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Symmetry energy of cold nucleonic matter within a relativistic mean field model
encapsulating effects of high-momentum nucleons induced by short-range correlations
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It is well known that short-range nucleon-nucleon correlations (SRC) from the tensor components and/or
the repulsive core of nuclear forces lead to a high- (low-)momentum tail (depletion) in the single-nucleon
momentum distribution above (below) the nucleon Fermi surface in cold nucleonic matter. Significant progress
was made recently in constraining the isospin-dependent parameters characterizing the SRC-modified single-
nucleon momentum distribution in neutron-rich nucleonic matter using both experimental data and microscopic
model calculations. Using the constrained single-nucleon momentum distribution in a nonlinear relativistic mean
field (RMF) model, we study the equation of state (EOS) of asymmetric nucleonic matter (ANM), especially the
density dependence of nuclear symmetry energy Esym(ρ). First, as a test of the model, the average nucleon kinetic
energy extracted recently from electron-nucleus scattering experiments using a neutron-proton dominance model
is well reproduced by the RMF model incorporating effects of the SRC-induced high-momentum nucleons, while
it is significantly under predicted by the RMF model using a step function for the single-nucleon momentum
distribution as in free Fermi gas (FFG) models. Second, consistent with earlier findings within nonrelativistic
models, the kinetic symmetry energy of quasinucleons is found to be Ekin

sym(ρ0) = −16.94 ± 13.66 MeV which is
dramatically different from the prediction of Ekin

sym(ρ0) ≈ 12.5 MeV by FFG models at nuclear matter saturation
density ρ0 = 0.16 fm−3. Third, comparing the RMF calculations with and without the high-momentum nucleons
using two sets of model parameters both reproducing identically all empirical constraints on the EOS of symmetric
nuclear matter (SNM) and the symmetry energy of ANM at ρ0, the SRC-modified single-nucleon momentum
distribution is found to make the Esym(ρ) more concave around ρ0 by softening it significantly at both subsaturation
and suprasaturation densities, leading to an isospin-dependent incompressibility of ANM in better agreement
with existing experimental data. Fourth, the maximum mass of neutron stars is enhanced by the increased kinetic
pressure from high-momentum nucleons at suprasaturation densities in SNM.
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I. INTRODUCTION

The density dependence of nuclear symmetry Esym(ρ) is
currently the most uncertain part of the equation of state (EOS)
of isospin asymmetric nucleonic matter (ANM) especially
at suprasaturation densities [1]. Owing to its importance
in both nuclear physics [2–9] and astrophysics [10–13],
much effort was devoted in recent years to constraining the
Esym(ρ) using data from both terrestrial experiments and
astrophysical observations [1]. While significant progress was
made in experimentally constraining the Esym(ρ) around the
saturation density ρ0, much more work is needed to better
constrain the Esym(ρ) at both subsaturation and suprasaturation
densities. On the other hand, essentially all existing nuclear
interactions have been used in various many-body theories
to calculate the Esym(ρ). While all models are tuned to be
consistent with available constrains on the Esym(ρ) around ρ0,
their predictions diverge broadly at suprasaturation densities.
For uniform nucleonic matter, extensive studies have been
underway by various groups to understand why the Esym(ρ) is
so uncertain especially at high densities and how one can better
constrain it. The spin-isospin dependence of three-body forces
and the isospin dependence of short-range nucleon-nucleon
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correlations (SRC) induced by the poorly known nuclear tensor
forces and the repulsive core have been identified in several
studies to be among the main causes of the uncertainties in the
Esym(ρ) at suprasaturation densities; see, e.g., Refs. [14–17].
While at very low densities where cluster formation and pairing
become important, the Esym(ρ) behaves rather differently
from expectations based on mean field models [18–20].
Moreover, for clustered matter where correlations dominate
and the Coulomb force is important, there is no neutron-
proton exchange symmetry; it is even a question whether it
is necessary and how to introduce the symmetry energy in
describing the EOS of clustered matter.

How to relate isovector interactions with experimental
observables sensitive to the Esym(ρ) is a longstanding ques-
tion [1]. A thorough understanding about the origins and
properties of each part of the Esym(ρ) is useful for making
further progress in this field. Usually, the symmetry energy
Esym(ρ) can be decomposed into a kinetic and a potential part,
i.e., Esym(ρ) = Ekin

sym(ρ) + E
pot
sym(ρ). We emphasize that such a

decomposition should be understood as for quasinucleons of
certain effective masses and momentum distributions which
are both determined by nuclear interactions. Namely, the
kinetic symmetry energy of quasinucleons also depends on
the interaction. However, in many analyses of data especially
using phenomenological models one often assumes that the
kinetic symmetry energy is that predicted by the free Fermi gas
(FFG) model for nucleons with bare masses and step functions
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for their momentum distributions. The potential part is often
parametrized with its parameters extracted from fitting the data
within adopted models for describing the physics in question.

