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Quasiparticle theory of transport coefficients for hadronic matter at finite temperature
and baryon density
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We develop a flexible quasiparticle theory of transport coefficients of hot hadronic matter at finite baryon
density. We begin with a hadronic quasiparticle model which includes a scalar and a vector mean field.
Quasiparticle energies and the mean fields depend on temperature and baryon chemical potential. Starting with
the quasiparticle dispersion relation, we derive the Boltzmann equation and use the Chapman-Enskog expansion
to derive formulas for the shear and bulk viscosities and thermal conductivity. We obtain both relaxation-time
approximation formulas and more general integral equations. Throughout the work, we explicitly enforce the
Landau-Lifshitz conditions of fit and ensure the theory is thermodynamically self-consistent. The derived formulas
should be useful for predicting the transport coefficients of the hadronic phase of matter produced in heavy-ion
collisions at the Relativistic Heavy Ion Collider and at other accelerators.
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I. INTRODUCTION

A central challenge in nuclear physics is elucidating the
structure of the quantum chromodynamics (QCD) phase
diagram. Based on theoretical models, it is widely believed that
the phase diagram contains a line of first-order phase transition
that ends at a point of second-order phase transition: the critical
point [1,2]. Despite a dedicated search for the critical point
with the first beam energy scan at the Relativistic Heavy Ion
Collider (RHIC) at Brookhaven National Lab and possible
hints of the critical point [3], the location of the critical point
remains a mystery. From lattice QCD calculations [4–8], we
know that the transition from hadrons to quarks and gluons
is an analytic crossover near temperature T ≈ 150 MeV at
zero baryon chemical potential μB . Hence, the critical point is
generally thought to be located at T < 160 MeV and μB equal
to several hundreds of MeV.

A second, future beam energy scan at RHIC will search
for the critical point with greatly increased statistics and
upgraded detectors [9]. To maximize the discovery potential,
experimental efforts must be accompanied by complementary
improvements in theoretical modeling of QCD matter at mod-
erate temperatures and large baryon chemical potentials. In
previous papers, we investigated the equation of state at finite
baryon chemical potential [10,11]. In this work, we derive
new formulas to compute the shear and bulk viscosities and
thermal conductivity of hot hadronic matter with μB > 0. We
employ a flexible, thermodynamically consistent framework of
hadronic quasiparticles with medium-dependent quasiparticle
masses and with a scalar and vector mean field. This may be
considered a natural extension of Ref. [12] to include nonzero
baryon chemical potential and the concomitant vector mean
field.

Transport coefficients like the shear and bulk viscosities and
thermal conductivity are especially interesting quantities to
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study for several reasons. First, the temperature and chemical
potential dependence of transport coefficients may reveal
the location of phase transitions: In many physical systems,
the shear viscosity is a minimum and the bulk viscosity a
maximum at the phase transition [13]. A second motivation
is investigating the Kovtun-Son-Starinets lower bound [14] on
the shear viscosity to entropy density η/s � 1/4π for strongly
coupled conformal theories and its implications for QCD.
Furthermore, low viscosity may lead to observable turbulent
instabilities [15] in heavy-ion collisions. Finally, transport
coefficients are essential theoretical inputs for hydrodynamic
simulations. While hydrodynamic simulations may neglect
fundamental features of heavy-ion collisions, such as rotation
and turbulent instabilities, such simulations have nevertheless
proven themselves invaluable tools for interpreting heavy-ion
collision data. In hydrodynamic simulations, the shear and bulk
viscosities influence various observables, such as the elliptic
flow coefficients vn and the hadron transverse momentum (pT )
spectrum [16–19].

In principle, the transport coefficients can be computed
directly from QCD using the Kubo formulas [20]. However,
QCD is strongly coupled at energies accessible to heavy-ion
collision experiments, complicating first-principles calcula-
tions. There were some early attempts to employ lattice
QCD [21,22], but even today it is challenging to achieve
a large-enough grid with a small-enough grid spacing to
accurately compute transport coefficients. Furthermore, lattice
QCD simulations are currently very difficult at finite baryon
chemical potential owing to the well-known fermion sign
problem. Hence, many of the early works [23–26] computed
transport coefficients of quark-gluon plasmas or hadronic
gases with a few species of particles using the Boltzmann
equation in the relaxation-time approximation. These early
works did not include mean fields or medium-dependent
masses.

Later on, Jeon [27] and Jeon and Yaffe [28] computed the
shear and bulk viscosities of a hot, weakly coupled scalar
field theory using perturbation theory. Amazingly, they showed
that their complicated perturbative calculation of transport
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coefficients was reproduced by a simpler kinetic theory of
quasiparticles with temperature-dependent masses and a scalar
mean field. The same conclusion was found for hot, weakly
coupled QCD and QED [29–36]. This was also consistent
with an earlier analysis of transport in a nucleon plus σ meson
system, which similarly found that renormalized quasiparticle
masses were required [37]. Though astounding, this makes
intuitive sense: Kinetic theory is widely used to model
nonequilibrium systems, and renormalized particle masses
are ubiquitous in finite-temperature field theories. (They are
also present in Fermi liquid theory [38].) Also, temperature-
and chemical potential-dependent masses allow quasiparticle
models to generate more realistic, nonideal-gas, equations
of state [39]. Furthermore, as Gorenstein and Yang pointed
out [40], the scalar mean field is essential for maintaining
thermodynamic self-consistency when masses depend on
temperature and/or chemical potential. Hence, it seems that
kinetic theories of quasiparticles with medium-dependent
masses and mean fields are powerful theoretical tools, though
thermodynamic consistency must be carefully maintained.

More recently, the conjecture of a lower bound on η/s by
Kovtun, Son, and Starinets from the anti-de Sitter/conformal
field theory correspondence [14] ignited a flurry of additional
work. There were several more lattice calculations [41–44].
There were also many studies with Boltzmann equations, most
of them without medium-dependent masses or mean fields.
Shear viscosity was computed for pion-nucleon gases at low
temperatures and varying chemical potentials in Refs. [45,46].
The bulk viscosity of cool pion gases was computed using
chiral perturbation theory in Refs. [46,47]. Shear viscosity in
mixtures of hadrons with excluded volumes were calculated
in Refs. [48–50].

There were a few attempts to employ the more pow-
erful quasiparticle models with medium-dependent masses
to compute transport coefficients. In an early work, Sasaki
and Redlich applied kinetic theory and the relaxation-time
approximation to a quasiparticle model to compute the bulk
viscosity near a chiral phase transition [51]. Later, Chakraborty
and one of us developed a comprehensive theory of shear and
bulk viscosities in hadronic gases [12]. That work included
multiple hadron species with temperature-dependent masses
and a scalar mean field in a thermodynamically self-consistent
way. In that work, formulas for shear and bulk viscosity were
derived, and both relaxation-time approximation formulas and
more general integral equations were given. However, that
work did not include chemical potentials; hence, thermal con-
ductivity was not considered. Bluhm, Kämpfer, and Redlich
used a similar quasiparticle formalism to study the shear and
bulk viscosity of gluon matter in Ref. [52] (also without
chemical potentials). Thus, a natural question is as follows:
How does the formalism of Ref. [12] generalize to finite baryon
chemical potential? Also, what is the formula for thermal
conductivity?

Several papers have tried different Ansätze for generalized
viscosity formulas (in the relaxation-time approximation)
when the baryon chemical potential is nonzero. Chen et al.
calculated the shear and bulk viscosities of weakly coupled
quark-gluon plasma at finite temperature and chemical poten-
tial in Ref. [53] using a quasiparticle model with medium-

dependent masses and a scalar mean field. Khvorostukhin,
Toneev, and Voskresensky compared three Ansätze for the
generalized bulk viscosity formula [54] of a hadron gas with
medium-dependent masses and a scalar mean field; see also
Refs. [55,56]. Interestingly, Khvorostukhin’s quasiparticle
model also included a vector (ω) mean field [54,55]; as is
well known, they are important to account for repulsive forces
in hadronic matter with large baryon densities. This type of
model is quite relevant for studying the moderate-temperature
hadronic matter formed in the beam energy scan at RHIC. It is
also relevant for experiments at the Super Proton Synchrotron
Heavy Ion and Neutrino Experiment (SHINE) at CERN and
at the future Facility for Antiproton and Ion Research (FAIR).
Given the usefulness of this kind of model, it is desirable to
put the results on a firmer theoretical foundation and (ideally)
determine which of the Ansätze presented in Refs. [53] and
[54] are correct.

