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Entropy production in chemically nonequilibrium quark-gluon plasma created in central Pb + Pb
collisions at energies available at the CERN Large Hadron Collider
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We study the possibility that partonic matter produced at an early stage of ultrarelativistic heavy-ion collisions
is out of chemical equilibrium. It is assumed that initially this matter is mostly composed of gluons, but quarks
and antiquarks are produced at later times. The dynamical evolution of partonic system is described by the
Bjorken-like ideal hydrodynamics with a time-dependent quark fugacity. The results of this model are compared
with those obtained by assuming the complete chemical equilibrium of partons already at the initial stage. It is
shown that in a chemically nonequilibrium scenario the entropy gradually increases, and about 25% of the total
final entropy is generated during the hydrodynamic evolution of deconfined matter. We argue that the (anti)quark
suppression included in this approach may be responsible for reduced (anti)baryon-to-meson ratios observed in
heavy-ion collisions at energies available at the CERN Large Hadron Collider.
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I. INTRODUCTION

Relativistic heavy-ion collisions open the possibility to
create in the laboratory strongly interacting matter under
extreme conditions of high excitation energies and particle
densities. One of the central questions is how the initial
highly nonequilibrated system evolves to a state of partial
thermodynamic equilibrium. There exist several models which
describe the initial state in terms of nonequilibrium parton
cascades [1,2], minijets [3], color glass condensate [4],
coherent chromofields [5,6], etc.

Relatively large gluon-gluon cross sections lead to the idea
[7] that the gluonic components of colliding nucleons interact
more strongly than the quark-antiquark ones. As demonstrated
in Ref. [8], strong nonequilibrium effects in the gluonic sector
persist only for a short time ∼1/Qs , where Qs � 1–2 GeV
is the so-called saturation scale [9], but at later times the
system reaches a state of a partial thermodynamic equilibrium.
The two-step equilibration scenario of the quark-gluon plasma
(QGP) was proposed in [10–12]. It was assumed that the gluon
thermalization takes place at the proper time τg < 1 fm/c and
the (anti)quarks equilibration occurs at τth > τg . The estimates
of Ref. [2] show that τth can be of the order of 5 fm/c. Later,
such a scenario for heavy-ion collisions was considered by
several authors; see, e.g., [13–22]. Recently the pure glue
scenario for the initial state of Pb + Pb collisions at Relativistic
Heavy Ion Collider (RHIC) and Large Hadron Collider (LHC)
energies was proposed in [23,24].

In this paper we describe the evolution of QGP produced in
central heavy-ion collisions by using one-dimensional scaling
hydrodynamics. In addition to the chemically equilibrated
system we also consider a pure glue initial scenario, in which
the QGP contains no quarks and antiquarks at the initial state

of its evolution. Below we introduce the effective number
of quark degrees of freedom and study the sensitivity of
system evolution to the chemical equilibration time. Special
attention is paid to the entropy production in this chemically
nonequilibrium scenario. It is commonly accepted that an
additional entropy can be created due to dissipative processes
which are usually described in the framework of viscous
hydrodynamics. In the present work, a different mechanism
of entropy production is investigated: we show that it may
increase during chemically nonequilibrium expansion of
matter even in the ideal hydrodynamics. Earlier the role of
chemically nonequilibrium effects in entropy evolution of
purely hadronic systems was considered in Refs. [25,26], but
without a quantitative analysis of the total entropy change.

The paper is organized as follows: In Sec. II we study
thermodynamic functions of a chemically undersaturated QGP
(uQGP) at different temperatures and quark fugacities. We
obtain explicit relations for relative entropy growth in different
scenarios of the system evolution. In Sec. III we formulate a
simplified model for describing the hydrodynamic evolution
of uQGP in heavy-ion collisions. In Sec. IV we present our
numerical results and analyze their sensitivity to chemical
equilibration time. The summary and outlook are given in
Sec. V. Some preliminary results of this paper were presented
in Ref. [24].