It is well known that short-range nucleon-nucleon correla-
tions from the tensor components and/or the repulsive core of
nuclear forces lead to a high- (low-)momentum tail (depletion)
in the single-nucleon momentum distribution above (below)
the nucleon Fermi surface in cold nucleonic matter; see,
e.g., Refs. [21–24] for comprehensive reviews. In recent
years, significant efforts have been made, e.g., Refs. [25–30],
to constrain the isospin-dependent parameters characterizing
the SRC-modified single-nucleon momentum distribution in
neutron-rich nucleonic matter using both experimental data
and microscopic model calculations. For instance, it was found
from analyzing electron-nucleus scattering data that the per-
centage of nucleons in the high-momentum tail (HMT) above
the Fermi surface is as high as about 25% in symmetric nuclear
matter (SNM) but decreases gradually to about only 1% in
pure neutron matter (PNM) [27,28]. Thus, the SRC-modified
quasinucleon momentum distribution is significantly different
from the step function for the FFG at zero temperature.
Because of the momentum-squared weighting in calculating
the average nucleon kinetic energy, the strong isospin de-
pendence of the HMT makes the kinetic symmetry energy
dramatically different from the FFG model prediction using a
step function for the nucleon momentum distribution [31–39].
In particular, the kinetic symmetry energy is significantly
reduced to even negative values in some model studies.
In essence, the symmetry energy is the energy difference
between PNM and SNM in the parabolic approximation of
the ANM EOS. The neutron-proton interaction dominated
SRC increases significantly the average energy per nucleon
in SNM but has little effect on that in PNM, thus leading to
a reduction of the kinetic symmetry energy. This expectation
was confirmed so far only within nonrelativistic approaches. It
would be interesting to study effects of the HMT on both the
kinetic and potential parts of the Esym(ρ) within a relativistic
model.

The knowledge on each individual term of the Esym(ρ) is
useful in both nuclear physics and astrophysics. For instance,
in simulating heavy-ion reactions using transport models
one needs as an input the potential symmetry energy of
quasinucleons. Its magnitude is limited by the total symmetry
energy at ρ0 known to be around 31.6 ± 2.66 MeV [40] and
the kinetic symmetry energy normally assumed to be that
predicted by the FFG model. Several recent studies have
shown that using a SRC-reduced kinetic symmetry energy
in transport model simulations can lead to significant effects
on isovector observables of heavy-ion collisions [38,41–43].
Interestingly, it was also found recently that the critical
densities and effects of the formation of different charge
states of �(1232) resonances in neutron stars depend on how
the kinetic and potential parts of the Esym(ρ) individually
evolve as functions of density [44,45]. Namely, in determining
the critical formation densities for �(1232) resonances in
neutron stars using chemical equilibrium conditions, the
kinetic and potential parts of the nucleon symmetry energy
play different roles [44]. Basically, the �(1232) resonances
obtain a potential symmetry energy from the τ3(�) · τ3(N)

term in their interactions with nucleons where the τ3(�) and
τ3(N) are the third component of the isospin of � resonances
and nucleons. However, the population of � resonances is
so low especially near their production thresholds that they
do not build their own Fermi spheres and thus they do not
have a kinetic symmetry energy. Depending on the relative
strengths of the NNρ and ��ρ coupling constants gρN and
gρ�, the potential symmetry energies of the � resonances and
nucleons may completely cancel out but the kinetic symmetry
energy of nucleons remains in the equations determining the
critical formation densities of the four charge states of �
resonances [44].

In this work, within a nonlinear relativistic mean field
(RMF) model incorporating the SRC-modified single-nucleon
momentum distribution with its parameters determined by
electron-nucleus scattering experiments and calculations using
state-of-the-art many-body theories, we study the EOS of
ANM especially the Esym(ρ). Several interesting effects are
found. In particular, comparing the RMF calculations with
and without the HMT using two sets of model parameters both
reproducing identically all empirical constraints on the EOS
of SNM and the symmetry energy of ANM at ρ0, the SRC-
modified nucleon momentum distribution leads to a negative
kinetic symmetry energy and the total symmetry energy is
softened at both subsaturation and suprasaturation densities.
Moreover, only with the SRC-modified nucleon momentum
distribution, the recently extracted average kinetic energy per
nucleon from electron-nucleus scattering experiments can be
reproduced, providing a strong support for the existence of
HMT in nuclei. Furthermore, the HMT also enhance the
maximum mass of neutron stars by increasing the kinetic
pressure of SNM at suprasaturation densities.

The paper is organized as follows. In Sec. II, the SRC-
modified single-nucleon momentum distribution with an HMT
and the basic equations of the nonlinear RMF model are
outlined. In Sec. III, we evaluate the kinetic symmetry
energy with the SRC-modified single-nucleon momentum
distribution. Effects on the EOS of SNM and the validation
of the HMT are presented in Sec. IV. In Sec. V, effects of
the HMT on the nucleon scalar density and Dirac effective
mass are studied. Then in Sec. VI we examine effects of
the HMT on the density dependence of the total symmetry
energy. In Sec. VII, the effects of the HMT on the EOS
of neutron star matter as well as the mass-radius relation
of neutron stars will be explored. Finally, we summarize in
Sec. VIII. Detailed derivations for the analytical expressions
of the kinetic symmetry energy, incompressibility coefficient
K0 of SNM, and the slope parameter L of the symmetry energy
within the RMF with HMT are given in the three appendixes.

II. A RELATIVISTIC MEAN FIELD MODEL
INCORPORATING THE SRC-MODIFIED NUCLEON

MOMENTUM DISTRIBUTION

In this section, we first summarize the main features
and give all parameters of the SRC-modified single-nucleon
momentum distribution. Then we discuss how the relevant
formalisms of the nonlinear RMF model are generalized by
replacing the previously used step function for the nucleon
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momentum distribution with the SRC-modified one including
a high-momentum tail. We notice that tensor forces have no
effect at the mean field level. The SRC-modified momentum
distribution cannot be obtained self-consistently within the
RMF model itself.

A. The SRC-modified nucleon momentum distribution function

Here we briefly describe the SRC-modified single-
nucleon momentum distribution function encapsulating a
high-momentum tail used in the present work. More details
can be found in Ref. [39]. The single-nucleon momentum
distribution function in ANM has the following form,

nJ
k (ρ,δ) =

{
�J + βJ I

(|k|/kJ
F

)
, 0 < |k| < kJ

F ,

CJ

(
kJ

F /|k|)4
, kJ

F < |k| < φJ kJ
F .

