energy K−p total cross sections,
threshold branching ratios, and the SIDDHARTA data are
well reproduced with an accuracy of χ2/d.o.f. � 1 [48,49].
The potential is constructed in the local form in the coordinate
space for the convenience of the applications to few-body
calculations. In contrast to the nuclear force, the K̄N potential
cannot be directly obtained in chiral perturbation theory which
does not contain the long-range meson exchange processes.
We therefore construct the potential so as to reproduce the
scattering amplitude from chiral unitary approach on the real
energy axis following Ref. [55]. Given that the uncertainty of
the subthreshold amplitude is reduced by the SIDDHARTA
constraint, we have to establish the construction procedure
with the high precision in the wide energy region. Moreover, to
analyze the structure of �(1405), the precision in the complex
energy plane is necessary. In this way, we construct the reliable
K̄N potential applicable for the quantitative calculations.

In Sec. II, we briefly introduce chiral unitary approach
for the K̄N scattering and the framework to construct the
hadron local potential from this approach. In Sec. III, we
examine the construction procedure to reproduce the original
amplitude even in the complex energy plane with a simple
model as an example. The new construction procedure of
the hadron potential is applied to the K̄N amplitude with
the SIDDHARTA constraint in Sec. IV, leading to the reliable
K̄N potential. Using this new K̄N potential, we investigate
the spatial structure of �(1405). The last section is devoted to
the summary of this work.

II. FORMULATION

A. Chiral SU(3) dynamics for K̄ N scattering

To describe the K̄N scattering, it is mandatory to consider
the channel coupling with the lower-energy π� state and the
existence of the �(1405) resonance below the threshold. Here
we utilize the nonperturbative coupled-channel framework
called chiral unitary approach [11–15], which is based on
the resummation of the interaction terms derived from chiral
perturbation theory. The s-wave meson-baryon scattering
amplitude Tij (

√
s) at the total center-of-mass energy

√
s is

Tij (
√

s) = Vij (
√

s) + Vik(
√

s)Gk(
√

s)Tkj (
√

s)

= {[V (
√

s)
−1 − G(

√
s)]−1}ij , (1)

where Vij and Gi represent the meson-baryon interaction
kernel derived from chiral perturbation theory and the loop
function, respectively, with the meson-baryon channel indices
being denoted by i,j . There are four meson-baryon channels
with isospin I = 0, K̄N , π�, η�, and K� corresponding to
i = 1, 2, 3, and 4, respectively. The interaction kernel Vij is
systematically obtained in chiral perturbation theory, where
the leading contribution is given by the Weinberg-Tomozawa
term. Systematic improvement with higher-order correction
has been discussed in Refs. [11,14,56–59]. Recently, the

refined calculations for the S = −1 sector including the
next-to-leading-order terms [48,49,60–62] are available with
the constraint from the SIDDHARTA data. The dimensional
regularization is applied to the loop function Gi with the finite
part being specified by the subtraction constant. Adjusting
the subtraction constant adequately, the experimental data
such as scattering cross sections, threshold branching ratios,
and the scattering length can be reproduced well. Although
there are other regularization schemes constrained by the
crossing symmetry [14] and the SU(3) symmetry [63], the
present phenomenological regularization scheme is sufficient
to consider the K̄N scattering near the threshold.

The K̄N forward scattering amplitude FK̄N is related to the
amplitude Tij as

FK̄N (
√

s) = − MN

4π
√

s
T11(

√
s), (2)

where MN represents the nucleon mass. In the isospin I = 0
channel, there are two resonance poles in the �(1405) energy
region, induced by the attractive interactions of the K̄N
channel and the π� channel [55,64]. In this paper, we refer to
the higher (lower) energy pole near the K̄N (π�) threshold
as K̄N pole (π� pole).

B. Equivalent single-channel potential

Our aim is to construct the K̄N single-channel interaction
for the application to few-body calculations as well as the
�(1405) analysis. In this work, we construct a single-channel
local potential which produces the amplitude equivalent to
the chiral coupled-channel approach. The coordinate space
wave function calculated by the potential is useful to study the
spatial structure of �(1405). In addition, the local potential
is easily implemented in the variational calculations of the
few-body systems [65].

To this end, we first extract the single-channel K̄N
interaction from the coupled-channel scattering equation (1).
We define the effective interaction V eff

11 as

V eff
11 =

N∑
m=2

V1mGmVm1 +
N∑

m,l=2

V1mGmT
(N−1)
ml GlVl1,

T
(N−1)
ml = V

(N−1)
ml +

N∑
k=2

V
(N−1)
mk G

(N−1)
k T

(N−1)
kl

= [(V (N−1))−1 − G(N−1)]−1, m,l = 2,3, . . . ,N.

(3)

The quantities with the superscript (N − 1) are the (N −
1) × (N − 1) matrices. Using this single-channel scattering
equation T11 = [(V eff

11 )−1 − G1]
−1

, the original amplitude is
exactly reproduced. Because of the elimination of the lower-
energy π� channel, the effective K̄N interaction V eff

11 has an
imaginary part.

Next we define the energy-dependent local potential

U (r,E) = g(r)N (E)V eff
11 (E + MN + mK ), (4)

N (E) = MN

2(E + MN + mK )

ωK + EN

ωKEN

, (5)
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FIG. 1. Scattering amplitudes from the local potentials FK̄N (thick lines) and the amplitudes directly from chiral unitary approach F Ch
K̄N

(thin lines) with models ORB [68], HNJH [66,67], BNW [56,57], and BMN [58]. The real (imaginary) parts are shown by the solid (dotted)
lines.

where E, EN , and ωK are, respectively, the nonrelativistic
energy, the energy of the nucleon, and the energy of the
antikaon,

E = √
s − MN − mK,

EN = s − m2
K + M2

N

2
√

s
,

ωK = s − M2
N + m2

K

2
√

s
,

with the mass of the antikaon mK . The spatial distribution
of the potential is governed by g(r), which is normalized
as

∫
d rg(r) = 1. The flux factor N (E) is determined by the

matching with the original amplitude at the K̄N threshold

TABLE I. Pole positions of the original scattering amplitudes
from chiral unitary approach F Ch

K̄N
and the amplitudes from the local

potentials FK̄N . All poles are found in the π� unphysical and K̄N

physical Riemann sheet. The pole at 1440 − 76i in the BMN model
is above the K̄N threshold and hence is not in the most adjacent sheet
to the real axis.

Model Pole position (MeV)

F Ch
K̄N

FK̄N

ORB [68] 1427 − 17i, 1389 − 64i 1419 − 42i

HNJH [66,67] 1428 − 17i, 1400 − 76i 1421 − 35i

BNW [57,59] 1434 − 18i, 1388 − 49i 1404 − 46i

BMN [58] 1421 − 20i, 1440 − 76i 1416 − 27i

in the Born approximation [55]. In this work, we choose a
Gaussian for g(r),

g(r) = 1

π3/2b3
e−r2/b2

,

where the parameter b determines the range of the potential.
Using the local potential, we can calculate the wave function
from the Schrödinger equation,

− 1

2μ

d2u(r)

dr2
+U (r,E)u(r) = Eu(r), (6)

where μ = MNmK/(MN + mK ) is the reduced mass and u(r)
is the s-wave part of the two-body radial wave function. From
the behavior of the wave function at r → ∞, the scattering
amplitude FK̄N can be obtained. In Ref. [55], the parameter b
was determined to match the amplitude FK̄N with the original
amplitude in the �(1405) resonance region. In this work,
we determine the parameter b by the matching of the full
amplitude at the K̄N threshold. This prescription is along the
same line with the determination of the flux factor N (E).

