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Initial value problem for magnetic fields in heavy ion collisions
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When the quark-gluon plasma emerges in the wake of a heavy-ion collision, a magnetic field created by the
valence charges has already permeated the entire interaction region. Evolution of this “initial” field in the plasma
is governed by the Maxwell equations in an electrically conducting medium. As the plasma expands, external
valence charges induce a magnetic field that also contributes to the total magnetic field in the plasma. I solve the
initial value problem describing these processes and argue that the initial magnetic field often dominates over the
one induced by the valence charges. In particular, it grows approximately proportional to the collision energy,
unlike the induced component, which is energy independent. As a result, the magnetic field has a significant
phenomenological influence on the quark-gluon plasma at CERN Large Hadron Collider energies over its entire
lifetime.
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I. INTRODUCTION

In this paper I reexamine the problem of the magnetic
field created by electrical currents of colliding relativistic
heavy ions [1–8]. Since these currents experience very little
deflection in the course of collision [9,10] (and thus have
large absolute values of rapidity), the corresponding magnetic
field depends on the energy and geometry of the collision,
and implicitly on the strong interaction dynamics through the
electrical conductivity of the quark-gluon plasma (QGP) [2,6].
Another important aspect, which is the main focus of this study,
is the transition dynamics from a magnetic field in vacuum to
one in a medium.

To begin, assume that the QGP forms instantly at time
t = t0, where t is counted from the collision time in the
laboratory frame. This time emerges in phenomenological
models of QGP that favor rather small values compared to
perturbation theory expectations; see, e.g., [11]. The earliest
possible value of t0 is determined by the saturation momentum
Qs as 1/Qs , and represents the time it takes to release most
particles from the ion’s wave functions. At the Relativistic
Heavy Ion Collider (RHIC), 1/Qs ∼ 0.2 fm. At t < t0 we
are dealing with the electromagnetic field created by the
valence charges in vacuum. Its magnetic component is given
by the well-known formula (7). At time t = t0, when the
QGP emerges, the magnetic field permeates the entire plasma.
Starting at t = t0 and thereafter, the behavior of the magnetic
field is governed by the Maxwell equations in plasma. These
equations describe evolution of the magnetic field in the
electrically conducting QGP starting from its initial value at
t = t0. This component of the total magnetic field is referred to
below as the “initial” magnetic field Binit. Another contribution
to the magnetic field is induced by valence charges moving
outside of the QGP, and is referred to below as the “valence”
contribution Bval.1 In previous publications the role of the
initial field has not been properly recognized. In this paper I

1To avoid confusion I emphasize that both components are ulti-
mately related to electrical charges of heavy ions. The distinction

fill this void and, moreover, argue that in most cases the main
contribution stems from the initial field.

The paper is organized as follows. In Secs. II–IV I deal with
the magnetic field produced by a single point charge. In Sec. II
I consider the magnetic field in vacuum, and in later sections
in the electrically conducting QGP. The main result is given by
Eqs. (34) and (35), which represent contributions of valence
charges and the initial field respectively. A more realistic
geometry is considered in Sec. V, where I discuss the case
of two electric charges colliding at a given impact parameter
b. I also discuss there the effect of time-dependent electrical
conductivity on the magnetic field evolution. I discuss the
results and summarize in Sec. VI.

II. MAGNETIC FIELD IN VACUUM

In a relativistic heavy-ion collision, an electromagnetic field
is created by Z electric charges of one ion and Z electric
charges of another ion moving in opposite directions along,
say, the z axis such that the ion centers are at a distance b away.
Due to the superposition principle, the total classical field is
a sum of fields of all charges. Thus, in order to find the total
field it is sufficient to solve for a single electric charge e. In this
section I briefly review a textbook case of an electromagnetic
field created in vacuum by a uniformly moving point charge
e. Our intent here is to introduce notations, definitions etc.