II. THERMODYNAMICS OF CHEMICALLY
UNDERSATURATED QGP

Below we describe the QGP matter produced in heavy-
ion collisions by the equation of state (EoS) of an ideal
gluon-quark-antiquark gas. It is assumed that gluons are in
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full thermodynamic equilibrium while quarks and antiquarks
are in thermal equilibrium, but not necessarily in chemical
equilibrium. In this section the thermodynamic functions
of chemically nonequilibrium QGP are obtained, and the
chemical equilibration process in a static box is investigated.

A. Thermodynamic functions of uQGP

In the following we consider systems with equal numbers
of quarks and antiquarks. In the pure glue initial scenario
there is undersaturation of (anti)quarks, hence, their chemical
potentials are negative:

μq = μq ≡ μ < 0. (1)

We define the (anti)quark fugacity as

λ = e μ/T < 1. (2)

The phase-space distribution functions of the ideal gas of
massless quarks and antiquarks can be written as1

fq( p) = fq( p) = gq

(2π )3

[
exp

(
p − μ

T

)
+ 1

]−1

= gqλ

(2π )3

[
exp

(p

T

)
+ λ

]−1
, (3)

where p is the (anti)quark three–momentum in the fluid’s rest
frame and the degeneracy factor gq = 2 Nc Nf , where Nc = 3
is the number of colors, and Nf is the number of quark flavors.
Unless stated otherwise, we assume that Nf = 3.

The Fermi-Dirac integral of the nth order is defined as

ϕ n(λ) = λ

�(n)

∫ ∞

0

dx xn−1

ex + λ
=

∞∑
k=1

(−1)k+1λk k−n. (4)

It is easy to show that ϕ ′
n = ϕ n−1/λ, and, therefore, ϕn(λ)

monotonically increases in the interval λ ∈ [0; 1]. Instead of
ϕ n it is useful to introduce the function

�n(λ) ≡ ϕ n(λ)

ϕ n(1)
= λ − λ2 2−n + λ3 3−n − · · ·

1 − 2−n + 3−n − · · · , (5)

which is normalized to unity at λ = 1. The functions λ, �3,
and �4 are compared in Fig. 1. It is seen that they are very
close to each other. Thus, one can safely use the approximate
relations �4 � λ and �3 � λ.

Using Eq. (3), one can represent the partial energy density
εq and pressure Pq of quarks and antiquarks as functions of T
and μ:

εq = 3Pq =
∫

d 3p (fq + fq)p

= λgq

π2

∫ ∞

0
dp p 3

(
ep/T + λ

)−1

= 6gq

π2
T 4ϕ4(λ) = 3P eq

q (T ) �4(λ), (6)

1Units � = c = k = 1 are used throughout the paper.

FIG. 1. The functions �3 and �4 versus the quark fugacity λ.

where

P eq
q (T ) = 2 gq

π2
T 4ϕ4(1) = 7π2

6 0
Nf T 4 (7)

is the chemically equilibrated value of the (anti)quark pressure
at λ = 1. Here and below we use the superscript “eq” to mark
characteristics of chemically equilibrated matter.

By using Eq. (6), one can calculate the total density of
quarks and antiquarks,

nq =
(

∂Pq

∂μ

)
T

= 2 gq

π2
T 3ϕ 3(λ) = neq

q (T ) �3(λ), (8)

where

neq
q (T ) = 2 gqT

3

π2
ϕ 3(1) (9)

is the chemically equilibrated value of the (anti)quark density.
The above equations show that �3 and �4 are, respectively,
the suppression factors of density and energy density of
(anti)quarks in the hot glue initial scenario as compared to
the equilibrium case.2 Using Eq. (2) one can evaluate the
contribution of (anti)quarks to the entropy density,3

sq =
(

∂Pq

∂T

)
μ

= 4Pq

T
+ nq ln (λ−1). (10)

Neglecting deviations from chemical equilibrium for gluons
we get the following relations for gluonic parts of energy
density εg , pressure Pg , and entropy density sg:

εg = 3Pg = 3

4
sgT = 8 π2

15
T 4. (11)

Adding the contributions of gluons, quarks, and antiquarks
gives the expressions for the total energy density ε, pressure

2As follows from the relations �3 � �4 � λ, both these suppres-
sion factors are approximately equal to the quark fugacity λ.