The potential (4) well reproduces the original amplitude
near the K̄N threshold, while the deviation increases in
the energy region far below the threshold. To enlarge the
applicability of the potential, we add the correction 	V (E)
to the strength of the potential,

U (r,E) = g(r)N (E)
[
V eff

11 (E + MN + mK ) + 	V (E)
]
. (7)

For the analytic continuation of the amplitude in the complex
energy plane, it is useful to parametrize the strength of the
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FIG. 2. The contour plot of 	F of the HNJH potential in
Ref. [55]. The unfilled region corresponds to large deviation, 	F > 2.
The precise region is defined as 	F < 0.2. The crosses represent the
original pole positions of �(1405).

potential by a polynomial in the energy,

U (r = 0,E) = g(r = 0)N (E)

[∑
i

Ki

(
E

100 MeV

)i
]
. (8)

We refer to the energy range where the potential is
parametrized as parametrized range, which will be specified
for each potential. We comment on the analytic behavior of
the amplitude calculated from the potential (8). Because the
potential is constructed to reproduce the original amplitude, the
correct analytic behavior is guaranteed within the parametrized
range on the real axis. However, the extrapolation of this
potential to other energy regions should be carefully per-
formed, because some unphysical singularities can, in general,
be developed. This is discussed in detail in the next section.

FIG. 3. The contour plot of 	F of Potential I. The unfilled region
corresponds to large deviation, 	F > 2. The precise region is defined
as 	F < 0.2. The crosses represent the original pole positions of
�(1405).

III. POTENTIAL CONSTRUCTION

In this section, we study how the original amplitude is
reproduced by the K̄N local potential. Examining the previous
method in Ref. [55] in detail, we improve the construction
procedure to reproduce the original amplitude even in the
complex energy plane. Here we mainly employ the amplitude
of the HNJH model [66,67] for the comparison with Ref. [55].
Inclusion of the SIDDHARTA constraint is discussed in the
next section to construct a realistic K̄N potential.

A. Precision of potential in the complex plane

A resonance state is represented by a pole of the scattering
amplitude in the complex energy plane. The pole structure
of the K̄N amplitude is therefore important for the study of
the spatial structure of �(1405). It is considered that the pole
structure of the K̄N system may affect the result of the K̄NN

TABLE II. Properties of the HNJH potential in Ref. [55] and Potential I and Potential II in this work. Shown are the potential range
parameters b, the corrections to the strength of the potentials 	V , the polynomial types of the potential strength in energy, the correction ranges
where 	V is applied, the parametrized ranges by the polynomials, the average deviations 	Freal from the amplitudes of chiral unitary approach
F Ch

K̄N
on the real energy axis, the percentages of the precise region in the complex energy plane, and the pole positions of the amplitudes from

the potentials FK̄N . The pole positions of the original amplitude F Ch
K̄N

are 1428 − 17i MeV and 1400 − 76i MeV.

Ref. [55] Potential I Potential II

b (fm) 0.47 0.46 0.46
	V Real Complex Complex
Polynomial type Third order Third order Tenth order
Correction range 1300–1400 1332–1450 1332–1521
Parametrized range 1300–1450 1332–1450 1332–1521
	Freal 1.4 × 10−1 4.8 × 10−3 4.0 × 10−4

Pcomp 50 68 85
Pole positions (MeV) 1421 − 35i 1427 − 17i 1428 − 17i, 1400 − 77i
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TABLE III. Results of the precision of the potentials against the variation of the parametrized range for the HNJH model. Shown are the
average deviations 	Freal from the amplitudes of chiral unitary approach F Ch

K̄N
on the real energy axis, the percentages of the precise region in

the complex energy plane, and the pole positions of the amplitudes from the potentials FK̄N . The “unphysical poles” stand for the artificial poles
generated between the K̄N and π� thresholds as explained in the text. The pole positions of the original amplitude F Ch

K̄N
are 1428 − 17i MeV

and 1400 − 76i MeV.

Upper boundary (MeV) 	Freal Pcomp Pole positions (MeV)

1450 1.8 × 10−4 59 1428 − 17i, 1388 − 60i, unphysical poles
1500 2.6 × 10−4 71 1428 − 17i, 1404 − 70i, unphysical poles
1521 4.0 × 10−4 85 1428 − 17i, 1400 − 77i

1550 5.9 × 10−4 79 1428 − 17i, 1392 − 82i

1600 6.8 × 10−4 77 1428 − 17i, 1389 − 83i

1650 8.8 × 10−4 77 1428 − 17i, 1389 − 87i

system [42]. We thus focus on the scattering amplitude from
the previous potential in the complex plane.

In Fig. 1, we compare the K̄N (I = 0) scattering amplitude
from the local potential FK̄N in Ref. [55] with the correspond-
ing original amplitude in the chiral unitary approach F Ch

K̄N
for the models ORB [68], HNJH [66,67], BNW [56,57], and
BMN [58] on the real axis. The K̄N amplitudes on the real axis
are reasonably well reproduced by the potentials in Ref. [55].
However, we find a large deviation of the amplitude in the
complex energy plane. In Table I, we list the pole positions
of the scattering amplitudes. While chiral unitary approaches
generate two poles in the �(1405) energy region, the local
potentials give only one pole. In addition, the position of the
pole does not agree with either of the original poles. Hence,
the potential construction procedure should be improved by
paying attention to the amplitude in the complex energy plane.

To improve the construction procedure, we introduce
several quantities to assess the deviation of the amplitudes in
the complex plane. For the discussion of �(1405), we consider
that the following energy region is relevant,1

1332 MeV � Re[z] � 1450 MeV
(9)

−100 MeV � Im[z] � 50 MeV,

where z represents the complex energy of the two-body system.
First, we define the average deviation 	Freal between the
amplitude from the local potential FK̄N and the amplitude
from chiral unitary approach F Ch

K̄N
on the real energy axis as

	Freal =
∫

d
√

s
∣∣F Ch

K̄N
(
√

s) − FK̄N (
√

s)
∣∣∫

d
√

s
∣∣F Ch

K̄N
(
√

s)
∣∣ . (10)

When 	Freal is small, the amplitude on the real axis is well
reproduced by the potential. When 	Freal ∼ 1, it means the
average deviation on the real energy axis reaches the same
amount as the average magnitude of |FK̄N |. With the HNJH
model, we obtain 	Freal = 0.14.

1The lower boundary of Re[z] (1332 MeV) is set at the π�

threshold.

Second, we define the deviation of the amplitude at complex
energy z,

	F (z) =
∣∣∣∣∣F

Ch
K̄N

(z) − FK̄N (z)

F Ch
K̄N

(z)

∣∣∣∣∣. (11)

In this paper, we regard that the amplitude is well reproduced
when the deviation is smaller than 20%:

	F (z) < 0.2. (12)

We call the energy region satisfying this condition the “precise
region.” We also define the percentage of this precise region
in the relevant energy region (9) by

Pcomp =
∫∫

d(Rez)d(Imz)
[0.2 − 	F (z)]∫∫
d(Rez)d(Imz)

× 100. (13)

If the local potential well reproduces the original amplitude
well in the relevant region of the complex energy plane, then we
have Pcomp ∼ 100. The HNJH model gives Pcomp = 50, which

FIG. 4. The contour plot of 	F of Potential II. The unfilled region
corresponds to large deviation, 	F > 2. The precise region is defined
as 	F < 0.2. The crosses represent the original pole positions of
�(1405).
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FIG. 5. The result of the isospin symmetric K̄N amplitude in
the I = 0 channel (thick lines) and the combination of the original
amplitudes (FK−pK−p + 2FK−pK̄0n + FK̄0nK̄0n)/2 with isospin break-
ing [48,49] (thin lines). The real parts are shown by the solid lines,
and the imaginary parts are shown by the dotted lines.

quantifies the insufficiency of the precision in the complex
energy plane.