(1)

Here, J = n,p is the isospin index, kJ
F = kF(1 + τ J

3 δ)1/3 is
the Fermi momentum where kF = (3π2ρ/2)1/3, and τ n

3 = +1,
τ

p
3 = −1. It is worth emphasizing that the above form of

nucleon momentum distribution function is consistent with
the well-known predictions of microscopic nuclear many-body
theories [21–24] and the recent experimental findings [25–29].

In (1), the �J measures the depletion of the Fermi sphere
at zero momentum with respect to the FFG model while βJ

is the strength of the momentum dependence I (k/kJ
F ) of the

depletion near the Fermi surface. Owing to the small effects of
βJ on the energy per nucleon [39], we assume βJ = 0 in this
work. The sketch of nJ

k (ρ,δ) is shown in Fig. 1. The isospin
structure of the parameters �J , CJ , and φJ is found to be YJ =
Y0(1 + Y1τ

J
3 δ) [39]. The amplitude CJ and high-momentum

cutoff coefficient φJ determine the fraction of nucleons in the
HMT via

xHMT
J = 3CJ

(
1 − φ−1

J

)
. (2)

The normalization condition [2/(2π )3]
∫ ∞

0 nJ
k (ρ,δ)dk =

ρJ = (kJ
F )3/3π2 requires that only two of the three parameters,

i.e., CJ , φJ , and �J , are independent. Here we choose the first
two as independent and determine the �J by

�J = 1 − 3CJ

(
1 − φ−1

J

)
. (3)

The C/|k|4 shape of the HMT both for SNM and pure
neutron matter (PNM) is strongly supported by several recent

nJk

1
ΔJ

0 kJF
|k|

Free Fermi Gas

φJk JF

∼ |k|−4

FIG. 1. A sketch of the single-nucleon momentum distribution
with a high-momentum tail used in this work. Taken from Ref. [39].

studies both theoretically and experimentally. Combining the
results from analyzing cross sections of d(e,e′p) reactions [28]
and medium-energy photonuclear absorptions [25], the C0 was
found to be C0 ≈ 0.161 ± 0.015. With this C0 and the value
of xHMT

SNM = 28% ± 4% [27,28,38] obtained from systematic
analyses of inclusive (e, e′) reactions and data from exclusive
two-nucleon knockout reactions, the HMT cutoff parameter in
SNM is determined to be φ0 = (1 − xHMT

SNM /3C0)−1 = 2.38 ±
0.56 [39]. The value of CPNM

n = C0(1 + C1) was extracted
by applying the adiabatic sweep theorem [51] to the EOS
of PNM constrained by predictions of microscopic nuclear
many-body theories [46–50] and the EOS of cold atoms under
unitary condition [51,52]. More specifically, CPNM

n ≈ 0.12
and C1 = −0.25 ± 0.07 were obtained [39]. By inserting
the values of xHMT

PNM = 1.5% ± 0.5% [27,28,38] extracted in
the same way as the xHMT

SNM and CPNM
n into Eq. (2), the

high-momentum cutoff parameter for PNM was determined
to be φPNM

n ≡ φ0(1 + φ1) = (1 − xHMT
PNM /3CPNM

n )−1 = 1.04 ±
0.02 [39]. Consequently, φ1 = −0.56 ± 0.10 [39] was ob-
tained by using the φ0 determined earlier.

B. Basic equations in the nonlinear relativistic mean
field model incorporating the SRC-modified single nucleon

momentum distribution

The nonlinear RMF model was very successful in describ-
ing many nuclear phenomena; see, e.g., Refs. [53–57]. In the
following, we outline major ingredients of the nonlinear RMF
model we use in this work. The emphasis is on describing
where and how the SRC-modified nucleon momentum distri-
bution is used to replace the FFG step function traditionally
used in all RMF models.

The interacting Lagrangian of the nonlinear RMF model
supplemented with couplings between the isoscalar and the
isovector mesons reads [58–67]

L = ψ[γμ(i∂μ − gωωμ − gρ �ρμ · �τ ) − (M − gσσ )]ψ

− 1
2m2

σ σ 2 + 1
2∂μσ∂μσ − U (σ ) + 1

2m2
ωωμωμ

− 1
4ωμνω

μν + 1
4cω(gωωμωμ)2 + 1

2m2
ρ �ρμ · �ρμ

− 1
4 �ρμν · �ρμν + 1

2g2
ρ �ρμ · �ρμ�Vg2

ωωμωμ, (4)

where ωμν ≡ ∂μων − ∂νωμ and �ρμν ≡ ∂μ �ρν − ∂ν �ρμ are
strength tensors for the ω field and the ρ field, respec-
tively. ψ , σ , ωμ, �ρμ are nucleon field, isoscalar-scalar field,
isoscalar-vector field, and isovector-vector field, respectively,
and the arrows denote the vector in isospin space; U (σ ) =
bσM(gσσ )3/3 + cσ (gσσ )4/4 is the self-interaction term for
σ field. �V represents the coupling constant between the
isovector ρ meson and the isoscalar ω meson. In addition,
M = 939 MeV is the nucleon mass and mσ , mω, mρ are masses
of mesons.