Before the QGP formation, viz., at t � t0, the vector
potential A1(r,t) of a point charge e moving along the
trajectory z = vt satisfies the equation

∇2 A1(r,t) = ∂2
t A1(r,t) − j (r,t), (1)

where the electromagnetic current density due to a valence
charge e is

j = ev ẑδ(z − vt)δ(b). (2)

only concerns our treatment of magnetic field at t > t0, as will be
explained in detail in the forthcoming sections.
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The momentum space representation is defined as

j (r,t) =
∫

d3k

(2π )3
eik·r j kω =

∫
d2k⊥dkz

(2π )3
eik⊥·b+ikzz j kω .

(3)

With this normalization, the Fourier component of the current
reads

j k = ev ẑe−ikzvt . (4)

It follows from (1) that the vector potential generated by the
current (4) is

A1k = 2πev ẑ
k2 − k2

z v
2

= 2πev ẑ

k2
z /γ

2 + k2
⊥

. (5)

In the configuration space I obtain

A1(r,t) = γ ev ẑ
4π

1√
b2 + γ 2(vt − z)2

, (6)

where γ = (1 − v2)−1/2. The corresponding magnetic field

B1 = −∂bA1φ̂ = γ evφ̂

4π

b

(b2 + γ 2(vt − z)2)3/2
. (7)

This solution is valid until t = t0, at which time existence of
an electrically conducting medium must be taken into account.

III. EXACT SOLUTION FOR CONSTANT ELECTRICAL
CONDUCTIVITY

Maxwell’s equations can be solved exactly for t � t0 in the
case of constant electrical conductivity σ . The vector potential
A2 satisfies the equation

∇2 A2(r,t) = ∂2
t A2(r,t) + σ∂t A2(r,t) − j (r,t), (8)

with the initial conditions

A2(r,t0) = A1(r,t0) ≡ ẑ�(r,t0), (9)

∂t A2(r,t0) = ∂t A1(r,t0) ≡ ẑ	(r,t0). (10)

I stress that the current density j is due to electric charges
outside the plasma. I assumed that permittivity and perme-
ability of the QGP are trivial. One can take a more accurate
account of the medium properties, which would yield more
elaborate initial conditions. However, they are not expected to
significantly change the final result.

In momentum space Eq. (8) and the corresponding initial
conditions (9) and (10) read

− k2 A2k(t) = ∂2
t A2k(t) + σ∂t A2k(t) − ev ẑe−ikzvt , (11)

A2k(t0) = ẑ�k(t0) = ev ẑ

k2
z /γ

2 + k2
⊥

e−ikzvt0 , (12)

∂t A2k(t0) = ẑ	k(t0) = −ikzv
ev ẑ

k2
z /γ

2 + k2
⊥

e−ikzvt0 . (13)

To solve (11), I first consider the corresponding homogeneous
equation

− k2ak(t) = ∂2
t ak(t) + σ∂tak(t), (14)

Seeking its solution in the form ak ∝ e−iωt I find, upon
substitution into (14), that ω must obey one of the dispersion
relations

ω = ω± = − iσ

2
±

√
k2 − σ 2

4
. (15)

Thus, the general solution of the homogeneous equation (14),
which describes propagation of the initial conditions, reads

ak(t) = αe−iω+(t−t0) + βe−iω−(t−t0), (16)

where α and β are constants to be determined from the initial
conditions (12) and (13). The particular solution due to the
external current density is of the form A2k ∝ δe−ikzvt , where
δ is found upon substitution into (11):

δ = ev

k2 − k2
z v

2 − ikzvσ
. (17)

Thus, the general solution to (11) is

A2k = ẑ
{
αe−iω+(t−t0) + βe−iω−(t−t0)

+ ev

k2 − k2
z v

2 − ikzvσ
e−ikzvt

}
. (18)

Applying the initial conditions (12) and (13), I can fix α and
β. The final result is

A2k = ẑ
{
δ

[(
ω− − kzv

ω+ − ω−
e−iω+(t−t0) − ω+ − kzv

ω+ − ω−
e−iω−(t−t0)

)

×e−ikzvt0 + e−ikzvt

]

+ 1

i(ω+ − ω−)
�k[−iω−e−iω+(t−t0) + iω+e−iω−(t−t0)]

+ 1

i(ω+ − ω−)
	k[−e−iω+(t−t0) + e−iω−(t−t0)]

}
. (19)

Fourier transformation to the configuration space yields exact
an analytical solution to the initial-value problem (8)–(10).
Analytical and numerical evaluations of the integral over
k are challenging. Fortunately, in the ultrarelativistic limit
γ � 1, which is relevant for relativistic heavy-ion collisions,
the expression for the vector potential (19) is significantly
simplified [6]. This is the subject of the next section.