B. Region near the real axis

We explain how to reproduce the amplitude in the complex
energy plane. We first focus on the region near the real energy
axis including the K̄N pole. Here we use the HNJH model
as an example.2 Let us show the contour plot of 	F in the
complex energy plane with the potential in Ref. [55] in Fig. 2.
Here we choose the most adjacent Riemann sheet to the real
energy axis. It is seen from Fig. 2 that the deviation in the region
around Re[z] ∼ 1400 MeV is larger than the other region. The
deviation of the amplitude should influence the pole positions
of �(1405). The reason for the deviation is that the correction
to the potential 	V has been applied only in the region below

2In this work the range parameter b of the potential is determined
as 0.46 fm by the new prescription explained in Sec. II, in contrast to
b = 0.47 fm of the potential in Ref. [55].

TABLE V. Properties of SIDDHARTA potential (I = 0). Shown
are the potential range parameters b, the corrections to the strength
of the potential 	V , the polynomial type of the potential strength
in energy, the parametrized range by the polynomials, the average
deviation 	Freal from the amplitude of chiral unitary approach F Ch

K̄N

on the real energy axis, the percentage of the precise region in the
complex energy plane, and the pole positions of the amplitude from
the potential FK̄N . The pole positions of the original amplitude F Ch

K̄N

are 1424 − 26i MeV and 1381 − 81i MeV.

SIDDHARTA potential (I = 0)

b (fm) 0.38
	V Complex
Polynomial type Tenth order
Parametrized range (MeV) 1332–1657
	Freal 5.4 × 10−3

Pcomp 96
Pole positions (MeV) 1424 − 26i, 1381 − 81i

1400 MeV in the previous work. Furthermore, the 	V has
been chosen to be real, based on the dominance of the real part
in V eff

11 .
In this work, we add 	V in the relevant energy region for

the K̄N pole, 1332–1450 MeV. Hereafter we call the region
where 	V is applied the correction range. To reproduce the
original amplitude near the �(1405) resonance region, we
introduce the complex correction 	V . As a consequence,
	Freal is significantly reduced. We call the new potential with
the complex 	V “Potential I” and summarize its properties
in Table II together with the property of the corresponding
potential in Ref. [55].

With Potential I, the deviation on the real energy axis 	Freal

is reduced by two orders of magnitude. Thanks to the reduction
of 	Freal, the K̄N pole position is also significantly improved.
We show the contour plot of 	F in Fig. 3. Comparing Fig. 2
with Fig. 3, we find that the precise region (	F < 0.2) of
Potential I satisfying Eq. (12) is extended over the K̄N pole.
The improvement of the pole position can be understood by
this enlargement of the precise region. Quantitatively, Pcomp

in Eq. (13) increases from 50 to 68. In this way, the precision
near the real axis can be improved by introducing the complex
correction 	V in the relevant correction range.

TABLE IV. Results of the precision of the potentials against the variation of the parametrized range for the amplitude with SIDDHARTA
constraint. Shown are the average deviations 	Freal from the amplitudes of chiral unitary approach F Ch

K̄N
on the real energy axis, the percentages

of the precise region in the complex energy plane, and the pole positions of the amplitudes from the potentials FK̄N . The “unphysical poles”
stand for the artificial poles generated between the K̄N and π� thresholds, as explained in the text. The pole positions of the original amplitude
F Ch

K̄N
are 1424 − 26i MeV and 1381 − 81i MeV.

Upper boundary (MeV) 	Freal Pcomp Pole positions (MeV)

1450 0.91×10−3 50 1424 − 28i, 1381 − 49i, unphysical poles
1500 1.7×10−3 62 1424 − 26i, 1395 − 62i, unphysical poles
1550 2.4×10−3 70 1424 − 26i, 1379 − 68i

1600 2.8×10−3 72 1424 − 26i, 1381 − 70i

1650 4.8×10−3 86 1424 − 26i, 1382 − 79i

1657 5.4×10−3 96 1424 − 26i, 1381 − 81i
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FIG. 6. The contour plot of 	F of SIDDHARTA potential (I =
0). The precise region is defined as 	F < 0.2. The crosses represent
the original pole positions of �(1405).

C. Region far from the real axis

While Potential I reproduces the original amplitude near
the real energy axis, the deviation of the amplitude increases
in the region far from the real axis (see Fig. 3) and the π�
pole does not appear. Here we further improve the potential,
paying attention to the region far from the real axis.

In principle, if the original amplitude is completely re-
produced in the whole range on the real energy axis, the
analytic continuation in the complex energy plane is unique.
This suggests that the increase of the parametrized range will
improve the precision of the potential far from the real axis.3

However, there is a limitation of extension of the parametrized
range because of the threshold effect. In the present framework
of the effective single-channel potential with polynomial
parametrization, it is difficult to incorporate the nonanalytic
threshold effect of the other channels. The parametrized range
can only be extended to the nearest thresholds. In this case,
the parametrization of the K̄N potential strength should be
performed between the π� threshold (1331 MeV) and the η�
threshold (1664 MeV). To keep the precision on the real axis
for the larger parametrized range, we increase the degree of
the polynomial from the third order to the tenth order.

To examine the above strategy, we construct the potentials
varying the parametrized range by 1 MeV. The typical results
of 	Freal, Pcomp, and the pole positions of these potentials
are shown in Table III. In all cases, 	Freal is reduced by an
order of magnitude from that of Potential I. This is because
we change the parametrization from the third-order to the
tenth-order polynomial. Though the wider fitting range leads
to the slightly larger 	Freal, the order of magnitude remains
same. In general, when a high-degree polynomial is used for

3In this section, the correction range is chosen to be the same with
the parametrized range.

FIG. 7. Strength of SIDDHARTA potential (I = 0) U (r,E) at
r = 0. The real part is shown by the solid line, and the imaginary part
is shown by the dotted line.

the parametrization, artificial poles appear between the K̄N
and π� thresholds. In the present case, this occurs when
the fitting range is smaller than ∼1500 MeV. However, as
the fitting range increases, these unphysical poles move away
from the relevant energy region and only two physical poles
remain. The K̄N pole appears at the original pole position,
1428 − 17i MeV and is stable against the variation of the
parametrized range. However, the position of the π� pole
depends on the parametrized range. The optimized value of
the upper boundary of the parametrized range is 1521 MeV to
reproduce the original pole position, 1400 − 76i MeV. At the
same time, the maximum value of Pcomp is achieved. We call
the potential with the best parametrized range Potential II. We
show the contour plot of 	F with Potential II in Fig. 4. As
shown in Fig. 4, we succeed in extending the precise region
to Imz ∼ −80 MeV, near the π� pole. As a consequence, we
obtain two poles, both at the correct positions.

It turns out that the largest parametrized range does not
always lead to the best potential. In the present case, this is
because the π� pole position moves along with the change of
the parametrized range. The best potential is achieved when
the π� pole comes closest to the original position.

IV. APPLICATION

In the previous section, we established the construction
procedure to reproduce the original amplitude in the complex
energy plane, considering the high precision on the real
energy axis and the wider parametrized range. In this section,
we apply this procedure to chiral unitary approach with
SIDDHARTA constraint [48,49] and construct the realistic
K̄N local potential. This new potential is then used to estimate
the mean distance between K̄ and nucleon, that is, the spatial
structure of �(1405).