In this work, we present detailed derivations of the formulas
for the shear and bulk viscosities and thermal conductivity of
a gas of hadronic quasiparticles. We include a scalar and a
vector mean field, where the mean fields and the quasiparticle
masses depend on temperature and baryon chemical potential.
Generalization to multiple scalar and vector fields is straight-
forward but not included here for clarity of presentation.
Starting from the quasiparticle dispersion relation, we obtain
the Boltzmann equation, and then use the Chapman-Enskog
expansion to derive formulas for the transport coefficients.
At each step we ensure that thermodynamic self-consistency
is maintained, and we carefully enforce the conditions of
fit associated with the Landau-Lifshitz local rest frame; we
later show that this is vital to obtaining the correct results.
We derive both relaxation-time approximation formulas and
more general integral equations. Finally, we show that the
formulas for shear and bulk viscosities are straightforward
generalizations of previous results [12,28] if one recalls that
entropy per baryon is conserved in ideal hydrodynamics
(neglecting viscous effects). Classical statistics are used in
the main text for ease of presentation, but results which
include quantum statistics are presented in the Appendix, albeit
without detailed derivations.

II. QUASIPARTICLES

In this section we discuss quasiparticle dispersion relations
for baryons and mesons. In the simplest mean-field approach
all hadrons acquire effective masses in the medium. In
addition, baryons acquire effective chemical potentials. We
focus attention on baryons because the inclusion of the baryon
chemical potential is the new feature of this work compared to
Ref. [12].

The piece of the Lagrangian involving baryons is

Lbaryon =
∑

j

ψ̄j (i /∂ − mj + gσjσ − gωj /ω)ψj . (1)

Here j refers to the species of baryon. For simplicity of presen-
tation we include only a generic scalar meson σ and a generic
vector meson ω. When evaluating the partition function there
enters an additional term of the form μBψ̄jγ

0ψj , where μB

is the baryon chemical potential. Because we are using Dirac
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spinors, both particles and antiparticles are included. Particles
have chemical potential μB , while antiparticles have chemical
potential −μB .

For a uniform medium in thermal equilibrium the meson
fields acquire space-time independent nonzero mean values
denoted by σ̄ and ω̄μ; in the rest frame of the medium the
spatial part of the vector field vanishes on account of rotational
symmetry, ω̄ = 0, but in a general frame of reference it does
not. The dispersion relation for particles is

E+
j (p) =

√
(p − gωj ω̄)2 + m∗2

j + gωj ω̄
0 (2)

and for antiparticles

E−
j (p) =

√
(p + gωj ω̄)2 + m∗2

j − gωj ω̄
0. (3)

The kinetic momentum p∗ is related to the canonical momen-
tum p by

p∗
j = p − gωj ω̄ (4)

for particles and by

p∗
j = p + gωj ω̄ (5)

for antiparticles. Particles and antiparticles have a common
mass m∗

j . In this mean-field approach it is given by m∗
j =

mj − gσj σ̄ .
A more convenient way to think about the dispersion

relations is to recognize a shift in both the mass and the
chemical potential of quasiparticles and antiquasiparticles.
They both have energy

E∗±
j (p∗) =

√
p∗2 + m∗2

j , (6)

while their chemical potentials are opposite in sign,

μ∗±
j = ±(μB − gωj ω̄

0), (7)

as befits particles and antiparticles.
Mesons do not have a baryon chemical potential. They

could have chemical potentials for electric charge or
strangeness, but we do not consider that possibility here
for simplicity. Hence, their dispersion relations in mean-field
approximation are of the form

E∗(p) =
√

p2 + m∗2. (8)

Note that the kinetic and canonical momenta are the same for
mesons. The effective masses and effective chemical potentials
can be found self-consistently once one fixes the Lagrangian.

In equilibrium the phase-space density for a particle (or
antiparticle) of type a is given by

fa(x,p∗,t) = 1

e(E∗
a−μ∗

a )/T − (−1)2sa
. (9)

Here sa denotes the spin. There are Fermi-Dirac and Bose-
Einstein distributions. Later we simplify our results by using
classical statistics, although that approximation is not nec-
essary. Results including quantum statistics are given in the
Appendix. Momentum space integration will be abbreviated
as

d	∗
a = (2sa + 1)

d3p∗
a

(2π )3
, (10)

indicating that the kinetic momentum is chosen as the
independent variable, and the spin degeneracy is included.

III. BOLTZMANN EQUATION

The general form of the Boltzmann equation for the
distribution function fa(x,p∗,t) is

dfa

dt
(x,p∗,t) = ∂fa

∂t
+ ∂fa

∂xi

dxi

dt
+ ∂fa

∂p∗i

dp∗i

dt
= Ca. (11)

The right-hand side is the collision term, which is discussed
later. Here we focus on the left-hand side. It involves the
trajectory x(t) and p∗(t) between collisions. This trajectory
is, in general, not a straight line because the particle is moving
in a mean field which can be space and time dependent.

The velocity is

dxi

dt
= ∂Ea

∂pi
a

= p∗i

E∗
a

. (12)

The relativistic version of Newton’s second law is

dpi
a

dt
= −

(
∂Ea

∂xi

)
p

. (13)

Note that it is p that is held fixed, not p∗. The right-hand side
is (

∂Ea

∂xi

)
p

= m∗
a

E∗
a

∂m∗
a

∂xi
− gωa

∂ω̄j

∂xi

p∗j

E∗
a

+ gωa

∂ω̄0

∂xi
. (14)

The left-hand side of Newton’s second law can be written in
terms of the kinetic momentum as

dpi
a

dt
= dp∗i

dt
+ gωa

dω̄i

dt
= dp∗i

dt
+ gωa

(
∂ω̄i

∂t
+ p∗j

E∗
a

∂ω̄i

∂xj

)
.

(15)

The time derivatives of x and p∗ can now be replaced in Eq. (11)
to put the Boltzmann equation in the form

dfa

dt
(x,p∗,t) = ∂fa

∂t
+ p∗i

E∗
a

∂fa

∂xi

− ∂fa

∂p∗i

{
m∗

a

E∗
a

∂m∗
a

∂xi
+gωa

[
∂ω̄0

∂xi
+∂ω̄i

∂t
+p∗j

E∗
a

(
∂ω̄i

∂xj
−∂ω̄j

∂xi

)]}

= Ca. (16)

This can be simplified by making use of the kinetic 4-
momentum

p∗μ
a = (E∗

a ,p
∗) (17)

and the field strength tensor

ωαβ ≡ ∂αωβ − ∂βωα. (18)

The final form is

dfa

dt
(x,p∗,t) = p∗μ

E∗
a

∂μfa −
[
m∗

a

E∗
a

∂m∗
a

∂xi
+ gωa

p∗
μ

E∗
a

ω̄μi

]
∂fa

∂p∗i

= Ca. (19)
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IV. ENERGY-MOMENTUM TENSOR
AND BARYON CURRENT

In this section we present the structure of the energy-
momentum tensor T μν and of the baryon current J

μ
B . In terms

of temperature, chemical potential, and flow velocity uμ they
are

T μν = −Pgμν + wuμuν + T μν (20)

and

J
μ
B = nBuμ + J

μ
B , (21)

where P (T ,μB) is the pressure, s = ∂P/∂T is the entropy
density, nB = ∂P/∂μB is the baryon density, ε = −P + T s +
μBnB is the energy density, and w = ε + P is the enthalpy
density. In the Landau-Lifshitz approach, which we use, uμ

is the velocity of energy transport. The T μν and J
μ
B are

dissipative parts given by

T μν = η
(
Dμuν + Dνuμ + 2

3μν∂ρu
ρ
) − ζμν∂ρu

ρ (22)

and

J
μ
B = λ

(
nBT

w

)2

Dμ

(
μB

T

)
. (23)

Here η, ζ , and λ are the shear viscosity, bulk viscosity, and
thermal conductivity, respectively. The other symbols are

D = uρ∂ρ, (24)

Dμ = ∂μ − uμD, (25)

μν = uμuν − gμν. (26)

Our metric is (+, − , − ,−). Additionally, the entropy cur-
rent is

sμ = suμ − μB

T
J

μ
B . (27)

Now we need to express T μν and J
μ
B in terms of the

quasiparticles and mean fields. One expression for the former is

T μν =
∑

a

∫
d	∗

a

p
∗μ
a p∗ν

a

E∗
a

fa + gμνU (σ̄ ,ω̄ρω̄ρ) + m2
ωω̄μω̄ν.