3The same relation follows from the thermodynamic identity T sq =
εq + Pq − μnq .
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P , and entropy density s density of the uQGP:

ε = 3P = 8 π2

15
T 4[1 + α�4(λ)], (12)

s = 32 π2

45
T 3[1 + α�4(λ) − β�3(λ) ln λ], (13)

where

α = 7gq

64
� 0.656 Nf , β = 45 gq

16 π4
ϕ3(1) � 0.156 Nf .

(14)

In the last equality of Eq. (14) we use the relation ϕ3(1) =
3 ξ (3)/4, where ξ (3) � 1.20 2 is the Riemann zeta function
ξ (x) = ∑∞

k=1 k−x at x = 3.

B. Equilibration in a box

Let us consider first the evolution of a homogeneous,
chemically nonequilibrium QGP in a static box of volume
V . We assume that initially this plasma contains only gluons
(i.e., λ = 0) at the temperature T = T0. In the absence of the
partons’ exchange with the box exterior, the system should
approach the equilibrium state with λ = 1 at large times. In
the general case, the energy and entropy densities of the system
in intermediate states are functions of both T and λ. The
time evolution of temperature depends on boundary conditions
which in turn determine the type of a thermodynamic process.
We consider two limiting cases: the isothermal process (T =
T0), which requires some heat transfer from outside, and
the process with fixed energy (ε = ε0). The second case
corresponds to a thermally isolated system without any heat
exchange.4

From Eq. (13) one gets the expression for the ratio of the
total entropy S = sV with respect to its initial value:

S

S0
=

(
T

T0

)3

(1 + α�4 − β�3 ln λ). (15)

Here and below we omit arguments λ in the functions �3 and
�4. In the isothermal case we obtain

S

S0
= 1 + α�4 − β�3 ln λ −→

λ →1
1 + α (T = T0). (16)

Note that the gluon fraction of entropy (the first term in the
right-hand side) does not change with time in the isothermal
process. One can see that the relative increase of entropy is
proportional to the number of quark flavors Nf .

The fixed-energy case is more complicated. As one can see
from Eq. (12), the systems cools down during the process of
chemical equilibration:

T = T0
(
1 + α�4)−1/4 (ε = ε0). (17)

4It will be shown that the relative change of the total entropy as a
function of λ coincides in this case with the corresponding quantity
for a Bjorken-like expanding QGP.

FIG. 2. Relative increase of entropy of uQGP with respect to the
pure glue initial state as a function of quark fugacity λ. Solid (dashed)
lines correspond to box calculations with constant energy density
(temperature). Thin and thick lines are calculated for the quark flavor
numbers 2 and 3, respectively. Dots correspond to freeze-out states,
estimated from Bjorken hydrodynamic analysis of central Pb + Pb
collisions at LHC energy (see below).

Substituting this temperature into Eq. (15) gives the following
result:

S

S0
= 1 + α�4 − β�3 ln λ

(1 + α�4) 3/4
−→
λ →1

(1 + α)1/4 (ε = ε0).

(18)

From the comparison of Eqs. (16) and (18) one can see that
the relative increase of entropy is smaller in the second case.
The asymptotic values of S/S0 are equal in this case to 23%
and 31% (approximately) for Nf = 2 and 3, respectively.

Figure 2 shows the results of numerical calculations of
S/S0 for both considered cases. In Fig. 3 we consider in more
details the system equilibration at ε = ε0. One can see that in
this case the fraction of entropy contained in gluons decreases
with time; however, this decrease is more than compensated
by a rising contribution of qq pairs.