A. Realistic K̄ N potential

As we explained in Sec. I, the constraint from the precise
SIDDHARTA data is crucial for the quantitative calculation of
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TABLE VI. Coefficients Ki in Eq. (8) of the strength of SIDDHARTA potential (I = 0).

K0 (fm) K1 (fm) K2 (fm) K3 (fm)

Re Im Re Im Re Im Re Im

−10.833 −1.8149 −2.7962 −0.643 15 −0.479 80 0.889 91 −0.644 80 −0.552 25

K4 (fm) K5 (fm) K6 (fm) K7 (fm)

Re Im Re Im Re Im Re Im
0.446 45 0.004 839 9 0.089 658 0.473 26 −0.232 22 −0.382 84 0.027 650 −0.072 843

K8 (fm) K9 (fm) K10 (fm)

Re Im Re Im Re Im
0.059 123 0.221 52 −0.024 071 −0.099 375 0.002 220 8 0.014 415

the K̄ and nucleons systems. In this section, we construct the
K̄N local potential based on the amplitude of Refs. [48,49]
with the SIDDHARTA constraint. To apply to the few-body
K̄ nuclei, we construct the potential of the I = 1 amplitude in
addition to the I = 0 channel.

The amplitude of Refs. [48,49] is given in the particle
basis with the isospin breaking effect in the hadron masses.
However, the potential in the isospin basis with isospin
symmetry is useful for various applications. Moreover, in
the practical potential construction procedure, the existence
of multiple thresholds in the particle basis prevents us from
enlarging the parametrized range. We thus construct the isospin
symmetric K̄N amplitude by replacing the physical hadron
masses with the isospin averaged ones keeping the low-energy
constants and subtraction constants the same as Refs. [48,49].
The result of the isospin symmetric K̄N amplitude (I = 0)
is shown in Fig. 5 together with the combination of the
original amplitudes (FK−pK−p + 2FK−pK̄0n + FK̄0nK̄0n)/2 of
Refs. [48,49]. The difference stems from the isospin breaking
effect. From this figure, we find that these amplitudes well
agree with each other except for the tiny region near the K̄N
threshold. Because the difference in the most important region
for �(1405) and the K̄NN systems is negligible, we adopt this
isospin symmetric amplitude to construct the K̄N potential.

Following the construction procedure in Sec. II, here we
determine the Gaussian parameter b = 0.38 fm. We show the
properties of the potentials with various parametrized ranges
in Table IV. The optimal upper boundary of the parametrized
range to reproduce the pole positions is found to be 1657
MeV. We call the best potential SIDDHARTA potential (I =
0). The properties of the SIDDHARTA potential (I = 0) are
summarized in Table V and the contour plot of 	F is shown
in Fig. 6. We find that SIDDHARTA potential (I = 0) well
reproduces the original amplitude in the complex energy plane
(	Freal = 5.4 × 10−3, Pcomp = 96), and the poles of �(1405)
appear at the same position in the accuracy of 1 MeV.4 The
strength of the potential is shown in Fig. 7 as a function of
the energy. The energy dependence of the potential strength is

4We note that the maximum of Pcomp is achieved when the upper
boundary is set to be 1658 MeV. Because the value of Pcomp depends
on the definition of the relevant region (9), we determine the best
potential by the accuracy of the pole positions.

not strong, but is important to precisely reproduce the original
amplitude. The coefficients of the strength Ki in Eq. (8) are
shown in Table VI.

In the same way, we construct the K̄N local potential
for the I = 1 channel from the combination of (FK−pK−p −
2FK−pK̄0n + FK̄0nK̄0n)/2. The range parameter of the potential
is determined to be b = 0.37 fm. In this channel, however, the
natural analytic continuation of the amplitude is not possible,
because of the prescription to avoid the unphysical cut of
the amplitude [57]. In contrast to the I = 0 channel, the best
value of the upper bound of the parametrized range cannot
be determined from the information of the complex energy
plane. Here we use the same parametrized range as that in the
I = 0 channel. This may be sufficient for the present purpose
because the interaction in this channel is not as strong as
the I = 0 channel and the contribution to few-body systems is
considered to be small. In this way, we construct SIDDHARTA
potential (I = 1) whose strength at r = 0 and the coefficients
Ki are shown in Fig. 8 and Table VII, respectively. As expected,
the strength of the real part of the potential is smaller than the
I = 0 counterpart. The imaginary part is similar in magnitude
with I = 0, suggesting that the absorption occurs equally in
I = 0 and I = 1.

FIG. 8. Strength of SIDDHARTA potential (I = 1) U (r,E) at
r = 0. The real part is shown by the solid line, and the imaginary part
is shown by the dotted line.
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TABLE VII. Coefficients Ki in Eq. (8) of the strength of SIDDHARTA potential (I = 1).

K0 (fm) K1 (fm) K2 (fm) K3 (fm)

Re Im Re Im Re Im Re Im

−6.2261 −1.7382 −2.1909 −0.633 00 −0.376 68 −0.082 052 −0.147 82 −0.182 06

K4 (fm) K5 (fm) K6 (fm) K7 (fm)

Re Im Re Im Re Im Re Im
2.9791 0.521 83 −0.532 83 0.297 45 −3.0760 −0.593 89 1.5430 −0.062 035

K8 (fm) K9 (fm) K10 (fm)

Re Im Re Im Re Im
0.646 68 0.368 00 −0.591 41 −0.176 06 0.107 46 0.026 128

B. Spatial structure of �(1405)

We have succeeded in constructing the new K̄N local
potential reliable for the quantitative calculations of the K̄
nuclei. In this section, as a direct application of this new
potential, we estimate the K̄N distance to understand the
spatial structure of �(1405).

Generally, the unstable states are expressed as the poles of
the scattering amplitude in the complex energy plane. As an
analogy of a bound state, the spatial structure of an unstable
state is reflected in the wave function at the pole energy. With
the solution of the radial Schrödinger equation uz(r) at the
complex energy z, the K̄N -wave function in s wave is written
as

ψz(r) = 1√
4π

uz(r)

r
. (14)

The wave function of a resonance state diverges at r → ∞.
Hence, the wave function cannot be normalized by the standard
normalization, ∫

d r|ψ(r)|2 = 1. (15)

Alternatively, the wave function of the non-Hermitian problem
can be normalized with the Gamow vector labeled by the index
G [69,70], ∫

d rψG(r)2 = 1. (16)

In the present problem, the poles of �(1405) are in the
physical Riemann sheet of the K̄N channel. Because the
corresponding eigenmomentum has the positive imaginary
part, the wave function converges at r → ∞.5 Hence, both
the prescriptions (15) and (16) are applicable (see also
Appendix A).

As explained in Appendix B, for a problem with an
energy-dependent potential, we should modify the normal-
ization condition to ensure the conservation of the norm and
the orthogonality relation between two states. The modified

5In the coupled-channel formulation, the wave function of the π�

channel diverges at r → ∞.

normalization condition is∫
d r

[
1 − ∂U (r,E)

∂E

]
ψmod

G (r)
2 = 1. (17)

The expectation value of an operator should be modified in the
similar way. For comparison, we calculate both the expectation
values with Eq. (16) and Eq. (17), and label the latter one by
the index “mod.”