(28)

The first term is familiar as the kinetic contribution. The second
term U is the usual meson-field potential energy; it includes the
mass terms 1

2m2
σ σ̄ 2 and − 1

2m2
ωω̄ρω̄ρ , plus any interaction

terms which are more than two powers of the fields. Note
that kinetic terms for the mean meson fields are not included
because they are second order in space-time gradients and are
not included in first-order viscous fluid dynamics. The last
term is not obviously of the form of Eq. (20). However, when
one remembers that T 0i is the energy flux in the direction i,
and that Ea is the complete quasiparticle energy and not E∗

a ,
then one would write

T μν =
∑

a

∫
d	∗

a

p
μ
a p∗ν

a

E∗
a

fa + gμνU (σ̄ ,ω̄ρω̄ρ). (29)

Using p
μ
a = p

∗μ
a + gωaω̄

μ we get

T μν =
∑

a

∫
d	∗

a

p
∗μ
a p∗ν

a

E∗
a

fa + gμνU (σ̄ ,ω̄ρω̄ρ)

+ ω̄μ
∑

a

gωa

∫
d	∗

a

p∗ν
a

E∗
a

fa. (30)

The vector mean field is determined by its equation of
motion. Assuming an interaction only with the baryons (this
assumption is easily relaxed), it is

(
∂2 + m2

ω

)
ω̄ν =

∑
j

gωj 〈ψ̄j γ
νψj 〉, (31)

where the averaging refers to the quasiparticle distribution.
Recognizing that the summation index j refers to both baryons
and antibaryons, and dropping the d’Alembertian because of
first-order viscous fluid dynamics, we have

m2
ωω̄ν =

∑
a

gωa

∫
d	∗

a

p∗ν
a

E∗
a

fa. (32)

(We remind the reader that the coupling gωa is opposite in sign
for baryons and antibaryons.) Hence, Eqs. (28) and (29) are
the same.

In a similar way the scalar mean field is determined by its
equation of motion. This turns out to be

∂U (σ̄ ,ω̄ρω̄ρ)

∂σ̄
=

∑
a

gσa

∫
d	∗

a

m∗
a

E∗
a

fa. (33)

The coupling to scalar mesons of baryons and antibaryons has
the same sign, unlike the coupling to vector mesons.

The structure of the baryon current is readily deduced to be

J
μ
B =

∑
a

ba

∫
d	∗

a

p
∗μ
a

E∗
a

fa, (34)

where ba denotes the baryon number of a.
It can be shown that energy and momentum are conserved,

namely,

∂μT μν = 0, (35)

and so is baryon number

∂μJ
μ
B = 0. (36)

These conservation laws follow from the requirement that

∑
a

∫
d	∗

aχaCa = 0. (37)

The χa represents the contribution from quasiparticle a to
any conserved quantity, such as energy, momentum, or baryon
number. The calculations are straightforward but very lengthy
and tedious. (See, for example, de Groot, van Leeuwen, and
van Weert [57] for details.) We have performed the derivations,
but they are not reproduced here. It is also straightforward,
and much less tedious, to show that the mean-field equation
of state follows from the above expressions for T μν and J

μ
B

when the system is uniform, time independent, and in thermal
and chemical equilibrium.
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V. DEPARTURES FROM EQUILIBRIUM OF THE
QUASIPARTICLE DISTRIBUTION FUNCTION

To first order in departures from equilibrium, we can express
the quasiparticle distribution function as

fa = f eq
a (1 + φa), (38)

where f
eq
a is the distribution function in thermal and chemical

equilibrium. The nonequilibrium part φa leads to the nonequi-
librium contributions T μν and J

μ
B , so φa must contain the

same space-time gradients as found in them. Therefore, φa

must have the form

φa = − Aa∂ρu
ρ − Bap

ν
aDν

(
μB

T

)

+ Cap
μ
a pν

a

(
Dμuν + Dνuμ + 2

3
μν∂ρu

ρ

)
. (39)

The functions Aa , Ba , and Ca only depend on momentum p,
while uμ only depends on space-time coordinate x.

The departure from equilibrium of the quasiparticle distri-
butions can be used to compute the departure from equilibrium
of the energy-momentum tensor. It is convenient to work in
the local rest frame. The variation of the space-space part of
expression (28) is

δT ij =
∑

a

∫
d	∗

a

p∗i
a p

∗j
a

E∗
a

(
δfa − f eq

a

δE∗
a

E∗
a

)
+ gij δU. (40)

To obtain the variation in the mean-field potential we start with
the expression for the pressure P (T ,μB ) = P0 − U . Here P0

is the kinetic contribution to the pressure from the quasiparti-
cles. The entropy density is obtained from s = ∂P (T ,μB)/∂T .
This has three contributions: The first is from s0 which
is the same functional form as for particles with T - and
μB-independent energies, the second is from the variation of
the quasiparticle energies owing to variations in T and μB ,
and finally there is the contribution −∂U/∂T at fixed μB . The
mean field carries no entropy; therefore, the second and third
terms must cancel. Using classical statistics for simplicity we
have

P0 = T
∑

a

∫
d	∗

af
eq
a (41)

and thus

∂U

∂T
= −

∑
a

∫
d	∗

a

(
∂Ea

∂T

)
μB

f eq
a . (42)

The same argument applies to differentiation with respect to
μB , which gives the baryon density. The mean field carries no
baryon number, so, similarly,

∂U

∂μB

= −
∑

a

∫
d	∗

a

(
∂Ea

∂μB

)
T

f eq
a . (43)

Hence,

δU = −
∑

a

∫
d	∗

aδEaf
eq
a , (44)

where Ea = E∗
a + gωaω̄

0 and

δEa = m∗
a

E∗
a

δm∗
a + gωaδω̄

0. (45)

Now we come to the deviation in the quasiparticle distribution
function. The fa in general will have departures from the equi-
librium form, but it can also change because the quasiparticle
energy departs from its equilibrium value. Let us denote E0

a

the equilibrium value and Ea the total nonequilibrium energy;
it is the latter which is conserved in the particle collisions.
Similarly, we denote T 0 and μ0

B the equilibrium values. Then
we write

fa(Ea,T ,μB) = f eq
a

(
E0

a,T
0,μ0

B

) + δfa,
(46)

fa(Ea,T ,μB) = f eq
a

(
Ea,T

0,μ0
B

) + δf̃a.

The deviations are related to each other by

δfa = δf̃a +
(

∂f
eq
a

∂Ea

)
T 0, μ0

B

δEa = δf̃a − δEa

T
f eq

a , (47)

where the second equality follows when using classical
statistics.

It is always the δf̃a which determine the transport coeffi-
cients. Therefore, we express δT ij in terms of δf̃a instead of
δfa:

δT ij =
∑

a

∫
d	∗

a

p∗i
a p

∗j
a

E∗
a

δf̃a

−
∑

a

∫
d	∗

a

p∗i
a p

∗j
a

E∗
a

(
δEa

T
+ δE∗

a

E∗
a

)
f eq

a

+ δij
∑

a

∫
d	∗

aδEaf
eq
a . (48)

The integrand of the second term depends only on the
magnitude of p∗

a , apart from the factor p∗i
a p

∗j
a . Therefore, one

may effectively make the replacement p∗i
a p

∗j
a → 1

3 |p∗
a|2δij .