In the mean field approximation, after neglecting the effects
of fluctuation and correlation, meson fields are replaced by
their expectation values, i.e., σ → σ , ω0 → ωμ, ρ

(3)
0 → �ρμ,

where subscript “0” indicates the zeroth component of the four-
vector, and superscript “(3)” indicates the third component of
the isospin. Furthermore, we also use in this work the non-sea
approximation which neglects the effect from negative energy
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states in the Dirac sea. The mean field equations are then
expressed as

m2
σ σ = gσ [ρS − bσ M(gσσ )2 − cσ (gσσ )3], (5)

m2
ωω0 = gω

[
ρ − cω(gωω0)3 − �Vgωω0

(
gρρ

(3)
0

)2]
, (6)

m2
ρρ

(3)
0 = gρ

[
ρp − ρn − �Vgρρ

(3)
0 (gωω0)2

]
, (7)

where ρ = 〈ψγ 0ψ〉 = ρn + ρp and ρS = 〈ψψ〉 = ρS,n + ρS,p

are the baryon density and scalar density, respectively, with
the latter given by

ρS,J = 2

(2π )3

∫ φJ kJ
F

0
nJ

kdk
M∗

J√
|k|2 + M∗

J
2

= 2

(2π )3

∫ kJ
F

0
�J dk

M∗
J√

|k|2 + M∗
J

2

+ 2

(2π )3

∫ φJ kJ
F

kJ
F

CJ

(
kF

|k|
)4

dk
M∗

J√
|k|2 + M∗

J
2
. (8)

The change introduced by the SRC-modified nucleon momen-
tum distribution is in the following replacement:

∫ kJ
F

0
(FFG step function)f dk −→

∫ φJ kJ
F

0
nJ

k (HMT)f dk,

(9)
with f being any quantity. In the following, we often use the
“HMT model” in this work as the abbreviation for the nonlinear
RMF model using the SRC-modified nucleon momentum
distribution, while the “FFG model” refers to the original
nonlinear RMF model using the FFG step function for the
single-nucleon momentum distribution. The Fermi energy of
nucleon J is EJ∗

F = (kJ,2
F + M

∗,2
J )1/2 where M∗

J is the nucleon
Dirac mass defined as

M∗
J ≡ M − gσσ . (10)

The energy-momentum density tensor for the interacting
Lagrangian density in Eq. (4) can be written as

T μν = ψiγ μ∂νψ + ∂μσ∂νσ − ωμη∂νωη

− �ρμη∂ν �ρη − Lgμν, (11)

where gμν = (+, − , − ,−) is the Minkowski metric. In the
mean field approximation, the mean value of the time (zero)
component of the energy-momentum density tensor is the
energy density of the nuclear matter system, i.e.,

ε = 〈T 00〉
= εkin

n + εkin
p + 1

2

[
m2

σ σ 2 + m2
ωω2

0 + m2
ρ

(
ρ

(3)
0

)2]
+ 1

3bσ (gσσ )3 + 1
4cσ (gσσ )4 + 3

4cω(gωω0)4

+ 3
2

(
gρρ

(3)
0

)2
�V(gωω0)2, (12)

where

εkin
J = 2

(2π )3

∫ kJ
F

0
�J dk

√
|k|2 + M∗2

J

+ 2

(2π )3

∫ φJ kJ
F

kJ
F

CJ

(
kJ

F

|k|
)4

dk
√

|k|2 + M∗2
J (13)

is the kinetic part of the energy density. Similarly, the mean
value of space components of the energy-momentum density
tensor corresponds to the pressure of the system, i.e.,

P = 1

3

3∑
j=1

〈T jj 〉

=P n
kin + P

p
kin − 1

2

[
m2

σ σ 2 − m2
ωω2

0 − m2
ρ

(
ρ

(3)
0

)2]
− 1

3
bσ (gσσ )3 − 1

4
cσ (gσσ )4 + 1

4
cω(gωω0)4

+ 1

2

(
gρρ

(3)
0

)2
�V(gωω0)2, (14)

where the kinetic part of pressure is given by

P J
kin = 1

3π2

∫ kJ
F

0
�J dk

k4√
k2 + M∗

J
2

+ 1

3π2

∫ φJ kJ
F

kJ
F

CJ

(
kJ

F

k

)4

dk
k4√

k2 + M∗
J

2
. (15)

For completeness, in the following we recall the definitions
of several physics quantities characterizing the EOS of SNM
and the density dependence of nuclear symmetry energy
around ρ0. Expressions of these quantities in the presence of
the HMT are given in the appendixes. These expressions can be
used readily to fix the RMF model parameters by reproducing
the empirical values of these quantities at ρ0. First of all, the
EOS of ANM can be calculated through the energy density
ε(ρ,δ) by

E(ρ,δ) = ε(ρ,δ)

ρ
− M. (16)

One important relation holds between the pressure and the
energy density,

P = ρ2 ∂(ε(ρ,δ)/ρ)

∂ρ
, (17)

and in Appendix C, we will prove this relation in SNM.
The function E(ρ,δ) can be expanded as a power series of

even-order terms in δ as

E(ρ,δ) � E0(ρ) + Esym(ρ)δ2 + O(δ4), (18)

where E0(ρ) = E(ρ,δ = 0) is the EOS of SNM, and the
symmetry energy is expressed as

Esym(ρ) = 1

2

∂2E(ρ,δ)

∂δ2

∣∣∣∣
δ=0

. (19)
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Around the saturation density ρ0, the E0(ρ) can be expanded,
e.g., up to second order in density as

E0(ρ) = E0(ρ0) + 1
2K0χ

2 + O(χ3), (20)

where χ = (ρ − ρ0)/3ρ0 is a dimensionless variable char-
acterizing the deviations of the density from the saturation
density ρ0. The first term E0(ρ0) on the right-hand side of
Eq. (20) is the binding energy per nucleon in SNM at ρ0, and

K0 = 9ρ2
0
d2E0(ρ)

dρ2

∣∣∣∣
ρ=ρ0

(21)

is the incompressibility coefficient of SNM. Similarly, one can
expand the Esym(ρ) around the normal density as