The result of the wave function normalized with Eq. (16)
is shown in Fig. 9. Here we use the precise K̄N pole energy,
1423.97 − 26.28i MeV, to achieve the enough convergence
at r ∼ 10 fm. We note that the wave function has an
imaginary part where the phase is uniquely determined by
the normalization (16). With this wave function, we calculate
the expectation value of r2 as

〈r2〉G ≡
∫

d rr2ψG(r)2. (18)

The result of the mean-squared distance (the root-mean-
squared distance) of the antikaon and the nucleon is 〈r2〉G =
0.79 − 1.21i fm, (

√
〈r2〉G = 1.06 − 0.57i fm). Similarly, the

distance with the modified normalization condition (17) can

FIG. 9. I = 0 K̄N -wave function ψG with the normalization (16)
at the �(1405) pole energy, 1423.97 − 26.28i MeV. The real part is
shown by the solid line, and the imaginary part is shown by the dotted
line.
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TABLE VIII. Averaged K̄N distances at the �(1405) energy.
For comparison, we show the estimations from the form factor of
�(1405) [20] and from the coupled-channel potential model [21].

√
〈r2〉G (fm)

SIDDHARTA potential 1.06 − 0.57i

SIDDHARTA potential (modified) 1.04 − 0.61i

Reference [20] 1.22 − 0.63i

Reference [21] 1.22 − 0.47i

Estimation from eigenmomentum 0.85 − 0.58i

be calculated as

〈r2〉mod
G ≡

∫
d rr2

[
1 − ∂U (r,E)

∂E

]
ψmod

G (r)
2
. (19)

The result of the mean-squared distance (the root-mean-
squared distance) is 〈r2〉mod

G = 0.71 − 1.26i fm, (
√
〈r2〉mod

G =
1.04 − 0.61i fm). It turns out that the modification of the
normalization condition does not change the quantitative result
very much.

In Table VIII, we compare these results with the previous
estimations. In Ref. [20], the radius is calculated by the form
factor of �(1405) in the chiral unitary model [18,19]. The
result in Ref. [21] is obtained by the K̄N -wave function in the
complex scaling method with the coupled-channel potential
model. In both cases, the leading-order Weinberg-Tomozawa
interaction is used, without the constraint by the SIDDHARTA
data. The present result from the next-to-leading-order chiral
interaction with the SIDDHARTA constraint quantitatively
confirms the results of the previous works.

If the spatial extent of the �(1405)-wave function is
sufficiently larger than the potential range, the radius is
determined mainly by the tail of the wave function. Because
the tail is related to the eigenenergy, we can estimate the spatial

FIG. 10. K̄N density distribution ρ in Eq. (23) (thick solid line),
the real part of SIDDHARTA potential (I = 0) (thin solid line), and
the imaginary part (dotted line) at the �(1405) pole energy, 1423.97 −
26.28i MeV.

TABLE IX. The results of the average K̄N distance with
the Gamow vector normalization

√
〈r2〉G and with the standard

normalization method
√

〈r2〉 against the change of the potential
range b.

b (fm)
√

〈r2〉G (fm)
√

〈r2〉 (fm)

0.2 0.96 − 0.58i 1.35
0.38 1.06 − 0.57i 1.44
0.4 1.07 − 0.57i 1.48
0.6 1.18 − 0.57i 1.57
0.8 1.29 − 0.57i 1.67

extent from the eigenenergy E (see Appendix A),

√
〈r2〉G ∼ 1√

2κ2
= 1

2
√−μE

= 0.85 − 0.58i fm. (20)

In this case, the value is same order as the
√

〈r2〉G from the
wave function. This means that the K̄N distance is sufficiently
larger than the range of the potential.

Though 〈r2〉G or 〈r2〉mod
G give us some information about

the spatial structure, it is not straightforward to interpret the
complex number. As explained in Appendix A, the dumpling
of the wave function outside the potential range is related to
the standard expectation value with normalization (15),

〈r2〉 ≡
∫

d r r2|ψ(r)|2. (21)

Here we regard this quantity as the measure of the K̄N
distance. As explained in Appendix B, the modification of the
norm owing to the energy dependence of the potential cannot
be applied without using the Gamow vector. Therefore, we
calculate the K̄N distance with Eq. (21). This is convincing,
because the values of

√
〈r2〉G and

√
〈r2〉mod

G are almost same
as shown in Table VIII. The result of the K̄N distance with
Eq. (21) is found to be√

〈r2〉 = 1.44 fm. (22)

Considering the charge radii of the proton and K− are about
0.85 and 0.55 fm [71], we find that the K̄N distance is
relatively large in comparison with the usual hadron size.
Therefore, we conclude that �(1405) is the molecular state of
the antikaon and the nucleon. To visualize the spatial structure,
we define the density distribution

ρ(r) = r2|ψ(r)|2, (23)

which is shown in Fig. 10. The substantial distribution exists
outside the potential range b = 0.38 fm.

Finally, we investigate the K̄N distance against the change
of the potential range b. The strength of the potential is adjusted
to reproduce the original amplitude for each b. The results of√

〈r2〉G and
√

〈r2〉 are shown in Table IX. In all cases, the
values of

√
〈r2〉 remain larger than the typical hadron size. We

find that the qualitative picture of the molecular state is valid
irrespective of the potential range.
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V. SUMMARY

We have constructed the new K̄N local potential (SID-
DHARTA potential) which reproduces the scattering ampli-
tude from the chiral SU(3) dynamics. In the construction
procedure, we have paid attention to the two steps: the
precision in the complex energy plane and the constraint from
the recent SIDDHARTA data. This new potential is useful for
the quantitative calculation of the interesting systems such as
K̄ few-body systems and the �(1405).

We first establish the procedure of potential construction
by improving the previous work [55]. The previous potential
almost reproduced the original amplitude on the real energy
axis, while we have found that there is a substantial deviation
in the complex energy plane, including the poles of �(1405).
Therefore, we need to improve the potential construction pro-
cedure to reproduce the original amplitude even in the complex
energy plane. We find that the reduction of the deviation on
the real energy axis 	Freal in the wide parametrized range is
important, based on the uniqueness of the analytic continuation
in the complex energy plane. Thanks to these improvements,
we have succeeded in reproducing the original amplitude in
the drastically large region in the complex plane including the
two poles of �(1405).

Next, we have applied the new procedure to the amplitude
with the SIDDHARTA constraint to construct the realistic
K̄N potential. Here we produce the K̄N amplitude with
isospin symmetry from the coupled-channel chiral model in
Refs. [48,49]. Based on these amplitudes, we have constructed
the realistic K̄N local potentials for the I = 0 and I = 1
channels. The I = 0 local potential reproduces the original
amplitude in the complex energy plane including the poles
of �(1405). At the present time, this is the most reliable
local K̄N potential for the quantitative calculations. Applying
this new potential to �(1405), we have estimated the spatial
structure of �(1405). The mean distance of K̄ and N is found
to be 1.44 fm. This result shows the meson-baryon molecular
nature of �(1405).

As a future perspective, the calculation of the K̄NN system
with the new reliable potential is of particular importance. We
hope that this result will bring new insight in the theoretical
and experimental studies of the K̄NN system.
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APPENDIX A: AVERAGE DISTANCE OF
QUASI-BOUND STATE

In this appendix, we consider the mean-squared radius
of a quasibound state in comparison with a bound state in
the zero-range limit. When the spatial extent of the wave
function is much larger than the potential range, we can
treat the potential in the zero-range approximation. In this
case, the mean-squared radius 〈r2〉 is determined only by the

eigenmomentum k, where k = iκ (κ > 0) for the bound state
and k = iκ − γ (κ,γ > 0) for the quasibound state.