III. EVOLUTION OF UNDERSATURATED QGP WITHIN
THE BJORKEN HYDRODYNAMICS

We consider central Pb + Pb collisions at ultrarelativistic
energies of the LHC. Our calculations below are performed
under the following assumptions:

Equation of state. The matter produced in the central
rapidity region at LHC energies has a nearly vanishing net
baryon density. To describe this matter we apply the EoS of an
ideal gas of massless gluons, quarks, and antiquarks obtained
in Sec. II A. According to Eq. (12), this EoS can be written
in the Stefan–Boltzmann form, ε = 3P = σ T 4, where the
coefficient σ ∝ 1 + α�4(λ). The first and second terms in this
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FIG. 3. Entropy ratios in uQGP with respect to the pure glue
initial state as functions of quark fugacity λ. Thin and thick lines
correspond to box calculations with constant energy density for the
quark flavor numbers 2 and 3, respectively. The dashed (dash-dotted)
lines give contributions of qq pairs (gluons) to the total entropy ratios
(the solid curves).

expression describe, respectively, the contributions of gluons5

and qq pairs. The quantity �4 is the quark suppression factor,
approximately equal to the (anti)quark fugacity λ.

Bjorken hydrodynamics. Space-time evolution of uQGP is
described by the ideal relativistic hydrodynamics. Correspond-
ing equations of motion can be written as

∂T μν

∂xν
= 0, (19)

where

T μν = (ε + P ) uμuν − Pgμν (20)

is the energy-momentum tensor, uμ is the flow four-velocity,
and gμν is the diagonal metric tensor with g00 = −g11 =
−g22 = −g33 = 1.

Below we neglect the transverse motion of matter created
in a nuclear collision. The center-of-mass frame will be
used with the longitudinal axis z taken along the beam
direction. Following the Bjorken model [27], we assume
that a thermally (but not necessary chemically) equilibrated
QGP has been created at τ = τ0, r⊥ =

√
x2 + y2 < RA, where

τ = √
t2 − z2 is the proper time of a fluid element and RA is

the geometrical radius of initial nuclei. We consider only the
(1+1)-dimensional, boost-invariant solution of hydrodynamic
equations which satisfies the conditions [27–32]

uμ = 1

τ
(t,0,z)μ, ε = ε(τ ), P = P (τ ). (21)

5As already mentioned, we neglect deviations from chemical
equilibrium for gluons during the whole process of the uQGP
evolution.

Using these relations one can show that Eqs. (19) and (20) are
reduced to the equation

d ε

d τ
+ ε + P

τ
= 0. (22)

Substituting the relation P = ε/3 in Eq. (22) one obtains

ε = ε(τ0)

(
τ0

τ

)4/3

, (23)

where the parameter τ0 corresponds to the initial proper time
of the hydrodynamic expansion.

Entropy increase. For the boost-invariant Bjorken expan-
sion, the total entropy per unit space-time rapidity can be
expressed as [33]

dS(τ )

dη
= π R 2

A s(τ ) τ, (24)

where the space-time rapidity η is defined as η = tanh−1(z/t).
Because of the boost invariance, dS/dη does not depend on η
within the Bjorken model. In the case of chemical equilibrium,
i.e., when λ = 1, the entropy density (in the net baryon-free
matter) s = (ε + P )/T is inversely proportional to τ :

s(τ ) = s0τ0

τ
, (25)

where s0 = s(τ0). In this particular case Eqs. (23) and (25) are
equivalent. From Eqs. (24) and (25) one can see that dS/dη is
conserved during the hydrodynamical expansion of chemically
equilibrated matter. In a general case of a time-dependent
λ, Eqs. (23) and (25) are not equivalent, and the entropy
dS/dη is not conserved but increases during the hydrodynamic
expansion (see below).

Freeze-out condition. We assume that the Bjorken solution
is valid until the “freeze-out” (hyper)surface τ = τf . Below
we analyze a purely central Pb + Pb collisions at the LHC
bombarding energy of

√
sNN = 2.76 TeV. The freeze-out time

τf will be determined by the condition

T (τf ) = 156 MeV. (26)

Such a temperature value has been extracted [34] from the
thermal fit of hadron ratios observed in the considered reaction.