IV. DIFFUSION APPROXIMATION

For an ultrarelativistic charge moving along the trajectory
z = vt , ∂2

t − ∂2
z ∼ k2

z /γ
2 � k2

⊥,σkz, which implies σγ �
k⊥ [6]. In this case (8) can be approximated by

∇2
⊥ A2(r,t) = σ∂t A2(r,t) − j (r,t). (20)

This approximation holds even in the case of time-dependent
conductivity, provided that such dependence is adiabatic,
which is a reasonable approximation for a realistic plasma.
Since (20) is of the first order in the time derivative, it requires
only one initial condition,

A2(r,t0) = A1(r,t0) = ẑ�(r,t0). (21)
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I can solve the initial-value problem (20)–(21) for an arbitrary
time dependence of the conductivity σ (t). Introducing a new
“time” variable λ according to

λ(t) =
∫ t

t0

dt ′

σ (t ′)
(22)

and transferring (20) to the momentum space, I obtain

− k2
⊥ A2k = ∂λ A2k − j k . (23)

The corresponding homogeneous equation [i.e., (23) with
j k = 0] is solved by

ak(λ) = ẑCe−k2
⊥λ, (24)

where C is a constant. To derive a particular solution, I treat
C as a function of λ and plug into (23). I get

C = ev

∫ λ

0
dλ′ek2

⊥λ′−ikzvt(λ′) + D. (25)

Substituting into (24) I find the general solution to (23),

A2k(t) = ẑ
{
eve−k2

⊥λ

∫ λ

0
dλ′ek2

⊥λ′−ikzvt(λ′) + De−k2
⊥λ

}
. (26)

Since λ(t0) = 0, the initial condition (21) implies that D =
�k(r,t0). So finally,

A2k(t) = ẑ
{
eve−k2

⊥λ(t)
∫ t

t0

dt ′

σ (t ′)
ek2

⊥λ(t ′)−ikzvt ′ + �ke
−k2

⊥λ(t ′)
}
.

(27)

In the particular case of constant electrical conductivity, (27)
simplifies to

A2k(t) = ẑ
{

ev

σ

1
k2
⊥
σ

− ikzv

(
e−ikzvt − e− k2⊥

σ
(t−t0)e−ikzvt0

)

+�ke
− k2⊥

σ
(t−t0)

}
. (28)

This expression can be derived directly from (19), but the
approach described in this section is more straightforward.
Fourier transformation to the configuration space,

A2(r,t) =
∫

d2k⊥
(2π )2

∫ +∞

−∞

dkz

2π
eik⊥·b+ikzz A2k(t), (29)

can be done using the following integrals:

∫
d2k⊥
(2π )2

∫ +∞

−∞

dkz

2π
eik⊥·b+ikzze−k2

⊥[λ(t)−λ(t ′)]

=
exp

{ − b2

4[λ(t)−λ(t ′)]

}
4[λ(t) − λ(t ′)]

δ(z − vt ′), (30)

∫
d2k⊥
(2π )2

∫ +∞

−∞

dkz

2π
eik⊥·b+ikzze−k2

⊥λ(t) ev

k2
z /γ

2 + k2
⊥

e−ikzvt0

= γ ev

4π

∫ ∞

0
dk⊥J0(k⊥b)e−k2

⊥λ(t)−k⊥γ |z−vt0|. (31)

Substituting (27) into (29), doing integrals (30) and (31), and
then integrating over t ′ yields