In the zero-range limit, the radial wave function of the
(quasi-)bound state in s wave is written as

u(r) → Aeikr , (A1)

where u(r) is related to the wave function as ψ(r) =
u(r)/(

√
4πr). The normalization condition determines the

factor A. We consider two normalization conditions,

〈ψ |ψ〉 =
∫

d r|ψ(r)|2 = 1, (A2)

G〈ψ |ψ〉G =
∫

d rψ(r)2 = 1, (A3)

where the former is the standard normalization, whereas the
latter uses the Gamow vector labeled by G. In the zero-range
limit, these conditions are expressed as

〈ψ |ψ〉 → |A|2
∫ ∞

0
dre−2Im[k]r = |A|2

2Im[k]
= 1,

G〈ψ |ψ〉G → A2
∫ ∞

0
dre2ikr = A2

2ik
= 1.

These integrals converge for the bound state or the quasibound
state because Im[k] > 0.6 The normalized wave functions are
written as

ψ(r) → A

|A|

√
Im[k]

2π

eikr

r
≡ eiθ

√
Im[k]

2π

eikr

r
, (A4)

ψG(r) →
√

−ik

2π

eikr

r
, (A5)

where θ is an arbitrary real constant. In the standard normal-
ization, physical observables are independent of the phase of
the wave function, so θ is an irrelevant phase. In the case of
the bound state k = iκ , Eq. (A4) and Eq. (A5) are equivalent.
However, these wave functions of the quasibound state are, in
general, different, ψ 
= ψG.

With these wave functions, we can calculate the mean-
squared radius,

〈r2〉 =
∫

d rr2|ψ(r)|2

→ Imk

2π
4π

∫ ∞

0
drr2e−2Im[k]r

= 1

2(Im[k])2
, (A6)

〈r2〉G =
∫

d rr2ψG(r)2

→ −ik

2π
4π

∫ ∞

0
drr2e2ikr

= 1

2(−ik)2
. (A7)

6The resonance wave function (Im[κ]< 0) can be normalized only
by Eq. (A3) with appropriate prescription [70].
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In the case of the bound state k = iκ (κ > 0), both the
normalizations give the same result,

〈r2〉 = 〈r2〉G = 1

2κ2
(bound state). (A8)

For the quasibound state, Eq. (A6) and Eq. (A7) are different:

〈r2〉 = 1

2κ2
, (A9)

〈r2〉G = 1

2κ2 + 4iκγ − 2γ 2
(quasibound state). (A10)

Equation (A9) gives a real number for the mean-squared ra-
dius, while Eq. (A10) gives a complex number. It is common to
use the Gamow vector [69,70,72] for unstable states. Because
the radial wave function of the quasibound state asymptotically
behaves as eikr , Eq. (A7) is the natural extension of the bound
state. We therefore use the normalization with the Gamow
vector in Fig. 9 and Table VIII.

However, it is difficult to extract the spatial information
from the complex 〈r2〉G in Eq. (A10). We note that the dumping
of the wave function of the quasibound state is expressed
by e−Im[k]r in the asymptotic behavior eikr . In this sense, we
consider that the real 〈r2〉 with the standard normalization,
which is determined by Im[k], can be interpreted as the spatial
extent of the quasibound state. Hence, in this paper, we use
〈r2〉 to estimate the spactial extent of the K̄N quasibound state,
�(1405).

APPENDIX B: ENERGY-DEPENDENT
COMPLEX POTENTIAL

As explained in Refs. [73–78], the careful treatment is
necessary for the system with the energy-dependent potential.
Here we explain the treatment in the cases of real potential and
complex one.

First we summarize the case of the energy-dependent real
potential, following Ref. [77]. We consider the Schrödinger
equation with a time-dependent wave function �(r,t),7 with
μ = 1,

i
∂�(r,t)

∂t
= H�(r,t)

=
[
−1

2
∇2 + V

(
r,i

∂

∂t

)]
�(r,t). (B1)

For an eigenfunction of the Hamiltonian, �E(r,t) =
e−iEtψE(r), the time-independent Schrödinger equation be-
comes

HψE(r) = [− 1
2∇2 + V (r,E)

]
ψE(r) = EψE(r). (B2)

With Eq. (B1), the continuity equation for energy-dependent
potential can be calculated as

∂

∂t
P = ∂�∗

E′

∂t
�E + �∗

E′
∂�E

∂t

=
[
−i

{
−1

2
∇2 + V (r,E′)

}
�E′

]∗
�E

7Here we assume that the wave function is normalizable.

+�∗
E′

[
−i

{
−1

2
∇2 + V (r,E)

}
�E

]
= −∇ · j + i�∗

E′ [V (r,E′) − V (r,E)]�E, (B3)

where

P = �∗
E′(r,t)�E(r,t),

j = − i

2
[�∗

E′(r,t)∇�E(r,t) − {∇�∗
E′(r,t)}�E(r,t)].

For the energy-independent potential, the second term of the
last line in Eq. (B3) disappears and the usual continuity
equation ∂P/∂t = −∇ · j can hold. However, for the energy-
dependent potential, the additional term has to be included.
Using the Schrödinger equation, i∂�E/∂t = E�E , we obtain
the relation,

∂

∂t

{
�∗

E′

[
V (E′) − V (E)

E′ − E

]
�E

}

= ∂�∗
E′

∂t

[
V (E′) − V (E)

E′ − E

]
�E

+ �∗
E′

[
V (E′) − V (E)

E′ − E

]
∂�E

∂t

= {−iE′�E′ }∗
[
V (E′) − V (E)

E′ − E

]
�E

+ �∗
E′

[
V (E′) − V (E)

E′ − E

]
{−iE′�E}

= i�∗
E′[V (E′) − V (E)]�E, (B4)

and the continuity equation for the energy-dependent potential
can be modified as

∂

∂t
(P + Pa) = −∇ · j , (B5)

where

Pa = −�∗
E′ (r,t)

[
V (r,E′) − V (r,E)

E′ − E

]
�E(r,t).

Therefore, taking the limit of E′ → E, the norm N can be
modified as

N =
∫

d r�∗
E(r,t)

[
1 − ∂V (r,E)

∂E

]
�E(r,t)

=
∫

d rψ∗
E(r)

[
1 − ∂V (r,E)

∂E

]
ψE(r). (B6)

Furthermore, the orthogonality relation can be modified as∫
d rψ∗

E′(r)

[
1 − V (r,E′) − V (r,E)

E′ − E

]
ψE(r) = 0,

(B7)
(E′ 
= E).

Actually, the usual orthogonality relation is not satisfied
because the term with Pa remains nonzero after integrating
Eq. (B5) with respect to r .

The above method cannot be directly applied to the case
of the complex potential. In this case, following the same
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procedure, Pa is obtained as

Pa = −�∗
E′(r,t)

[
V ∗(r,E′) − V (r,E)

E′ − E

]
�E(r,t).

Because V ∗(E) 
= V (E) for the complex potential, taking the
limit of E′ → E, this term diverges and does not become the
derivative of the potential. When we treat the complex potential
problem, it is common to use the adjoint wave function �† [69],
which satisfies the Schrödinger equation,

i
∂�†(r,t)

∂t
= H †�†(r,t). (B8)

Under the adequate boundary condition [69], the time-
independent eigenfunction ψ

†
E has the following properties:

H †ψ†
E(r) = H ∗ψ†

E(r)

=
[
− 1

2m
∇2 + V ∗(r,E)

]
ψ

†
E(r) = E∗ψ†

E(r),

(B9)

ψ
†
E(r) = ψ∗

E(r),

�
†
E(r,t) = e−iE∗tψ

†
E(r) = e−iE∗tψ∗

E(r). (B10)

With this adjoint wave function, we consider the continuity
equation again, labeling the quantities with the adjoint function
by the index “G”,

∂

∂t
P G = ∂�

†∗
E′

∂t
�E + �

†∗
E′

∂�E

∂t

=
[
−i

{
−1

2
∇2 + V ∗(E′)

}
�

†
E′

]∗
�E

+ �
†∗
E′

[
−i

{
−1

2
∇2 + V (E)

}
�E

]

= −∇ · jG + i�
†∗
E′ [V (E′) − V (E)]�E, (B11)

where

P G = �
†∗
E′ (r,t)�E(r,t),

jG = − i

2
[�†∗

E′ (r,t)∇�E(r,t) − {∇�
†∗
E′ (r,t)}�E(r,t)].