To get numerical estimates we use the approximate relation
[35] between the total entropy per unit space-time rapidity and
the rapidity density of pions:

dS(τf )

dη
= ν

dNπ

dy

∣∣∣∣
y=η

= πR 2
A s(τf ) τf , (27)

where ν is the entropy per pion at the freeze-out stage
of a heavy-ion collision. Note that commonly used value
ν = 3.6 [11] does not take into account that a large part of
entropy is carried by heavy mesons (ρ,ω, . . .) and baryon-
antibaryon pairs (N,N,�,�, . . .). The decay of hadronic
resonances gives a significant fraction of observed pions. Our
calculations within the hadron resonance gas model [36,37]
show that ν � 6.3 at T � 156 MeV and vanishing net baryon
density. Using experimental data of Ref. [38] we obtain that
dNπ/dy|y=0 � 2700. Substituting RA � 6.5 fm and ν = 6.3
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into Eq. (27) we get the estimate

dS(τf )

dη
� 1.7 × 104, (28)

which is used in our numerical calculations (see next section).

IV. NUMERICAL RESULTS

We compare two scenarios: the equilibrium QGP with
the quark fugacity λ = 1 and the chemically nonequilibrium
uQGP with λ = λ(τ ) < 1. In the second scenario we assume
that λ(τ0) � 1 and λ → 1 at later times. Below we use the
parametrization

λ (τ ) = 1 − exp

(
τ0 − τ

τ∗

)
, (29)

where τ∗ is the model parameter characterizing the quark
chemical equilibration time. Calculations of different authors
gives different estimates for τ∗ ranging from τ∗ ∼ 1 fm/c [22]
to τ∗ ∼ 5 fm/c [2]. One should have in mind that this parameter
may depend on the combination of nuclei and the bombarding
energy. We expect that τ∗ will be larger for peripheral events
and lighter combinations of nuclei. Figure 1 shows the time
dependence of λ for several values of the parameters τ0 and
τ∗. At small initial times, λ(τ ) is only slightly sensitive to τ0.
The chemically equilibrated case (λ = 1) can be obtained at
τ∗ → 0. The case of a pure glue plasma corresponds to the
limit τ∗ → ∞.

Let us consider in more details the dynamics of the uQGP
in the Bjorken model. Using Eqs. (23) and (12), one gets the
relations ε ∝ T 4(1 + α�4) ∝ τ−4/3. This gives the following
equation for temperature at τ � τ0

T = T0

(
τ0

τ

)1/3

(1 + α�4)−1/4. (30)

The explicit expression for �4(τ ) is obtained by substituting
(29) into Eq. (5) with n = 4. As compared to the evolution of
uQGP in the static box [see Eq. (17)], the temperature contains
the additional factor (τ0/τ )1/3. A stronger cooling in the
expanding plasma occurs due to the work of pressure gradients
which accelerate fluid elements in the Bjorken model.

It is useful to rewrite Eq. (13) in the form

s = s0

(
T

T0

)3

(1 + α�4 − β�3 ln λ), (31)

where s0 is the initial value of the entropy density. The latter
is given by the first factor in the right-hand side (r.h.s.) of (13)
taken at T = T0. Using Eqs. (24), (30), and (31) we get the
equation for the total entropy of the QGP per unit space-time
rapidity:

dS(τ )

dη
= dS(τ0)

dη

1 + α�4 − β�3 ln λ

(1 + α�4) 3/4
. (32)

The first factor in the r.h.s. is given by Eq. (24) with the replace-
ment sτ → s0τ0. As seen from the comparison with Eq. (18),
we get the same entropy enhancement factor (as a function of
λ) as for the box equilibration in the fixed-energy case.

Substituting τ = τf into (30) and (32) and using Eqs. (26)
and (28) gives two coupled equations for determining the initial
temperature T0 and the freeze-out time τf . The results of the
calculation for several values of τ0 and τ∗ are given below
(we take the same parameters as in Fig. 4 and consider the
number of flavors Nf = 3). For comparison we also make
calculations within the chemically equilibrated scenario.6 The
values of T0,τf calculated for all considered combinations of
parameters are shown in Table I. The last two columns give
the fugacity and the chemical potential of quarks at freeze-out.
One can see that in all cases the initial temperature significantly
exceeds the equilibrium value.