Then the terms not involving δf̃a all have a factor of δij . They
can be written as a sum of

δω̄0

T

∑
a

gωa

∫
d	∗

a

(
T − |p∗

a|2
3E∗

a

)
f eq

a

and

∑
a

δm∗
a

∫
d	∗

a

m∗
a

E∗
a

(
1 − |p∗

a|2
3T E∗

a

− |p∗
a|2

3E∗2
a

)
f eq

a .

It can be shown that both of these integrate to zero (using
classical statistics). Hence, we find

δT ij =
∑

a

∫
d	∗

a

p∗i
a p

∗j
a

E∗
a

δf̃a (49)

as our final result.
The variation in the time-time component of the

energy-momentum tensor, starting with either Eq. (28) or
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Eq. (29), is

δT 00 =
∑

a

∫
d	∗

aEaδfa. (50)

We use Eq. (47) for δfa . The variation of the local energy Ea ,

δEa = δm∗2
a

2E∗
a

+ gωaδω̄
0, (51)

can be expressed in terms of the variations in temperature and
chemical potential

δm∗2
a =

(
∂m∗2

a

∂T

)
μB

δT +
(

∂m∗2
a

∂μB

)
T

δμB, (52)

δω̄0 =
(

∂ω̄0

∂T

)
μB

δT +
(

∂ω̄0

∂μB

)
T

δμB. (53)

The variations δT and δμB are not independent. They are
related by the hydrodynamic flow of the matter which to
this order occurs at constant entropy per baryon σ = s/nB .
Dissipation should not be included because it would lead
to second-order effects which are consistently neglected in
first-order viscous fluid dynamics. To keep the formulas
compact, it is helpful to define the susceptibilities:

χxy = ∂2P (T ,μ)

∂x∂y
. (54)

Then one finds several equivalent expressions:

(
∂μB

∂T

)
σ

=μB

T

v2
s

v2
n

= 1

T

[
μB + 1

v2
n

(
∂P

∂nB

)
ε

]

=χT T − σχμT

σχμμ − χμT

. (55)

Here v2
x = (∂P/∂ε)x is the speed of sound at constant x. It is

easily shown that

v2
n = sχμμ − nBχμT

T
(
χT T χμμ − χ2

μT

) ,

v2
s = nBχT T − sχμT

μB

(
χT T χμμ − χ2

μT

) , (56)

v2
σ = v2

nT s + v2
s μnB

w
,

relationships that are independent of the specific equation of
state. Of course, waves do not physically propagate at constant
n or s, only at constant σ , but these definitions are useful for
various intermediate steps in various applications. Rather than
thinking of m∗

a and ω̄0 as functions of T and μB we can think
of them as functions of T and σ . Then

δm∗2
a =

(
∂m∗2

a

∂T

)
σ

δT , (57)

δω̄0 =
(

∂ω̄0

∂T

)
σ

δT . (58)

Next, we need to relate the variations in T and μB to the
variation δf̃a . The latter variation is done at fixed Ea and is

δf̃a = f eq
a

[
Ea − μa + T

(
∂μa

∂T

)
σ

]
δT

T 2
. (59)

(Recall that μa = baμB .) The term from Eq. (47) which needs
to be rewritten is

δEa

T
f eq

a = 1

E∗
a

[
T 2

(
∂m∗2

a /∂T 2
)
σ
+gωaT (∂ω̄0/∂T )σE∗

a

Ea − μa + T (∂μa/∂T )σ

]
δf̃a

=
[

T (∂Ea/∂T )σ
Ea − μa + T (∂μa/∂T )σ

]
δf̃a. (60)

We reiterate that the temperature derivative of a function F
depending on T and μB , taken at fixed entropy per baryon, is(

∂F

∂T

)
σ

=
(

∂F

∂T

)
μB

+
(

∂F

∂μB

)
T

(
∂μB

∂T

)
σ

=
(

∂F

∂T

)
μB

+ μB

T

v2
s

v2
n

(
∂F

∂μB

)
T

. (61)

The final expression is therefore

δT 00 =
∑

a

∫
d	∗

aEa

{
1 − T (∂Ea/∂T )σ

Ea − μa + T (∂μa/∂T )σ

}
δf̃a.

(62)

When the baryon density goes to zero this reduces to the
formula known in the literature.

The time-space component has the very natural form

δT 0j =
∑

a

∫
d	∗

a

p
∗j
a

E∗
a

Eaδfa. (63)

To express this in terms of δf̃a , we note that the last term
on the right-hand side of Eq. (47) is spherically symmetric in
momentum space and therefore that term integrates to zero.
This is not true of the other term because the deviation φa does
have terms that depend on the direction of the momentum.
Therefore,

δT 0j =
∑

a

∫
d	∗

a

p
∗j
a

E∗
a

Eaδf̃a. (64)

Last we need the variations in the baryon current. The steps
are by now very familiar. The results are

δJ 0
B =

∑
a

ba

∫
d	∗

a

{
1 − T (∂Ea/∂T )σ

Ea − μa + T (∂μa/∂T )σ

}
δf̃a

(65)
and

δJ i
B =

∑
a

ba

∫
d	∗

a

p∗i
a

E∗
a

δf̃a. (66)

VI. GENERAL FORMULAS FOR THE
TRANSPORT COEFFICIENTS

Suppose that we know the scalars Aa , Ba , and Ca in Eq. (39)
as functions of the magnitude of the momentum p∗

a . Then in
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the local rest frame we should equate the hydrodynamic ex-
pression T ij from Eq. (22) with the quasiparticle expression
δT ij from Eq. (49), the latter being

δT ij =
∑

a

∫
d	∗

a

p∗i
a p

∗j
a

E∗
a

[
− Aa∂ρu

ρ − Bap
ν
aDν

(
μB

T

)

+Cap
μ
a pν

a

(
Dμuν + Dνuμ + 2

3
μν∂ρu

ρ

)]
f eq

a .

(67)

The Ba integrates to zero by symmetry. In the local rest frame
the derivative ∂ku0 = 0, so the the summation over μ and ν is
a sum over spatial indices kl only. In the Aa term we can use

p∗i
a p∗j

a → 1
3 |p∗

a|2δij

and in the Ca term we can use

p∗i
a p∗j

a p∗k
a p∗l

a → 1
15 |p∗

a|4(δij δkl + δikδjl + δilδjk)

because in the local rest frame p = p∗. Equating the tensorial
structures then gives us the shear viscosity

η = 2

15

∑
a

∫
d	∗

a

|p∗
a|4

E∗
a

f eq
a Ca (68)

and the bulk viscosity

ζ = 1

3

∑
a

∫
d	∗

a

|p∗
a|2

E∗
a

f eq
a Aa. (69)

For the baryon current we compare the J i
B from Eq. (23)

with the dissipative part of Eq. (34) in the local rest frame. The
latter is

δJ i
B =

∑
a

ba

∫
d	∗

a

p∗i
a

E∗
a

[
− Bap

ν
aDν

(
μB

T

)]
f eq

a . (70)

Obviously, the Aa and Ca terms integrate to zero on account
of symmetry. After some manipulation this results in an
expression for the thermal conductivity,

λ = 1

3

(
w

nBT

)2 ∑
a

ba

∫
d	∗

a

|p∗
a|2

E∗
a

f eq
a Ba. (71)

To solve for the functions Aa , Ba , and Ca , we turn to the
Chapman-Enskog method. This entails expanding both sides
of the Boltzmann equation (19) to first order in the φa . It
leads to integral equations, which, in general, must be solved
numerically.