Following the same procedure as in Eq. (B4), the continuity
equation for the complex energy-dependent potential can be
satisfied,

∂

∂t

(
P G + P G

a

) = −∇ · jG, (B12)

where

P G
a = −�

†∗
E′ (r,t)

[
V (r,E′) − V (r,E)

E′ − E

]
�E(r,t).

Therefore, we should modify the norm and the orthogonality
relation as

N =
∫

d r�†∗
E (r,t)

[
1 − ∂V (r,E)

∂E

]
�E(r,t)

=
∫

d rψE(r)

[
1 − ∂V (r,E)

∂E

]
ψE(r), (B13)∫

d rψE′(r)

[
1 − V (r,E′) − V (r,E)

E′ − E

]
ψE(r) = 0,

(B14)
(E′ 
= E).

[1] R. Dalitz and S. Tuan, Phys. Rev. Lett. 2, 425 (1959).
[2] R. Dalitz and S. Tuan, Ann. Phys. 10, 307 (1960).
[3] N. Isgur and G. Karl, Phys. Rev. D 18, 4187 (1978).
[4] J. K. Kim, Phys. Rev. Lett. 14, 29 (1965).
[5] J. K. Kim, Phys. Rev. Lett. 19, 1074 (1967).
[6] B. R. Martin, Phys. Rev. 175, 2034 (1968).
[7] B. R. Martin and M. Sakitt, Phys. Rev. 183, 1345 (1969).
[8] B. R. Martin and M. Sakitt, Phys. Rev. 183, 1352 (1969).
[9] A. D. Martin, Phys. Lett. B 65, 346 (1976).

[10] A. D. Martin, Nucl. Phys. B 179, 33 (1981).
[11] N. Kaiser, P. Siegel, and W. Weise, Nucl. Phys. A 594, 325

(1995).
[12] E. Oset and A. Ramos, Nucl. Phys. A 635, 99 (1998).
[13] J. Oller and U. G. Meissner, Phys. Lett. B 500, 263 (2001).
[14] M. F. M. Lutz and E. E. Kolomeitsev, Nucl. Phys. A 700, 193

(2002).
[15] T. Hyodo and D. Jido, Prog. Part. Nucl. Phys. 67, 55 (2012).
[16] J. M. M. Hall, W. Kamleh, D. B. Leinweber, B. J. Menadue,

B. J. Owen, A. W. Thomas, and R. D. Young, Phys. Rev. Lett.
114, 132002 (2015).

[17] T. Yamazaki and Y. Akaishi, Phys. Rev. C 76, 045201 (2007).
[18] T. Sekihara, T. Hyodo, and D. Jido, Phys. Lett. B 669, 133

(2008).
[19] T. Sekihara, T. Hyodo, and D. Jido, Phys. Rev. C 83, 055202

(2011).

[20] T. Sekihara and T. Hyodo, Phys. Rev. C 87, 045202 (2013).
[21] A. Dote and T. Myo, Nucl. Phys. A 930, 86 (2014).
[22] M. Niiyama et al., Phys. Rev. C 78, 035202 (2008).
[23] G. Agakishiev et al. (HADES Collaboration), Phys. Rev. C 87,

025201 (2013).
[24] K. Moriya et al. (CLAS Collaboration), Phys. Rev. C 87, 035206

(2013).
[25] K. Moriya et al. (CLAS Collaboration), Phys. Rev. C 88, 045201

(2013).
[26] K. Moriya et al. (CLAS Collaboration), Phys. Rev. Lett. 112,

082004 (2014).
[27] Y. Nogami, Phys. Lett. 7, 288 (1963).
[28] Y. Akaishi and T. Yamazaki, Phys. Rev. C 65, 044005

(2002).
[29] T. Yamazaki and Y. Akaishi, Phys. Lett. B 535, 70 (2002).
[30] M. Agnello et al., Phys. Rev. Lett. 94, 212303 (2005).
[31] G. Bendiscioli et al., Nucl. Phys. A 789, 222 (2007).
[32] T. Yamazaki et al., Phys. Rev. Lett. 104, 132502 (2010).
[33] Y. Ichikawa et al., PTEP 2015, 021D01 (2014).
[34] A. Tokiyasu et al. (LEPS Collaboration), Phys. Lett. B 728, 616

(2014).
[35] T. Hashimoto et al. (J-PARC E15 Collaboration), PTEP 2015,

061D01 (2014).
[36] G. Agakishiev et al. (HADES Collaboration), Phys. Lett. B 742,

242 (2015).