A more detailed information is contained in Figs. 5 and 6.
The time dependence of temperature calculated from Eq. (30)
is shown in Fig. 5. One can see that the deviation from
equilibrium is most significant at the early stage, and the
pure glue initial scenario predicts a higher temperature at any
τ . Consequently, while there is a smaller amount of quarks
during the evolution of the uQGP than in the equilibrium case,
they are generally hotter. Note that a twofold increase of the
equilibration parameter τ∗, from 5 to 10 fm/c, only slightly

6In this case we take the same values of τ0 and the same pion
multiplicity and temperature at freeze-out as for uQGP.

FIG. 4. The quark fugacity λ as a function of proper time τ for two evolution scenarios with (a) τ0 = 0.1 fm/c and (b) τ0 = 0.5 fm/c. The
dotted, solid, and dashed lines correspond to uQGP, with parameters τ∗ = 1 fm/c, 5 fm/c, and 10 fm/c, respectively.
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TABLE I. The values of initial temperature T0, freeze-out proper time τf , quark fugacity λ, and quark chemical potential μ at τ = τf for
all considered cases.

τ0 (fm/c) τ∗ (fm/c) τ
eq
f (fm/c) T

eq
0 (MeV) τf (fm/c) T0 (MeV) λf μf (MeV)

0.1 1 12.7 779 12.7 1022 1.00 0
0.1 5 12.7 779 13.2 1023 0.927 −12
0.1 10 12.7 779 14.5 1024 0.763 −42
0.5 1 12.7 456 12.7 598 1.00 0
0.5 5 12.7 456 13.2 598 0.921 −13
0.5 10 12.7 456 14.6 599 0.756 −44

changes the cooling law T = T (τ ) of the undersaturated
matter.

The evolution of the total entropy per unit space-time
rapidity calculated using Eq. (32) is shown in Fig. 6. One can
see that the entropy in the chemically nonequilibrium scenario
increases gradually with time, and about 25% of the final value
(28) is generated during the hydrodynamic expansion. Our
calculations show that the characteristic time of the entropy
increase is of the order of τ∗. However, the total amount of
produced entropy only weakly changes with τ∗. This is also
seen in Fig. 2, where we show points A, B, and C (these points
correspond, respectively, to the values of λf from the first three
lines of Table I).

FIG. 5. Same as Fig. 4, but for temperature as a function of τ .

As seen from Fig. 4 and Table I, the quark fugacity λ
remains smaller than unity at the freeze-out hypersurface τ =
τf in the chemically nonequilibrium scenario. This implies
the suppression of quarks and antiquarks as compared to
the equilibrium QGP even at the hadronization stage. Such
a behavior may influence the hadron composition measured
in central Pb + Pb collisions at LHC energies. Note that
the hadron resonance gas model [39–41] cannot explain the
observed chemical composition of hadrons observed [42] in
these collisions. In particular, the measured (anti)proton-to-
pion ratios are noticeably smaller than their equilibrium values
for baryon-free matter. Calculations which allow deviations
from the hadron equilibrium scenario are, thus, necessary.

FIG. 6. Same as Fig. 4, but for entropy per unit space-time
rapidity.
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Several theoretical models have been suggested to explain
deviations from chemical equilibrium observed at LHC.
Baryon suppression due to inelastic collisions of hadrons at
post freeze-out stage of a nuclear collision has been studied
in [43]. Possibility of pion enhancement due to positive pion
chemical potentials was also investigated [44]. In the present
paper we propose an alternative explanation of the observed
suppression of the p/π and p/π ratios. Indeed, according to
the constituent quark structure of protons, antiprotons, and
pions, one can estimate the suppression factor for both these
ratios as λ3

f /λ2
f = λf . The latter can be noticeably below unity

in undersaturated matter (see the corresponding column of
Table I). The same estimate can be obtained in the parton
recombination model [45] with chemically nonequilibrium
effects as well as in the statistical hadronization approach
[46]. The comparison of RHIC and LHC data shows [42] that
(anti)baryon-to-pion ratios are less suppressed at RHIC. This
may be caused by a slower evolution of the fireball at lower
incident energies.