Esym(ρ) = Esym(ρ0) + Lχ + O(χ2), (22)

with the slope parameter L of the symmetry energy defined by

L ≡ 3ρ0
dEsym(ρ)

dρ

∣∣∣∣
ρ=ρ0

. (23)

It is necessary to point out here an inconsistency of our
approach. Because the phenomenological nJ

k in Eq. (1) has
no direct relation to the interacting Lagrangian (4), although
it is constrained by recent experimental and microscopic

theoretical studies, our results may have some deviations from
those using the nJ

k obtained in models going beyond the
mean field approximation by solving the equation of ψ in
the presence of interactions between nucleons and mesons
expressed in the Lagrangian (4) self-consistently. In fact, this
inconsistency exists in almost all phenomenonlogical mean
field models. Ideally, one should first reproduce quantitatively
the experimentally constrained nJ

k by adjusting parameters
in the model Lagrangian. Unfortunately, as shown by the
strong model dependence in predicting the nJ

k using various
models and interactions, our poor knowledge on the isospin
dependence of short-range nucleon-nucleon interactions, such
as the couplings gρ and �V in (4), still hinders reproducing
quantitatively the experimentally constrained nJ

k . Thus, our
hybrid approach using directly the phenomenological nJ

k con-
strained by experiments can give us some useful perspectives
on the effects of the HMT on the EOS of ANM.

III. THE KINETIC SYMMETRY ENERGY WITH
HIGH-MOMENTUM NUCLEONS

As shown in detail in Appendix A, the kinetic symmetry
energy Ekin

sym(ρ) in the RMF model with the HMT can be written
as

Ekin
sym(HMT) = k2

F

6E∗
F

[
1 − 3C0

(
1 − 1

φ0

)]
− 3E∗

FC0

[
C1

(
1 − 1

φ0

)
+ φ1

φ0

]

− 9M
∗,4
0

8k3
F

C0φ1(C1 − φ1)

φ0

[
2kF

M∗
0

((
kF

M∗
0

)2

+ 1

)3/2

− kF

M∗
0

((
kF

M∗
0

)2

+ 1

)1/2

− arcsinh

(
kF

M∗
0

)]

+ 2kFC0(6C1 + 1)

3

⎡
⎣arcsinh

(
φ0kF

M∗
0

)
−

√
1 +

(
M∗

0

φ0kF

)2

− arcsinh

(
kF

M∗
0

)
+

√
1 +

(
M∗

0

kF

)2
⎤
⎦

+ 3kFC0

2

[
(1 + 3φ1)2

9

(
φ0kF

F ∗
F

− 2F ∗
F

φ0kF

)
+ 2F ∗

F (3φ1 − 1)

9φ0kF
− 1

9

kF

E∗
F

+ 4E∗
F

9kF

]

+ C0(4 + 3C1)

3

[
F ∗

F (1 + 3φ1)

φ0
− E∗

F

]
, (24)

where

E∗
F = (

M
∗,2
0 + k2

F

)1/2
and F ∗

F = (
M

∗,2
0 + (φ0kF)2

)1/2
.

(25)

In the FFG limit, φ0 = 1,φ1 = 0, only the first term of
the above expression survives and leads to Ekin

sym(ρ) →
Ekin

sym(FFG) ≡ k2
F/6E∗

F as in traditional RMF models. The
kinetic symmetry energy in the presence of HMT is a
function only of the Dirac effective mass M∗

0 . Using the
values of C0,C1,φ0, and φ1 given in the last section, we
show in Fig. 2 the kinetic symmetry energy as a function of
M∗

0 at ρ0 = 0.16 fm−3 for both the FFG and HMT models.
In the whole range of M∗

0 considered as reasonable, the
kinetic symmetry energy at ρ0 in the HMT model is always
negative. For example, with M∗

0 /M = 0.6 the kinetic symme-

try energy is

Ekin
sym(ρ0) = −16.94 ± 13.66 MeV, (26)

where the errors are all from the uncertainties of C0,C1,φ0,
and φ1. This value is close to the nonrelativistic result of
Ekin

sym(ρ0) = −13.90 ± 11.54 MeV according to the expres-
sion [39],

Ekin
sym(ρ) = k2

F

/
6M · [

1 + C0(1 + 3C1)(5φ0 + 3/φ0 − 8)

+ 3C0φ1(1 + 3C1/5)(5φ0 − 3/φ0)

+ 27C0φ
2
1/5φ0

]
. (27)

Thus, the reduction of the kinetic symmetry energy in the pres-
ence of HMT is general in both relativistic and nonrelativistic
calculations [38,39]. Moreover, this result is also consistent
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FIG. 2. The kinetic symmetry energy as a function of Dirac
effective mass of nucleon in SNM both in the FFG model and in
the HMT model, ρ0 = 0.16 fm−3.

with the findings of several recent studies of the kinetic EOS
considering the SRC using both phenomenological models and
microscopic many-body theories [31–37].

IV. VALIDATION OF SRC-MODIFIED SINGLE-NUCLEON
MOMENTUM DISTRIBUTION AND ITS EFFECTS

ON THE EOS OF SYMMETRIC NUCLEAR MATTER

First of all, it is necessary to point out that because we fixed
the parameters of the nucleon momentum distribution by using
experimental data and/or model calculations at the saturation
density, the possible density dependence of those parameters,
i.e., C0,C1,φ0, and φ1 is not explored in this work as well as
in Ref. [39]. The density dependence of the various terms in
the kinetic EOS is thus only from that of the meson fields and
the Fermi momenta. In this section, all analytical expressions
are obtained under this assumption. The numerical results are
obtained by setting φ0 = 2.38,φ1 = −0.56,C0 = 0.161, and
C1 = −0.25. In both the HMT and FFG models, the masses of
meson fields are chosen as mσ = 500 MeV, mω = 782.5 MeV,
and mρ = 763 MeV.