Here we follow the notation of Ref. [12]. Including 2-to-2,
2-to-1, and 1-to-2 processes and using classical statistics (these
restrictions are easily relaxed) the collision integral is

Ca =
∑
bcd

1

1 + δab

∫
d	∗

b d	∗
c d	∗

d W (a,b|c,d){fcfd − fafb}

+
∑
cd

∫
d	∗

c d	∗
d W (a|c,d){fcfd − fa}

+
∑
bc

∫
d	∗

b d	∗
c W (c|a,b){fc − fafb}. (72)

The W ’s are given as

W (a,b|c,d) = (2π )4δ4(pa + pb − pc − pd )

2E∗
a2E∗

b2E∗
c 2E∗

d

|M(a,b|c,d)|2

(73)
and

W (a|c,d) = (2π )4δ4(pa − pc − pd )

2E∗
a2E∗

c 2E∗
d

|M(a|c,d)|2. (74)

The use of E∗
a instead of Ea in the denominators ensures that

the phase-space integration is Lorentz covariant. Also note
that, following Larionov et al. [58], we use dimensionless
matrix elements M averaged over spin in both initial and final
states. This is necessary to balance the degeneracy factors in
the d	∗

a . We use chemical equilibrium (for example, a + b ↔
c + d gives f

eq
a f

eq
b = f

eq
c f

eq
d ). Then the collision integral

becomes

Ca = f eq
a

∑
bcd

1

1 + δab

∫
d	∗

b d	∗
c d	∗

d f
eq
b W (a,b|c,d)

× [φc + φd − φa − φb]

+ f eq
a

∑
cd

∫
d	∗

c d	∗
d W (a|c,d)[φc + φd − φa]

+ f eq
a

∑
bc

∫
d	∗

b d	∗
c f

eq
b W (c|a,b)[φc − φa − φb].

(75)

This constitutes the right-hand side of the Boltzmann equation.
The left-hand side of the Boltzmann equation (19) is

computed using the local equilibrium form of the distribution
function,

f eq
a (x,p∗) = exp

[
− uα(x)pα

a

T (x)

]
exp

[
μa(x)

T (x)

]

= exp

[
− uα(x)p∗α

a

T (x)

]
exp

[
μ∗

a(x)

T (x)

]
. (76)

Here the flow velocity, temperature, and chemical potential all
depend on x. Although not explicitly indicated, pα

a depends on
x via the dependence of m∗

a and ω̄α on x, while E∗
a depends on

x via m∗
a only. The left-hand side must be expressed in terms of

the same space-time gradients as φa , namely ∂ρu
ρ , Dν(μB/T ),

and (Dμuν + Dνuμ + 2
3μν∂ρu

ρ). The calculation is long and
tedious. Space-time derivatives of T and μB are expressed in
terms of the relevant tensor structures by using the perfect fluid
equations for conservation of energy, momentum, and baryon
number. Some useful intermediate results are

DT = −v2
nT ∂ρu

ρ,
(77)

DμB = −v2
s μB ∂ρu

ρ.
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One form of the left-hand side (in the local rest frame) is

df
eq
a

dt
= f eq

a

[ |p∗
a|2

3T E∗
a

+ v2
nT

∂

∂T

(
Ea − μa

T

)
σ

]
∂ρu

ρ + f eq
a

(
ba − nBEa

w

)
p

μ
a

E∗
a

Dμ

(
μB

T

)

− f eq
a

p
μ
a pν

a

2T E∗
a

(
Dμuν + Dνuμ + 2

3
μν∂ρu

ρ

)
. (78)

Now Ea − μa in the first line could be replaced with E∗
a − μ∗

a , and Ea in the second line could be replaced by E∗
a + gωaω̄

0. With
a little manipulation this can be shown to be equivalent to Sasaki and Redlich who, however, did not include a vector field or the
Dμ(μB/T ) term. Another form is to write out the derivatives in the first line explicitly. This results in

df
eq
a

dt
= f eq

a

1

3T E∗
a

{
|p∗

a|2 − 3v2
n

[
E∗2

a − T 2

(
∂m∗2

a

∂T 2

)
σ

+ T 2 ∂

∂T

(
μ∗

a

T

)
σ

E∗
a

]}
∂ρu

ρ

+ f eq
a

(
ba − nBEa

w

)
p

μ
a

E∗
a

Dμ

(
μB

T

)
− f eq

a

p
μ
a pν

a

2T E∗
a

(
Dμuν + Dνuμ + 2

3
μν∂ρu

ρ

)
. (79)

In the limit that the chemical potential goes to zero this reproduces the results of Jeon and Yaffe [28] and of Chakraborty and
Kapusta [12].

Now we subtract the right-hand side from the left-hand side and set the resulting expression to zero. This leads to

Aa(∂ρu
ρ) + Bμ

a Dμ

(
μB

T

)
− Cμν

a

(
Dμuν + Dνuμ + 2

3
μν∂ρu

ρ

)
= 0, (80)

where

Aa = 1

3T E∗
a

{
|p∗

a|2 − 3v2
n

[
E∗2

a − T 2

(
∂m∗2

a

∂T 2

)
σ

+ T 2 ∂

∂T

(
μ∗

a

T

)
σ

E∗
a

]}

+
∑
bcd

1

1 + δab

∫
d	∗

b d	∗
c d	∗

d f
eq
b W (a,b|c,d)[Ac + Ad − Aa − Ab]

+
∑
cd

∫
d	∗

c d	∗
d W (a|c,d)[Ac + Ad − Aa] +

∑
bc

∫
d	∗

b d	∗
c f

eq
b W (c|a,b)[Ac − Aa − Ab] (81)

and

Bμ
a =

(
ba − nBEa

w

)
p

μ
a

E∗
a

+
∑
bcd

1

1 + δab

∫
d	∗

bd	∗
c d	∗

df
eq
b W (a,b|c,d)

[
Bcp

μ
c + Bdp

μ
d − Bap

μ
a − Bbp

μ
b

]

+
∑
cd

∫
d	∗

c d	∗
dW (a|c,d)

[
Bcp

μ
c + Bdp

μ
d − Bap

μ
a

] +
∑
bc

∫
d	∗

bd	∗
c f

eq
b W (c|a,b)

[
Bcp

μ
c − Bap

μ
a − Bbp

μ
b

]
(82)

and

Cμν
a = p

μ
a pν

a

2E∗
aT

+
∑
bcd

1

1 + δab

∫
d	∗

bd	∗
c d	∗

df
eq
b W (a,b|c,d)

[
Ccp

μ
c pν

c + Cdp
μ
d pν

d − Cap
μ
a pν

a − Cbp
μ
b pν

b

]

+
∑
cd

∫
d	∗

c d	∗
dW (a|c,d)

[
Ccp

μ
c pν

c + Cdp
μ
d pν

d − Cap
μ
a pν

a

]

+
∑
bc

∫
d	∗

bd	∗
c f

eq
b W (c|a,b)

[
Cap

μ
a pν

a + Cbp
μ
b pν

b − Ccp
μ
c pν

c

]
. (83)

Owing to the tensorial structure of these equations the solution requires that Aa = 0, Bμ
a = 0, and Cμν

a = 0. These are integral
equations for the functions Aa , Ba , and Ca which depend on the magnitude of the momentum p∗.

VII. LANDAU-LIFSHITZ CONDITIONS OF FIT

The set of Eqs. (81)–(83) are integral equations for the functions Aa , Ba , and Ca . Consider the equation for Aa . If we have a
particular solution A

par
a we can generate another solution Aa = A

par
a − aEEa − aBba , where the constant coefficients aE and aB

are independent of particle type a. The reason is that energy and baryon number are conserved in the collision, decay, and fusion
processes. This arbitrariness exists because of the freedom to define the local rest frame or, equivalently, the flow velocity uμ. In
the Eckart frame, uμ gives the flow of baryon number, while in the Landau-Lifshitz frame uμ gives the flow of energy. To remove
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the arbitrariness and pick one specific frame, one enforces equations called conditions of fit [57]. To pick the Landau-Lifshitz
frame, the conditions of fit in the local rest frame require δT 0ν = 0 and δJ 0

B = 0. Enforcing δT 00 = 0 results in

aE

∑
a

∫
d	∗

aE
2
a

[
1 − T (∂Ea/∂T )σ

Ea − μa + T (∂μa/∂T )σ

]
f eq

a + aB

∑
a

ba

∫
d	∗

aEa

[
1 − T (∂Ea/∂T )σ

Ea − μa + T (∂μa/∂T )σ

]
f eq

a

=
∑

a

∫
d	∗

aEa

[
1 − T (∂Ea/∂T )σ

Ea − μa + T (∂μa/∂T )σ

]
Apar

a f eq
a . (84)