Another mechanism was proposed in Refs. [26,36], where
the p/π suppression is explained by annihilation of baryon-
antibaryon pairs in dense hadronic matter created in nuclear
collisions. According to Ref. [36], the p/π ratios observed
in central collisions can be reproduced if the annihilation
persists until the temperature drops to 100–120 MeV. Due
to faster expansion and cooling of matter in peripheral events,
one can expect stronger annihilation effects in more central
collisions. However, the ALICE data [42] reveal only small
variations of the p/π ratio as a function of centrality. This
discrepancy might be resolved by assuming some initial
undersaturation of baryon-to-meson ratios, which increases
with impact parameter.7 The latter assumption is rather natural
because of reduced lifetimes of the deconfined phase in more
peripheral events. We plan to extend the approach developed
in Refs. [26,36] for chemically nonequilibrium initial states in
nuclear collisions.

V. CONCLUSIONS AND OUTLOOK

We have investigated the dynamical evolution of deconfined
matter with changing chemical composition as expected in
heavy-ion collisions at LHC energies. Two scenarios have
been considered in details. The first one assumes that initially
the system is composed exclusively of gluons, and later on
quark-antiquark pairs are created during the characteristic time
of 1–5 fm/c. The second scenario assumes that the equilibrated
QGP exists already at the initial stage. The model parameters
are chosen in such a way that the final pion multiplicity in
both cases is equal to the observed value for central Pb +
Pb collisions. We predict that in the nonequilibrium scenario
about 25% of final entropy is generated due to chemical
equilibration of plasma. We want to stress that this effect of

7It is interesting that underpopulation of (anti)baryons at the
posthadronization stage of nuclear collisions has been considered in
Refs. [47,48] within a model which takes into account the production
and decay of Hagedorn resonances.

entropy production is present in ideal hydrodynamics and it is
attributed to increasing number of degrees of freedom. This is
different from the case of entropy production via dissipative
processes which are determined by transport coefficients and
usually modeled by the viscous hydrodynamics. Obviously,
the inclusion of chemically nonequilibrium effects may require
modification of the viscosity coefficients extracted from the fit
of collective flow observables [49,50].

In the present work we do not develop any full-fledged
formalism to describe the pure glue initial scenario. Ideally,
one would like to determine the dynamical evolution of
matter created in heavy-ion collisions directly from exper-
imental data. That would require using a model working
in a reverse way, starting from the measured data, such as
identified particle momentum spectra, and then proceeding
backwards in time. Reversing a dynamical evolution in an
ideal (1+1)-dimensional hydrodynamics has been performed
in Ref. [51]. Note, however, that uncertainties in the final
state measured in detectors increase when going backwards
in time. Furthermore, irreversible processes, associated with
viscosity, as well as with particle production out of equi-
librium, as discussed in this paper, lead to an increase of
entropy and further reduce the accuracy of this back-tracing
procedure.

A crucial test of the pure glue initial scenario may be
provided by the electromagnetic probes, i.e., by emission of
thermal photons and dileptons. This study will be presented
in a forthcoming publication (our preliminary results are
given in Ref. [24]). We also plan to perform a more realistic
calculation within a (3+1)-dimensional hydrodynamic model
which takes into account the transverse motion of matter.
Then one can analyze the sensitivity of photon and hadron
observables to chemically nonequilibrium effects at early
stages, and to violation of Bjorken scaling at later stages of a
heavy-ion collision. The calculations can be made even more
realistic by introducing additional rate equations describing the
space-time evolution of quark and gluon densities (see, e.g.,
[13,16,21]).

We are also going to study in more detail dynamics
of the first-order phase transition as predicted in the pure
gluodynamics. In particular, it will be interesting to study
influence of this phase transition on flow observables (see
Refs. [52,53]) . Another interesting possibility is supercooling
and overheating processes associated with the deconfinement
phase transition [54,55].
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