A2(r,t) = ẑe
4σ (z/v)

exp
{ − b2

4[λ(t)−λ(z/v)]

}
4[λ(t) − λ(z/v)]

θ (tv − z)θ (z − vt0)

+ γ ev ẑ
4π

∫ ∞

0
dk⊥J0(k⊥b)e−k2

⊥λ(t)−k⊥γ |z−vt0|. (32)

The magnetic field can be calculated as in (7) with the result

B2 = Bval + Binit , (33)

where the “valence” Bval and “initial” Binit components are
given by

eBval(r,t) = φ̂
απb

2σ (z/v)[λ(t) − λ(z/v)]2

× exp

{
− b2

4[λ(t) − λ(z/v)]

}

×θ (tv − z)θ (z − vt0), (34)

eBinit(r,t) = φ̂γαv

∫ ∞

0
dk⊥k⊥J1(k⊥b)

× exp{−k2
⊥λ(t) − k⊥γ |z − vt0|}. (35)

The fine structure constant α = e2/(4π ). Note that at t = t0,
Bval vanishes whereas Binit yields the initial condition (7). Binit

is the field that permeates the plasma as it emerges at t = t0 (at
which time it coincides with B1) and spreads in it according
to (35). Unlike Bval, it strongly depends on the collision energy
2γ (in units of proton mass).

Bval describes the induced electromagnetic field generated
as a response of the QGP to the electromagnetic field of the
valence charge, and builds up starting from t = t0. Because
of the two step-functions in (34) that reflect causality, Bval

is finite only in the interval vt0 � z � vt . In particular, it
vanishes at midrapidity, z = 0. At fixed z satisfying z � vt0,
Bval emerges when t = z/v. An important property of Bval is
that its magnitude is independent of energy (since v ≈ 1).

At early times after the QGP creation, viz., t � t0, the
expression in the exponent of (35) is such that k2

⊥λ � k⊥γ |z −
vt0|, implying that Binit ≈ B1. However, at later times when
k2
⊥λ � k⊥γ |z − vt0|, I get

eBinit = φ̂
γαvb

√
π

8λ3/2
e− b2

8λ

[
I0

(
b2

8λ

)
− I1

(
b2

8λ

)]
. (36)

Since k⊥b ∼ √
8 (which can be seen from J1 series expansion)

and λ ∼ (t − t0)/σ , I estimate that (36) is valid at times t
satisfying

t − t0

|z − vt0| � 1√
8
γ σb. (37)

At z = 0, b = 7 fm, and t0 = 0.2 fm this implies t � 1 fm,
where I used σ = 5.8 MeV known from the lattice calcula-
tions [12]; see also [13–15]. Furthermore, since b2/8λ � 1,
I expand (36) to obtain the late-time behavior of the initial
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b1 b2

R

φ1
φ2

x

y

φ

−b/2 b/2

FIG. 1. Two counterpropagating charges e. One charge moves
along the positive z axis at z = vt , x = −b/2, y = 0 while another
one moves in the opposite direction at z = −vt , x = b/2, y = 0.

magnetic field,

eBinit ≈ γαv
√

πb

8λ3/2
φ̂. (38)

For constant σ the late-time dependence (viz., t � t0) is Binit ∼
1/t3/2. Notice that at late times the “valence” contribution
decays as Bval ∼ 1/t2. It therefore emerges that the initial
magnetic field dominates at early and late times.

V. MAGNETIC FIELD OF TWO COUNTERPROPAGATING
CHARGES

To calculate the magnetic field in a heavy-ion collision, one
considers two sets of Z counterpropagating electric charges
distributed according to one of the known nuclear density
parametrizations; see, e.g., [3]. However, to study the time
evolution of the magnetic field it suffices to consider just
two counterpropagating charges. The geometric symmetry
of this configuration is similar to that of the event average
over many heavy-ion collisions at impact parameter b, but
drastically reduces the computational time. The configuration
that I consider is depicted in Fig. 1.