To determine the EOS and total symmetry energy with
the SRC-modified single-nucleon momentum distribution, we
need to readjust the RMF model parameters to reproduce all
known empirical properties of SNM and ANM. Thus, analyt-
ical expressions for quantities characterizing these properties
are necessary. Combining the results derived in detail in the
appendixes, we have expressions for four such quantities for
SNM, i.e., the Dirac effective mass M∗

0 , the binding energy
of SNM obtained through E0(ρ) = ε0(ρ)/ρ − M with ε0

given by (C3) together with (C8) and (C10), the pressure
P0 of SNM (C25), and the incompressibility coefficient
K0 of SNM (C30). For ANM, we also need expressions
for the total symmetry energy Esym(ρ) and its slope L.
While the kinetic symmetry energy Ekin

sym(ρ) is already given

by (24), the potential symmetry energy E
pot
sym(ρ) can be

TABLE I. Coupling constants used in the two RMF models (right
side) and some empirical properties of asymmetric nucleonic matter
used to fix them (left side).

Quantity This work Coupling FFG HMT

ρ0 (fm−3) 0.15 gσ 10.9310 10.8626
E0(ρ0)(MeV) −16.0 gω 14.5947 12.9185
M∗

0 /M 0.6 bσ 0.0007473 0.002119
K0 (MeV) 230.0 cσ 0.003882 −0.0005139
Esym(ρ0) (MeV) 31.6 gρ 5.9163 7.8712
L (MeV) 58.9 �V 0.2736 0.03740

written as [66,67]

Epot
sym(ρ) = g2

ρρ

2Qρ

with Qρ = m2
ρ + �Vg2

ρg
2
ωω2

0. (28)

Correspondingly, the slope parameter L of the total symmetry
energy also has two parts, i.e., (B15) with the kinetic part Lkin

given by (B11) and the potential part Lpot by (B13). The total
number of the analytical expressions is now six while there
are seven coupling constants in the Lagrangian density (4).
We are thus still free to choose one of the seven coupling
constants, and in this work we fix the value of cω = 0.01 which
is the same as that in the FSUGold parametrization [65]. In
this way, given the values of M∗

0 , E0(ρ0), ρ0, K0, Esym(ρ0),
and L, we can uniquely determine the other six coupling
constants. Listed in Table I are the coupling constants in both
the FFG and HMT models obtained from reproducing the same
values of the listed empirical properties of ANM. The value of
K0 = 230 ± 20 MeV was determined from analyzing nuclear
giant resonances (GMR) [68–72]. For the Esym(ρ0) and L, all
existing constraints extracted so far from both terrestrial labo-
ratory measurements and astrophysical observations are found
to be essentially consistent with the 2013 global averages of
Esym(ρ0) = 31.6 ± 2.66 MeV and L = 58.9 ± 16 MeV [40].
We notice that the values of the two isovector parameters gρ

and �V are significantly different in the HMT and FFG models.
To evaluate the HMT and FFG models, we show in the

left panel of Fig. 3 the binding energy and pressure of SNM as
functions of density. It is interesting to see that the HMT model
predicts a harder EOS for SNM at suprasaturation densities
than the FFG model while by design they both have the same
values of M∗

0 , ρ0, E0(ρ0), and K0. This is simply because of the
large contribution to the kinetic EOS by the high-momentum
nucleons in the HMT model. Therefore, the HMT is expected
to affect the high order characteristic coefficients of the
SNM at ρ0 compared to calculations with the FFG. More
quantitatively, the third-order Taylor expansion coefficient
of the EOS of SNM around ρ0, i.e., the skewness of the
SNM Q0 ≡ 27ρ3

0∂3E0(ρ)/∂ρ3|ρ=ρ0 [73–75] is changed from
QFFG

0 ≈ −454 MeV in the FFG model to QFFG
0 ≈ −266 MeV

in the HMT model. Unfortunately, our current knowledge on
the parameter Q0 [74–80] is still too poor to put a constraint on
it. On the other hand, the pressure of SNM in the density range
of about 2ρ0 to 5ρ0 was experimentally constrained by measur-
ing nuclear collective flows in heavy-ion collisions [3], which
is shown as a cyan band in the right panel of Fig. 3. Although
the HMT makes skewness of the SNM higher, it is seen that the
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FIG. 3. (Left panel) The EOS and pressure P0 of SNM as
functions of density for both the FFG and HMT models. (Right
panel) A comparison between the model pressure P0 of SNM with
the experimental constraints from analyzing nuclear collective flows
in heavy-ion collisions.

pressure of SNM in the presence of HMT can still pass through
the constraints from the collective flow data. Namely, the un-
certainty band of the constraints on the EOS at suprasaturation
densities is too broad to distinguish the HMT and FFG predic-
tions. Thus, as we shall discuss next, additional experimental
constraints are necessary to distinguish the two models.

In the nonlinear RMF model, the kinetic EOS of SNM is
defined as

Ekin
0 (ρ) ≡ 1

ρ

2

(2π )3

∫ φ0kF

0
n0

k

√
k2 + M

∗,2
0 dk − M∗

0 , (29)

where n0
k is the momentum distribution of nucleons in SNM.