Requiring that δJ 0
B = 0 in the local rest frame results in

aE

∑
a

ba

∫
d	∗

aEa

[
1 − T (∂Ea/∂T )σ

Ea − μa + T (∂μa/∂T )σ

]
f eq

a + aB

∑
a

b2
a

∫
d	∗

a

[
1 − T (∂Ea/∂T )σ

Ea − μa + T (∂μa/∂T )σ

]
f eq

a

=
∑

a

ba

∫
d	∗

a

[
1 − T (∂Ea/∂T )σ

Ea − μa + T (∂μa/∂T )σ

]
Apar

a f eq
a . (85)

Let us express the integrals in Eq. (84) as XE , XB , and ZE and in Eq. (85) as YE , YB , and ZB . Then Eqs. (84) and (85) become

aEXE + aBXB = ZE, aEYE + aBYB = ZB. (86)

The solutions are

aB = YEZE − XEZB

YEXB − XEYB

, aE = XBZB − YBZE

YEXB − XEYB

. (87)

When these are substituted into the expression (69) for the bulk viscosity we get

ζ = 1

3

∑
a

∫
d	∗

a

|p∗
a|2

E∗
a

f eq
a Aa − T nBaB − T waE. (88)

First consider the case where there are no mean fields, only on-shell particles traveling in vacuum and undergoing localized
collisions. In this case δfa = δf̃a , and one finds

XE = T
(
T 2χT T + 2μBT χμT + μ2

Bχμμ

)
, XB = T (T χμT + μBχμμ), YE = T (T χμT + μBχμμ), YB = T χμμ. (89)

The combination of aE and aB which is needed for the bulk viscosity is

T nBaB + T waE = v2
nZE + (

v2
s − v2

n

)
μBZB =

∑
a

∫
d	∗

a

[
v2

nEa + (
v2

s − v2
n

)
baμB

]
Apar

a f eq
a . (90)

Here Ea = E∗
a = √

p2 + m2
a because of the absence of mean fields. The bulk viscosity is then

ζ = 1

3

∑
a

∫
d	∗

a

{ |p∗
a|2

E∗
a

− 3
[
v2

nE
∗
a + (

v2
s − v2

n

)
baμB

]}
Apar

a f eq
a . (91)

This is a limiting form of

ζ = 1

3

∑
a

∫
d	∗

a

[ |p∗
a|2

E∗
a

+ 3v2
nT

2 ∂

∂T

(
Ea − μa

T

)
σ

]
Apar

a f eq
a (92)

once one recognizes Eq. (55). This makes perfect sense because the modification of the integrand compared to Eq. (69) matches
the structure of the source of Aa in Eq. (81).

It is not easy to find simple expressions for XE,XB,YE,YB when mean fields are included; hence, there are no simple
expressions for aE and aB . Fortunately, the individual expressions for aE and aB are not needed to find a simple expression for
the bulk viscosity. Returning to Eq. (69) we have

ζ = 1

3

∑
a

∫
d	∗

a

|p∗
a|2

E∗
a

f eq
a

(
Apar

a − aEEa − aBba

)
. (93)

Now the trick is to take a judicious linear combination of the conditions of fit. Add T (∂μB/∂T )σ − μB times (85) to (84). This
gives

aB

∑
a

ba

∫
d	∗

a

(
∂f

eq
a

∂T

)
σ

+ aE

∑
a

∫
d	∗

aEa

(
∂f

eq
a

∂T

)
σ

= −
∑

a

∫
d	∗

af
eq
a Apar

a

∂

∂T

(
Ea − μa

T

)
σ

. (94)
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The coefficient of aB is just (∂nB/∂T )σ , and from Eq. (50) the coefficient of aE is just (∂ε/∂T )σ . Therefore, we have

aB

(
∂nB

∂T

)
σ

+ aE

(
∂ε

∂T

)
σ

= −
∑

a

∫
d	∗

af
eq
a Apar

a

∂

∂T

(
Ea − μa

T

)
σ

. (95)

Because v2
n enters into Eq. (92) it is useful to derive the thermodynamic relations

T v2
n = w

(∂ε/∂T )σ
= nB

(∂nB/∂T )σ
. (96)

First we derive the relation between the derivatives appearing in the above equations. Using dε = T ds + μBdnB and ds =
nBdσ + σdnB , we obtain (

∂ε

∂T

)
σ

= w

nB

(
∂nB

∂T

)
σ

. (97)

Now for (∂nB/∂T )σ we use Eq. (61), the third equality of Eq. (55), and the first equality of Eq. (56) to obtain

T

(
∂nB

∂T

)
σ

= nB

v2
n

. (98)

Together with the previous equation we obtain the desired result (96). Using these results in Eq. (95) we have

T nBaB + T waE = −v2
nT

2
∑

a

∫
d	∗

af
eq
a Apar

a

∂

∂T

(
Ea − μa

T

)
σ

. (99)

Making this substitution in Eq. (88) we obtain the expression (92).
A similar arbitrariness arises in Eq. (82). Owing to energy-momentum conservation, if we have a particular solution B

par
a we

can generate another solution as Ba = B
par
a − b, where b is a constant independent of particle species a. This freedom is resolved

by the Landau-Lifshitz condition of fit which requires that δT 0j = 0 in the local rest frame. Starting with expression (64) we
have

δT 0j =
∑

a

∫
d	∗

a

p
∗j
a

E∗
a

Ea

[
− (

Bpar
a − b

)
p∗i

a Di

(
μB

T

)]
f eq

a . (100)

Factoring out the spatial derivative, and making use of the momentum space isotropy, we require that

b
∑

a

∫
d	∗

a

|p∗
a|2

E∗
a

Eaf
eq
a =

∫
d	∗

a

|p∗
a|2

E∗
a

EaB
par
a f eq

a . (101)

The integral multiplying b is just 3T w so that

b = 1

3T w

∫
d	∗

a

|p∗
a|2

E∗
a

EaB
par
a f eq

a . (102)

Substitution into expression (71) gives

λ = 1

3

(
w

nBT

)2 ∑
a

∫
d	∗

a

|p∗
a|2

E∗
a

(
ba − nBEa

w

)
Bpar

a f eq
a . (103)

There is no ambiguity in the solution to Eq. (83) for Ca , so the expression for the shear viscosity (68) is unchanged.

VIII. RELAXATION-TIME APPROXIMATION

At this point, it is convenient to derive the relaxation-time approximation formulas for the shear and bulk viscosities and
thermal conductivity. We start with the Boltzmann equation with the Chapman-Enskog expansion:

df
eq
a

dt
= Ca. (104)

The left-hand side of Eq. (104) is given by Eq. (78) while Ca can be found in Eq. (75). In the energy-dependent relaxation-time
approximation [12], we assume particle species a is out of equilibrium (φa 	= 0), while all other particle species are in equilibrium
(φb = φc = φd = 0). Using Eq. (75), the collision integral Ca greatly simplifies, and the Boltzmann equation becomes

df
eq
a

dt
= Ca = −f

eq
a φa

τa

, (105)
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where the relaxation time τa(E∗
a ) for species a is given by

1

τa(E∗
a )

=
∑
bcd

1

1 + δab

∫
d	∗

b d	∗
c d	∗

d f
eq
b W (a,b|c,d) +

∑
cd

∫
d	∗

c d	∗
d W (a|c,d) +

∑
bc

∫
d	∗

b d	∗
c f

eq
b W (c|a,b). (106)

Next we replace the left-hand side of Eq. (105) using Eq. (78). Into the right-hand side we substitute φa using Eq. (39). Then we
equate terms on the left- and right-hand sides by matching tensor structures, and we obtain particular solutions for the functions
Aa , Ba , and Ca from φa:

Apar
a = τa

3T

[ |p∗
a|2

E∗
a

+ 3v2
nT

2 ∂

∂T

(
Ea − μa

T

)
σ

]
, (107)