Let B (1)(r1,t) and B(2)(r2,t) be magnitudes of the fields
of the two charges, each given by (33)–(35). I can express
coordinates of the observation point relative to each charge
r1 = b1 + ẑz1 and r2 = b2 + ẑz2 in terms of their centers of
mass in cylindrical coordinates R,z,φ as follows (see Fig. 1):

ba =
√

b2/4 + R2 + (−1)a bR cos φ ,

tan φa = R sin φ

R cos φ − (−1)a b/2
, za = vt + (−1)az. (39)

where a = 1,2 labels the charges. Noting that B(a) ∝ φ̂a and
expressing φ̂a in terms of b̂ and φ̂, I obtain the magnetic field
in terms of the center-of-mass frame coordinates:

B = b̂[B(1)(r1,t) sin(φ − φ1) + B(2)(r2,t) sin(φ − φ2)]

+ φ̂[B(1)(r1,t) cos(φ − φ1) + B(2)(r2,t) cos(φ − φ2)],

(40)

where ra and φa are replaced as indicated in (39). The
result is shown in Figs. 2–5 in terms of a dimensionless
and unit-independent quantity eB/m2

π . In all figures the
impact parameter is b = 1 fm, the observation point is at
φ = π/2, R = 7 fm (i.e,. x = 0 and y = 7 fm), and γ =
100 (except Fig. 4). Also indicated is the pseudorapidity
η = − ln [−(z/R) +

√
(z/R)2 + 1 ]. Solid lines indicate the

total magnetic field B, dashed lines represent the contribution
of the initial condition Binit, and dotted lines stand for the
contribution of the valence charges Bval. As discussed at the
end of the previous section, the valence charge contribution
decreases with time faster than that of the initial condition.

Figures 2–4 depict the magnetic field at constant electrical
conductivity σ = 5.8 MeV [12]. In Fig. 2 I compare the
magnetic field that is generated when the QGP emerges at
t0 = 0.2 fm with that at t0 = 0.5 fm. Since the magnetic field
in vacuum decreases as 1/t3, see (7), the late emergence of
the conducting medium means that the magnitude of the field
in the former case is about 15 times larger than in the latter. In
both cases time dependence of magnetic field in the plasma is
mild. Because of the step functions in (34), the magnetic field
at midrapidity, z = 0, is entirely due to the initial field Binit.

0 1 2 3 4 5 6
t�fm�

10�4

0.001

0.010

0.100

eB�mπ
2

0 1 2 3 4 5 6
t�fm�

10�4

0.001

0.010

0.100

eB�mπ
2

FIG. 2. Magnetic field in units of m2
π/e. σ = 5.8 MeV, z = 0 fm (η = 0). Left panel: t0 = 0.2 fm; right panel: t0 = 0.5 fm. The valence

current does not contribute at all (Bval = 0).
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0 1 2 3 4 5 6
t�fm�

10�4

0.001

0.010

0.100

eB�mπ
2

0 1 2 3 4 5 6
t�fm�

10�4

0.001

0.010

0.100

eB�mπ
2

FIG. 3. Magnetic field in units of m2
π/e. σ = 5.8 MeV, z = 0.6 fm (η = 0.086). Left panel: t0 = 0.2 fm; right panel: t0 = 0.5 fm. Solid,

dashed, and dotted lines stand for B, Binit, and Bval.

Figure 3 is similar to Fig. 2 except that z = 0.6 fm,
unlocking the “valence” contribution. Being independent of
the initial value of the magnetic field at t0, the valence
contribution rapidly increases to its maximal value, which can
be determined from (34) [16]. It then decreases at larger t and
becomes smaller than Binit. Sharp lines seen in Fig. 3 indicate
that the transition dynamics near t = t0 is not fully captured
by the diffusion approximation.

The energy dependence of the magnetic field between
RHIC and Large Hadron Collider (LHC) energies can be
seen in Fig. 4. Binit grows approximately proportional to the
collision energy γ , whereas Bval is energy independent. Thus,
at the LHC the magnetic field induced by valence charges is
negligible.