The HMT and FFG model predictions for the Ekin
0 (ρ) are

shown in Fig. 4. Recently, the average kinetic energy of
neutrons and protons in C, Al, Fe, and Pb with error bars
as well as 7,8,9Li, 9,10Be, and 11B without error bars were

FIG. 4. The kinetic EOS of SNM defined by (29). The experi-
mental kinetic energy of neutrons and protons in C, Al, Fe, and Pb
with error bars [27] and 7,8,9Li, 9,10Be, and 11B [81] were extracted
using the neutron-proton dominance model.

extracted from several electron-nucleus scattering experiments
using a neutron-proton dominance model [27,81]. We can
translate the A dependence of the nucleon kinetic energy into
its density dependence through a well-established empirical
relationship [82–88]:

ρA � ρ0

1 + α/A1/3
, (30)

where α reflects the balance between the volume and surface
symmetry energies and in our calculation we adopt α =
2.8 [86] appropriate for the mass range considered. The
black points represent the average kinetic energy per nucleon
for these nuclei, i.e., 〈T 〉 = [〈Tn〉(1 + δ) + 〈Tp〉(1 − δ)]/2.
According to the parabolic approximation for the EOS of
ANM, i.e., Ekin

ANM(ρ) � Ekin
0 (ρ) + δ2Ekin

sym(ρ), even for the
most neutron-rich nucleus considered 208Pb with an isospin
asymmetry δ2 � 0.045, we still have Ekin

ANM(ρ) � Ekin
0 (ρ).

This means that the data in Fig. 4 are approximately equal
to the kinetic EOS of SNM Ekin

0 (ρ). It is very interesting to
see that the HMT prediction can well reproduce while the
FFG prediction falls about 40% below the data around ρA =
0.1 fm−3. This clearly indicates the importance of the HMT
in the SRC-modified single-nucleon momentum distribution.
It is well known that mean field models fail to describe the
spectroscopic factors extracted from electron scatterings on
nuclei from 7Li to 208Pb by about 30%–40% because of
the lack of occupations of energetic orbitals in these models
where the short-range correlations are not considered [89]. The
observation here that the FFG model underpredicts the average
nucleon kinetic energy is because of the same reason and it
misses the data by about the same magnitude as in describing
the spectroscopic factors.

V. NUCLEON SCALAR DENSITY AND DIRAC
EFFECTIVE MASS IN THE RMF MODEL
WITH HIGH-MOMENTUM NUCLEONS

As discussed earlier, the kinetic symmetry energy depends
on the nucleon Dirac effective mass which is determined
by the scalar baryon density ρS. It is thus interesting to
examine explicitly how the SRC-modified nucleon momentum
distribution affects the scalar density and the Dirac effective
mass. As shown in Appendix B [see (B12)], the scalar density
ρS can be written as

ρS =�0M
∗,3
0

π2
(θ

√
1 + θ2 − arcsinh θ )

+ 2C0k
4
F

π2M∗
0

(√
1 + 1

θ2
−

√
1 + 1

φ2
0θ

2

)
, (31)

with θ = kF/M
∗
0 . At low densities, the θ is small, thus

θ
√

1 + θ2 − arcsinhθ ≈ 2

3
θ3 − 1

5
θ5, (32)

θ4

(√
1 + 1

θ2
−

√
1 + 1

φ2
0θ

2

)
≈

(
1 − 1

φ0

)
θ3 + 1

2
(1 − φ0)θ5.

(33)
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FIG. 5. Scalar density of SNM as a function of baryon density
for both the FFG and HMT models.

Keeping only the first term, one has

ρS −→ �0M
∗,3
0

π2

2

3
θ3 + 2C0M

∗,3
0

π2

(
1 − 1

φ0

)
θ3

= 2M
∗,3
0 θ3

3π2

[
�0 + 3C0

(
1 − 1

φ0

)]
= ρ, (34)

and the next order correction to ρS is

M
∗,3
0 θ5

π2

[
−1

5
+ C0

(
8

5
− 3

5φ0
− φ0

)]
, (35)

which is negative, leading to ρS < ρ. For the FFG model
(φ0 = 1,φ1 = 0), the value in the bracket of the above
expression is −1/5 while the term C0(8/5 − 3/5φ0 − φ0) is
always negative. At the high density limit ρ → ∞, the σ field
will saturate at the value of σ∞ ≡ σ (ρ = ∞) = M/gσ (for
the Dirac effective mass M∗

0 = M − gσσ approaches zero in
this limit). Correspondingly, we obtain ρ∞

S ≡ ρS(ρ = ∞) =
M3[(mσ/gσM)2 + bσ + cσ ] according to Eq. (5). More quan-
titatively, we have ρ∞

S (FFG) ≈ 3.29 fm−3 and ρ∞
S (HMT) ≈

FIG. 6. Nucleon Dirac effective mass in SNM as a function of
density for both the FFG and HMT models.

2.99 fm−3. Thus, the scalar density in the HMT model is always
smaller than that in the FFG model as shown in Fig. 5.

In Fig. 6, the nucleon Dirac effective masses in SNM in
the FFG and HMT models are shown. The two models are
found to give very similar results. This is easy to understand.
On one hand, three points of the effective mass are fixed,
i.e., M∗

0 (0)/M = 0, M∗
0 (ρ0)/M = 0.6, and M∗

0 (∞)/M = 0.
On the other hand, through Eq. (B9) we know that ∂σ/∂ρ > 0.
Thus, the M∗

0 /M monotonically decreases in the whole density
range and is concave at large densities. Not surprisingly,
meeting all of these common constraints the M∗

0 (ρ)/M in
the two models behaves very similarly.