Bpar
a = τa

E∗
a

(
ba − nBEa

w

)
, (108)

Cpar
a = τa

2T E∗
a

. (109)

Finally, we substitute Eqs. (107)–(109) into Eqs. (68), (92), and (103) and obtain the desired relaxation-time formulas:

η = 1

15T

∑
a

∫
d	∗

a

|p∗
a|4

E∗2
a

τa(E∗
a )f eq

a , (110)

ζ = 1

9T

∑
a

∫
d	∗

a

τa(E∗
a )

E∗2
a

[
|p∗

a|2 + 3v2
nT

2E∗
a

∂

∂T

(
Ea − μa

T

)
σ

]2

f eq
a , (111)

λ = 1

3

(
w

nBT

)2 ∑
a

∫
d	∗

a

|p∗
a|2

E∗2
a

τa(E∗
a )

(
ba − nBEa

w

)2

f eq
a . (112)

A few observations are in order. First, the transport coefficients computed with Eqs. (110)–(112) are strictly non-negative,
as they must be. Second, this non-negativity is ensured by the squares in the integrands which came from enforcing the
Landau-Lifshitz conditions of fit. [Recall the derivation of Eqs. (92) and (103).] This shows that it is absolutely vital that the
Landau-Lifshitz conditions are carefully enforced to obtain the correct results. A third point is that Eqs. (110) and (111) are
obvious generalizations of the formulas obtained in previous works [12,28] to finite baryon chemical potential. The crucial
insight is that entropy per baryon (σ = s/nB) is conserved in zeroth-order (ideal) hydrodynamics, so that variable must be held
fixed when deriving the variations from equilibrium.

IX. CONCLUSION

In this paper, we developed a flexible relativistic quasi-
particle theory of transport coefficients in hot and dense
hadronic matter. A major goal was the simultaneous inclusion
of temperature- and baryon chemical potential-dependent
quasiparticle masses with scalar and vector mean fields, all in
a thermodynamically self-consistent way. Classical statistics
were used throughout to simplify the presentation, although
complete results with quantum statistics are given in the
Appendix. From the dispersion relations for the quasiparticles,
we derived the Boltzmann equation and then the transport
coefficients using the Chapman-Enskog expansion. Next we
derived compact analytic expressions for the shear and bulk
viscosities and thermal conductivity. These formulas can be
used with the relaxation-time approximation; alternatively, we
have provided integral equations which may be solved for
greater accuracy. We have shown that the transport coefficients
are non-negative in the relaxation-time approximation (as they
must be) which is a direct consequence of carefully enforcing
the Landau-Lifshitz conditions of fit.

We also showed that previous bulk viscosity formulas
(derived assuming zero baryon chemical potential) generalize
straightforwardly to finite baryon chemical potential if one

recalls that entropy per baryon is conserved in ideal hydrody-
namics. This was the crucial detail that allowed us to compute
the variations from equilibrium and use them to derive the bulk
viscosity and thermal conductivity formulas.

It is a trivial matter to include a variety of scalar and
vector fields; that is simply a matter of book-keeping. The
same is true of additional conserved charges beyond baryon
number. The next step is to study specific hadronic Lagrangians
whose parameters are fit to known nuclear properties, such as
described in Chap. 11 of Ref. [59]. Then the equation of state,
shear and bulk viscosities, and thermal conductivity would all
be obtained from the same hadronic Lagrangian. However, the
numerical effort required is significantly more than in Ref. [12]
and so is left to future publications.
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APPENDIX

This Appendix has two goals. The first is to summarize
the important results derived in the main body of the
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paper. The second is to include the effects of quantum statistics. All results presented here include quantum statistics. The limit
of classical statistics is attained when |fa| 
 1. Departures from local kinetic and chemical equilibrium for particle species a
are expressed in terms of the function φa as

fa = f eq
a (1 + φa). (A1)

We let δfa represent the deviation expressed in terms of the equilibrium energy E0
a while δf̃a represents the deviation expressed

in terms of the total nonequilibrium energy Ea; it is the latter which is conserved in local collisions and the one relevant for
transport coefficients. The deviations are related to each other by

δfa = δf̃a +
(

∂f
eq
a

∂Ea

)
T 0, μ0

B

δEa = δf̃a − δEa

T
f eq

a

(
1 + daf

eq
a

)
. (A2)

Here the notation is da = (−1)2sa . We need to relate the variations in T and μB to the variation δf̃a . The latter variation is done
at fixed Ea and is

δf̃a = f eq
a

[
Ea − μa + T

(
∂μa

∂T

)
σ

](
1 + daf

eq
a

)δT

T 2
. (A3)

Here in what follows the derivative is carried out at fixed entropy per baryon σ . The factor from Eq. (A2) which needs to be
rewritten is

δEa

T
f eq

a

(
1 + daf

eq
a

) =
[

T (∂Ea/∂T )σ
Ea − μa + T (∂μa/∂T )σ

]
δf̃a. (A4)

In terms of δf̃a the deviations in the energy-momentum tensor and baryon current are as follows:

δT ij =
∑

a

∫
d	∗

a

p∗i
a p

∗j
a

E∗
a

δf̃a, (A5)

δT 0j =
∑

a

∫
d	∗

a

p
∗j
a

E∗
a

Eaδf̃a, (A6)

δT 00 =
∑

a

∫
d	∗

aEa

{
1 − T (∂Ea/∂T )σ

Ea − μa + T (∂μa/∂T )σ

}
δf̃a, (A7)

δJ i
B =

∑
a

ba

∫
d	∗

a

p∗i
a

E∗
a

δf̃a, (A8)

δJ 0
B =

∑
a

ba

∫
d	∗

a

{
1 − T (∂Ea/∂T )σ

Ea − μa + T (∂μa/∂T )σ

}
δf̃a. (A9)

The collision term on the right side of the Boltzmann equation reads

Ca =
∑
bcd

1

1 + δab

∫
d	∗

b d	∗
c d	∗

d W (a,b|c,d){fcfd (1 + dafa)(1 + dbfb) − fafb(1 + dcfc)(1 + ddfd )}

+
∑
cd

∫
d	∗

c d	∗
d W (a|c,d){fcfd (1 + dafa) − fa(1 + dcfc)(1 + ddfd )} +

∑
bc

∫
d	∗

b d	∗
c W (c|a,b)

×{fc(1 + dafa)(1 + dbfb) − fafb(1 + dcfc)}. (A10)

This expression explicitly includes 2 ↔ 2 and 2 ↔ 1 reactions. Higher-order reactions are included in an obvious way.
We now consider small departures from equilibrium, meaning that we keep terms only linear in the φa . We use chemical

equilibrium; for example, a + b ↔ c + d gives

f eq
c f

eq
d

(
1 + daf

eq
a

)(
1 + dbf

eq
b

) = f eq
a f

eq
b

(
1 + dcf

eq
c

)(
1 + ddf

eq
d

)
.