015201-13

http://dx.doi.org/10.1103/PhysRevLett.2.425
http://dx.doi.org/10.1103/PhysRevLett.2.425
http://dx.doi.org/10.1103/PhysRevLett.2.425
http://dx.doi.org/10.1103/PhysRevLett.2.425
http://dx.doi.org/10.1016/0003-4916(60)90001-4
http://dx.doi.org/10.1016/0003-4916(60)90001-4
http://dx.doi.org/10.1016/0003-4916(60)90001-4
http://dx.doi.org/10.1016/0003-4916(60)90001-4
http://dx.doi.org/10.1103/PhysRevD.18.4187
http://dx.doi.org/10.1103/PhysRevD.18.4187
http://dx.doi.org/10.1103/PhysRevD.18.4187
http://dx.doi.org/10.1103/PhysRevD.18.4187
http://dx.doi.org/10.1103/PhysRevLett.14.29
http://dx.doi.org/10.1103/PhysRevLett.14.29
http://dx.doi.org/10.1103/PhysRevLett.14.29
http://dx.doi.org/10.1103/PhysRevLett.14.29
http://dx.doi.org/10.1103/PhysRevLett.19.1074
http://dx.doi.org/10.1103/PhysRevLett.19.1074
http://dx.doi.org/10.1103/PhysRevLett.19.1074
http://dx.doi.org/10.1103/PhysRevLett.19.1074
http://dx.doi.org/10.1103/PhysRev.175.2034
http://dx.doi.org/10.1103/PhysRev.175.2034
http://dx.doi.org/10.1103/PhysRev.175.2034
http://dx.doi.org/10.1103/PhysRev.175.2034
http://dx.doi.org/10.1103/PhysRev.183.1345
http://dx.doi.org/10.1103/PhysRev.183.1345
http://dx.doi.org/10.1103/PhysRev.183.1345
http://dx.doi.org/10.1103/PhysRev.183.1345
http://dx.doi.org/10.1103/PhysRev.183.1352
http://dx.doi.org/10.1103/PhysRev.183.1352
http://dx.doi.org/10.1103/PhysRev.183.1352
http://dx.doi.org/10.1103/PhysRev.183.1352
http://dx.doi.org/10.1016/0370-2693(76)90239-2
http://dx.doi.org/10.1016/0370-2693(76)90239-2
http://dx.doi.org/10.1016/0370-2693(76)90239-2
http://dx.doi.org/10.1016/0370-2693(76)90239-2
http://dx.doi.org/10.1016/0550-3213(81)90247-9
http://dx.doi.org/10.1016/0550-3213(81)90247-9
http://dx.doi.org/10.1016/0550-3213(81)90247-9
http://dx.doi.org/10.1016/0550-3213(81)90247-9
http://dx.doi.org/10.1016/0375-9474(95)00362-5
http://dx.doi.org/10.1016/0375-9474(95)00362-5
http://dx.doi.org/10.1016/0375-9474(95)00362-5
http://dx.doi.org/10.1016/0375-9474(95)00362-5
http://dx.doi.org/10.1016/S0375-9474(98)00170-5
http://dx.doi.org/10.1016/S0375-9474(98)00170-5
http://dx.doi.org/10.1016/S0375-9474(98)00170-5
http://dx.doi.org/10.1016/S0375-9474(98)00170-5
http://dx.doi.org/10.1016/S0370-2693(01)00078-8
http://dx.doi.org/10.1016/S0370-2693(01)00078-8
http://dx.doi.org/10.1016/S0370-2693(01)00078-8
http://dx.doi.org/10.1016/S0370-2693(01)00078-8
http://dx.doi.org/10.1016/S0375-9474(01)01312-4
http://dx.doi.org/10.1016/S0375-9474(01)01312-4
http://dx.doi.org/10.1016/S0375-9474(01)01312-4
http://dx.doi.org/10.1016/S0375-9474(01)01312-4
http://dx.doi.org/10.1016/j.ppnp.2011.07.002
http://dx.doi.org/10.1016/j.ppnp.2011.07.002
http://dx.doi.org/10.1016/j.ppnp.2011.07.002
http://dx.doi.org/10.1016/j.ppnp.2011.07.002
http://dx.doi.org/10.1103/PhysRevLett.114.132002
http://dx.doi.org/10.1103/PhysRevLett.114.132002
http://dx.doi.org/10.1103/PhysRevLett.114.132002
http://dx.doi.org/10.1103/PhysRevLett.114.132002
http://dx.doi.org/10.1103/PhysRevC.76.045201
http://dx.doi.org/10.1103/PhysRevC.76.045201
http://dx.doi.org/10.1103/PhysRevC.76.045201
http://dx.doi.org/10.1103/PhysRevC.76.045201
http://dx.doi.org/10.1016/j.physletb.2008.09.023
http://dx.doi.org/10.1016/j.physletb.2008.09.023
http://dx.doi.org/10.1016/j.physletb.2008.09.023
http://dx.doi.org/10.1016/j.physletb.2008.09.023
http://dx.doi.org/10.1103/PhysRevC.83.055202
http://dx.doi.org/10.1103/PhysRevC.83.055202
http://dx.doi.org/10.1103/PhysRevC.83.055202
http://dx.doi.org/10.1103/PhysRevC.83.055202
http://dx.doi.org/10.1103/PhysRevC.87.045202
http://dx.doi.org/10.1103/PhysRevC.87.045202
http://dx.doi.org/10.1103/PhysRevC.87.045202
http://dx.doi.org/10.1103/PhysRevC.87.045202
http://dx.doi.org/10.1016/j.nuclphysa.2014.08.041
http://dx.doi.org/10.1016/j.nuclphysa.2014.08.041
http://dx.doi.org/10.1016/j.nuclphysa.2014.08.041
http://dx.doi.org/10.1016/j.nuclphysa.2014.08.041
http://dx.doi.org/10.1103/PhysRevC.78.035202
http://dx.doi.org/10.1103/PhysRevC.78.035202
http://dx.doi.org/10.1103/PhysRevC.78.035202
http://dx.doi.org/10.1103/PhysRevC.78.035202
http://dx.doi.org/10.1103/PhysRevC.87.025201
http://dx.doi.org/10.1103/PhysRevC.87.025201
http://dx.doi.org/10.1103/PhysRevC.87.025201
http://dx.doi.org/10.1103/PhysRevC.87.025201
http://dx.doi.org/10.1103/PhysRevC.87.035206
http://dx.doi.org/10.1103/PhysRevC.87.035206
http://dx.doi.org/10.1103/PhysRevC.87.035206
http://dx.doi.org/10.1103/PhysRevC.87.035206
http://dx.doi.org/10.1103/PhysRevC.88.045201
http://dx.doi.org/10.1103/PhysRevC.88.045201
http://dx.doi.org/10.1103/PhysRevC.88.045201
http://dx.doi.org/10.1103/PhysRevC.88.045201
http://dx.doi.org/10.1103/PhysRevLett.112.082004
http://dx.doi.org/10.1103/PhysRevLett.112.082004
http://dx.doi.org/10.1103/PhysRevLett.112.082004
http://dx.doi.org/10.1103/PhysRevLett.112.082004
http://dx.doi.org/10.1016/0031-9163(63)90336-6
http://dx.doi.org/10.1016/0031-9163(63)90336-6
http://dx.doi.org/10.1016/0031-9163(63)90336-6
http://dx.doi.org/10.1016/0031-9163(63)90336-6
http://dx.doi.org/10.1103/PhysRevC.65.044005
http://dx.doi.org/10.1103/PhysRevC.65.044005
http://dx.doi.org/10.1103/PhysRevC.65.044005
http://dx.doi.org/10.1103/PhysRevC.65.044005
http://dx.doi.org/10.1016/S0370-2693(02)01738-0
http://dx.doi.org/10.1016/S0370-2693(02)01738-0
http://dx.doi.org/10.1016/S0370-2693(02)01738-0
http://dx.doi.org/10.1016/S0370-2693(02)01738-0
http://dx.doi.org/10.1103/PhysRevLett.94.212303
http://dx.doi.org/10.1103/PhysRevLett.94.212303
http://dx.doi.org/10.1103/PhysRevLett.94.212303
http://dx.doi.org/10.1103/PhysRevLett.94.212303
http://dx.doi.org/10.1016/j.nuclphysa.2007.03.010
http://dx.doi.org/10.1016/j.nuclphysa.2007.03.010
http://dx.doi.org/10.1016/j.nuclphysa.2007.03.010
http://dx.doi.org/10.1016/j.nuclphysa.2007.03.010
http://dx.doi.org/10.1103/PhysRevLett.104.132502
http://dx.doi.org/10.1103/PhysRevLett.104.132502
http://dx.doi.org/10.1103/PhysRevLett.104.132502
http://dx.doi.org/10.1103/PhysRevLett.104.132502
http://dx.doi.org/10.1016/j.physletb.2013.12.039
http://dx.doi.org/10.1016/j.physletb.2013.12.039
http://dx.doi.org/10.1016/j.physletb.2013.12.039
http://dx.doi.org/10.1016/j.physletb.2013.12.039
http://dx.doi.org/10.1016/j.physletb.2015.01.032
http://dx.doi.org/10.1016/j.physletb.2015.01.032
http://dx.doi.org/10.1016/j.physletb.2015.01.032
http://dx.doi.org/10.1016/j.physletb.2015.01.032


KENTA MIYAHARA AND TETSUO HYODO PHYSICAL REVIEW C 93, 015201 (2016)

[37] N. V. Shevchenko, A. Gal, and J. Mares, Phys. Rev. Lett. 98,
082301 (2007).

[38] N. V. Shevchenko, A. Gal, J. Mares, and J. Revai, Phys. Rev. C
76, 044004 (2007).

[39] Y. Ikeda and T. Sato, Phys. Rev. C 76, 035203 (2007).
[40] A. Dote, T. Hyodo, and W. Weise, Nucl. Phys. A 804, 197

(2008).
[41] A. Dote, T. Hyodo, and W. Weise, Phys. Rev. C 79, 014003

(2009).
[42] Y. Ikeda, H. Kamano, and T. Sato, Prog. Theor. Phys. 124, 533

(2010).
[43] N. Barnea, A. Gal, and E. Liverts, Phys. Lett. B 712, 132 (2012).
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