So far I considered only the case of constant electrical
conductivity. In practice, however electrical conductivity is
time dependent. To see the impact of σ time dependence on
the time evolution of magnetic field I consider two models.
In model A I assume that the QGP emerges instantly at
t = t0 with σ = 5.8 MeV and then cools down as it expands
according to the Bjorken scenario [17]. Namely, expansion is
supposed to be isentropic, nV = const, where n is the particle
number density and V is plasma volume. Since n ∼ T 3 and

at early times expansion is one-dimensional, V ∼ t , it follows
that T ∝ t−1/3. Since σ (t) ∝ T , I conclude that σ (t) ∼ t−1/3.
Thus a reasonable model for time dependence of electrical
conductivity is

σ (t) = σ

2−1/3(1 + t/t0)1/3
, model A. (41)

Another possibility is that the QGP does not appear as a
thermal medium right away at t = t0, rather it takes time τ
until the conductivity reaches its equilibrium value σ . This
can be described as

σ (t) = σ (1 − e−t/τ ), model B. (42)

I set conservatively τ = 1 fm. Note that I cannot let σ (t)
vanish at t = t0 because that would violate the diffusion
approximation that leads to (20). However, (42) insures that
σ (t0) � σ .

In Fig. 5 I contrast the two models. A similar calculation
at constant conductivity is shown in the left panel of Fig. 4.
I observe that time dependence (41) (model A) significantly
reduces the magnetic field at later times. As far as model B is
concerned, time dependence (42) affects mostly Bval because
it directly depends on σ (t), whereas Binit depends only on

0 2 4 6 8 10
t�fm�

10�4

0.001

0.010

0.100

eB�mπ
2

0 2 4 6 8 10
t�fm�

10�4

0.001

0.010

0.100

1

eB�mπ
2

FIG. 4. Magnetic field in units of m2
π/e. σ = 5.8 MeV, z = 0.2 fm, t0 = 0.2 fm. Solid, dashed, and dotted lines stand for B, Binit, and Bval.

Left panel: γ = 100 (RHIC); right panel: γ = 2000 (LHC).
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10�4

0.001

0.010

eB�mπ
2

0 2 4 6 8 10
t�fm�

10�4

0.001

0.010

eB�mπ
2

FIG. 5. Magnetic field in units of m2
π/e. z = 0.2 fm, t0 = 0.2 fm. Left panel: model A. Right panel: model B. Solid, dashed, and dotted

lines stand for B, Binit, and Bval.

λ(t); see (34) and (35). Model B has minor effect on the
total magnetic field, although one can certainly find regions in
space-time where its effect is more pronounced. What actually
matters is the initial time t0 at which one can treat the produced
particle system as a medium. As long as conductivity is large
enough at later times, the magnetic field is fairly insensitive to
the precise QGP dynamics.

VI. SUMMARY

Just before the QGP emerges, the interaction region is
permeated by the primordial electromagnetic field created by
valence charges of two heavy ions. At the initial time t0, this
magnetic field smoothly connects to the magnetic field in the
plasma and evolves according to the Maxwell equations in the
electrically conducting medium. In addition to this “initial”
magnetic field, there is another “valence” contribution that
arises from the external valence electric charges inducing
currents in the QGP. It has been tacitly assumed that the former
contribution is not important [6]. In this paper I argued, to the
contrary, that the initial magnetic field dominates at very early

and later times and increases much faster with the collision
energy than the “valence” contribution.

I also studied the effect of time dependence of electrical
conductivity and concluded that at early times it has a rather
minor effect on the field strength, as long as the produced
particle system can be treated as a medium at early enough
time. However, towards the later times of plasma evolution,
time dependence of electrical conductivity plays an important
role. In the Bjorken scenario it leads to much weaker fields
compared to the constant conductivity case.

I considered the case of two counterpropagating charges,
which gives an accurate picture of the time dependence of the
event-averaged fields in heavy-ion collisions. Scaling the result
with Z, I can obtain an estimate of the magnetic field strength
in heavy-ion collisions. Calculating the spatial distribution
requires an accurate account of the exact nuclear geometry,
which is not difficult using the results reported in this paper.
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