Then the collision integral becomes

Ca =
∑
bcd

1

1 + δab

∫
d	∗

b d	∗
c d	∗

d W (a,b|c,d)
{
f eq

a f
eq
b

[(
1 + ddf

eq
d

)
φc + (

1 + dcf
eq
c

)
φd

]

− f eq
c f

eq
d

[(
1 + dbf

eq
b

)
φa + (

1 + daf
eq
a

)
φb

]}
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+
∑
cd

∫
d	∗

c d	∗
d W (a|c,d)

{
f eq

a

[(
1 + ddf

eq
d

)
φc + (

1 + dcf
eq
c

)
φd

] − f eq
c f

eq
d φa

}

+
∑
bc

∫
d	∗

b d	∗
c W (c|a,b)

{ − f eq
c

[(
1 + dbf

eq
b

)
φa + (

1 + daf
eq
a

)
φb

] + f eq
a f

eq
b φc

}
. (A11)

The left-hand side of the Boltzmann equation is computed using the local equilibrium form of the distribution function. One
form of the left-hand side (in the local rest frame) is

df
eq
a

dt
= f eq

a

(
1 + daf

eq
a

)[ |p∗
a|2

3T E∗
a

+ v2
nT

∂

∂T

(
Ea − μa

T

)
σ

]
∂ρu

ρ + f eq
a

(
1 + daf

eq
a

)(
ba − nBEa

w

)
p

μ
a

E∗
a

Dμ

(
μB

T

)

− f eq
a

(
1 + daf

eq
a

) p
μ
a pν

a

2T E∗
a

(
Dμuν + Dνuμ + 2

3
μν∂ρu

ρ

)
. (A12)

Now we subtract the right-hand side from the left-hand side and set the resulting expression to zero. This leads to

Aa(∂ρu
ρ) + Bμ

a Dμ

(
μB

T

)
− Cμν

a

(
Dμuν + Dνuμ + 2

3
μν∂ρu

ρ

)
= 0, (A13)

where

Aa =
[ |p∗

a|2
3T E∗

a

+ v2
nT

∂

∂T

(
Ea − μa

T

)
σ

]
f eq

a

(
1 + daf

eq
a

) +
∑
bcd

1

1 + δab

∫
d	∗

b d	∗
c d	∗

d W (a,b|c,d)

× {
f eq

a f
eq
b

[(
1 + ddf

eq
d

)
Ac + (

1 + dcf
eq
c

)
Ad

] − f eq
c f

eq
d

[(
1 + dbf

eq
b

)
Aa + (

1 + daf
eq
a

)
Ab

]}

+
∑
cd

∫
d	∗

c d	∗
d W (a|c,d)

{
f eq

a

[(
1 + ddf

eq
d

)
Ac + (

1 + dcf
eq
c

)
Ad

] − f eq
c f

eq
d Aa

}

+
∑
bc

∫
d	∗

b d	∗
c W (c|a,b)

{ − f eq
c

[(
1 + dbf

eq
b

)
Aa + (

1 + daf
eq
a

)
Ab

] + f eq
a f

eq
b Ac

}
, (A14)

Bμ
a =

(
ba − nBEa

w

)
p

μ
a

E∗
a

f eq
a

(
1 + daf

eq
a

) +
∑
bcd

1

1 + δab

∫
d	∗

b d	∗
c d	∗

d W (a,b|c,d)

× {
f eq

a f
eq
b

[(
1 + ddf

eq
d

)
Bcp

μ
c + (

1 + dcf
eq
c

)
Bdp

μ
d

] − f eq
c f

eq
d

[(
1 + dbf

eq
b

)
Bap

μ
a + (

1 + daf
eq
a

)
Bbp

μ
b

]}

+
∑
cd

∫
d	∗

c d	∗
d W (a|c,d)

{
f eq

a

[(
1 + ddf

eq
d

)
Bcp

μ
c + (

1 + dcf
eq
c

)
Bdp

μ
d

] − f eq
c f

eq
d Bap

μ
a

}

+
∑
bc

∫
d	∗

b d	∗
c W (c|a,b)

{ − f eq
c

[(
1 + dbf

eq
b

)
Bap

μ
a + (

1 + daf
eq
a

)
Bbp

μ
b

] + f eq
a f

eq
b Bcp

μ
c

}
, (A15)

Cμν
a = p

μ
a pν

a

2E∗
aT

f eq
a

(
1 + daf

eq
a

) +
∑
bcd

1

1 + δab

∫
d	∗

b d	∗
c d	∗

d W (a,b|c,d)
{
f eq

a f
eq
b

[(
1 + ddf

eq
d

)
Ccp

μ
c pν

c+
(
1+dcf

eq
c

)
Cdp

μ
d pν

d

]

− f eq
c f

eq
d

[(
1 + dbf

eq
b

)
Cap

μ
a pν

a + (
1 + daf

eq
a

)
Cbp

μ
b pν

b

]}

+
∑
cd

∫
d	∗

c d	∗
d W (a|c,d)

{
f eq

a

[(
1 + ddf

eq
d

)
Ccp

μ
c pν

c + (
1 + dcf

eq
c

)
Cdp

μ
d pν

d

] − f eq
c f

eq
d Cap

μ
a pμ

a

}

+
∑
bc

∫
d	∗

b d	∗
c W (c|a,b)

{ − f eq
c

[(
1+dbf

eq
b

)
Cap

μ
a pν

a + (
1+daf

eq
a

)
Cbp

μ
b pν

b

] + f eq
a f

eq
b Ccp

μ
c pν

c

}
. (A16)

Owing to the tensorial structure of these equations the solution requires that Aa = 0, Bμ
a = 0, and Cμν

a = 0. These are integral
equations for the functions Aa , Ba , and Ca which depend on the magnitude of the momentum p∗.

The solutions for Aa and Ba are not unique. It is necessary to specify whether uμ represents the flow of energy (Landau-Lifshitz)
or baryon number (Eckart). We enforce the Landau-Lifshitz condition, sometimes known as the condition of fit, using any
particular solutions. The results for the transport coefficients are

ζ = 1

3

∑
a

∫
d	∗

a

[ |p∗
a|2

E∗
a

+ 3v2
nT

2 ∂

∂T

(
Ea − μa

T

)
σ

]
Apar

a f eq
a , (A17)
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λ = 1

3

(
w

nBT

)2 ∑
a

∫
d	∗

a

|p∗
a|2

E∗
a

(
ba − nBEa

w

)
Bpar

a f eq
a , (A18)

η = 2

15

∑
a

∫
d	∗

a

|p∗
a|4

E∗
a

Cpar
a f eq

a . (A19)

The particular solutions need not even satisfy the Boltzmann equation to satisfy the condition of fit.
A common approximation is the energy-dependent relaxation-time approximation. It assumes that only one φa is nonzero and

the others vanish. Then the Boltzmann equation is approximated by

df
eq
a

dt
= Ca = −f

eq
a φa

τa

, (A20)

where the relaxation time τa(E∗
a ) for species a is given by

1 + daf
eq
a

τa(E∗
a )

=
∑
bcd

1

1 + δab

∫
d	∗

b d	∗
c d	∗

d W (a,b|c,d)f eq
b

(
1 + dcf

eq
c

)(
1 + ddf

eq
d

)

+
∑
cd

∫
d	∗

c d	∗
d W (a|c,d)

(
1 + dcf

eq
c

)(
1 + ddf

eq
d

) +
∑
bc

∫
d	∗

b d	∗
c W (c|a,b)f eq

b

(
1 + dcf

eq
c

)
. (A21)

The particular solutions are

Apar
a = τa

3T

[ |p∗
a|2

E∗
a

+ 3v2
nT

2 ∂

∂T

(
Ea − μa

T

)
σ

](
1 + daf

eq
a

)
, (A22)

Bpar
a = τa

E∗
a

(
ba − nBEa

w

)(
1 + daf

eq
a

)
, (A23)

Cpar
a = τa

2T E∗
a

(
1 + daf

eq
a

)
. (A24)

Substitution gives the transport coefficients

η = 1

15T

∑
a

∫
d	∗

a

|p∗
a|4

E∗2
a

τa(E∗
a )f eq

a

(
1 + daf

eq
a

)
, (A25)

ζ = 1

9T

∑
a

∫
d	∗

a

τa(E∗
a )

E∗2
a

[
|p∗

a|2 + 3v2
nT

2E∗
a

∂

∂T

(
Ea − μa

T

)
σ

]2

f eq
a

(
1 + daf

eq
a

)
, (A26)

λ = 1

3

(
w

nBT

)2 ∑
a

∫
d	∗

a

|p∗
a|2

E∗2
a

τa(E∗
a )

(
ba − nBEa

w

)2

f eq
a

(
1 + daf

eq
a

)
. (A27)

These are clearly positive definite.

[1] M. Stephanov, Prog. Theor. Phys. Suppl. 153, 139 (2004);
Int. J. Mod. Phys. A 20, 4387 (2005); PoS (LAT2006) 024.

[2] B. Mohanty, Nucl. Phys. A 830, 899c (2009).
[3] R. A. Lacey, Phys. Rev. Lett. 114, 142301 (2015).
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