VI. THE TOTAL SYMMETRY ENERGY IN THE RMF
MODEL WITH HIGH-MOMENTUM NUCLEONS

We now turn to the total symmetry energy Esym(ρ).
Shown in Fig. 7 are the HMT and FFG model predictions
in comparison with results from several recent studies by
others [8,88,90]. It is seen from the upper panel that the
HMT softens the Esym(ρ) at subsaturation densities. For
instance, at densities around 0.04 fm−3, the effect is about 30%
which is larger than the width of the existing constraint [90].
Interestingly, at suprasaturation densities as shown in the lower
panel, the symmetry energy is also significantly softened by

FIG. 7. The total symmetry energy as a function of density in the
HMT and FFG models in comparison with constraints from several
recent studies [8,88,90].
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the HMT. For instance, the effect is about 25% at densities
around 0.5 fm−3. Thus, the HMT in the nucleon momentum
distribution provides a possible mechanism to soften the
symmetry energy at both low and high densities. Actually in
the original nonlinear RMF model, the high density Esym(ρ)
cannot be made arbitrarily small because of the structure of the
model itself. In the presence of HMT, however, mainly owing
to the negative kinetic symmetry energy it is possible that the
total Esym(ρ) becomes very soft and even decreases at high
densities as indicated by some data analyses [91].

Because the HMT and FFG models are designed to have
the same values of symmetry energy Esym(ρ0) and its slope L,
it is useful to use the curvature of the symmetry energy,

Ksym ≡
[

9ρ2 ∂2Esym(ρ)

∂ρ2

]
ρ0

=
[

3ρ
∂L(ρ)

∂ρ
− 3L(ρ)

]
ρ0

, (36)

to measure the HMT effects on the total symmetry energy.
The Ksym is relevant for studying the isospin dependence of
the incompressibility of ANM through the relationship,

K(δ) ≈ K0 + Kτδ
2 + O(δ4), (37)

where the Kτ is given by [73]

Kτ = Ksym − 6L − Q0L

K0
. (38)

More quantitatively, we obtained the values of KFFG
sym ≈

−37 MeV and KHMT
sym ≈ −274 MeV. The corresponding

isospin coefficients of the incompressibility are KFFG
τ ≈

−174 MeV and KHMT
τ ≈ −470 MeV. The latter is in very good

agreement with the best estimate of Kτ = −550 ± 100 MeV
from analyzing many different kinds of experimental data
currently available [72]. Overall, the HMT is to make the
symmetry energy significantly more concave around the satu-
ration density, leading to a stronger isospin dependence in the
incompressibility of ANM compared to calculations using the
FFG model.

VII. SOME EFFECTS OF HIGH-MOMENTUM NUCLEONS
ON PROPERTIES OF NEUTRON STARS

The SRC-modified single-nucleon momentum distribution
is expected to affect some properties of neutron stars (see,
e.g., Ref. [92]). First of all, the softening of the symmetry
energy is generally expected to reduce the proton fraction
xp = ρp/ρ in neutron stars within the parabolic approximation
of the EOS of ANM. For example, in the npe matter at β
equilibrium, according to the chemical equilibrium and charge
neutrality conditions for reactions of n → p + e + νe and
p + e → n + νe, we have μe = μn − μp where μe = [m2

e +
(ke

F)2]1/2 = [m2
e + (3π2ρxe)2/3]1/2 � (3π2ρxe)1/3 with xe ≡

ρe/ρ the electron fraction, i.e., μe = μn − μp ≈ 4Esym(ρ)δ +
O(δ3). Thus, the xp = xe will be reduced if the symmetry
energy Esym(ρ) decreases. However, we caution that although
high order terms in the EOS of ANM are relatively small,
they still have non-negligible effects on the xp in the RMF
models [67]. Expectations based on the parabolic approxima-
tion for the EOS of ANM may be altered. Moreover, it was
suggested recently in Ref. [93] that the neutrino emissivity

of the direct URCA process will be reduced by a factor η =
Z

p
FZ

n
F compared to the FFG model with ZJ

F the discontinuity
of the single-nucleon momentum distribution at the Fermi
momentum. In the HMT model, the depletion of the Fermi
sphere together with the sizable value of CJ makes the factor
η much smaller than unity. However, effects of nucleons in the
HMT not considered in Ref. [93] may enhance the emissivity
of neutrinos [92,94]. Thus, to our best knowledge, the net
effects of the entire single-nucleon momentum distribution
modified by the SRC on both the critical density for the direct
URCA process to occur and the cooling rate of protoneutron
stars are still unclear. Nevertheless, it is interesting to note that
efforts to clarify the issue are currently underway [95].

Next, we investigate effects of the HMT on the mass-
radius relation of neutron stars. In constructing the EOS
of various layers in neutron stars for solving the Tolman-
Oppenheimer-Volkoff (TOV) equation, we follow a standard
scheme. Neutron stars are composed of the npe matter at
low densities as described above. For the core we use the
EOS of β stable and charge neutral npeμ matter obtained
from the nonlinear RMF model described earlier. When the
chemical potential of the electron is larger than the static mass
of a muon, reactions e → μ + νe + νμ, p + μ → n + νμ, and
n → p + μ + νμ will also take place. The latter requires

μn − μp = μμ =
√

m2
μ + (3π2ρxμ)2/3, (39)

besides μn − μp = μe, where mμ = 105.7 MeV is the mass
of a muon and xμ ≡ ρμ/ρ is the muon fraction. The inner
crust with densities ranging between ρout = 2.46 × 10−4 fm−3

corresponding to the neutron dripline and the core-crust tran-
sition density ρt is the region where some complex and exotic
structures—collectively referred to as the “nuclear pasta”
may exist. Because of our poor knowledge about this region
we adopt the polytropic EOSs parametrized in terms of the
pressure P as a function of total energy density ε according to
P = a + bε4/3 [96,97]. The constants a and b are determined
by the pressure and energy density at ρt and ρout [96]. For
the outer crust [98], we use the BPS EOS for the region

FIG. 8. EOS of neutron star matter. Detailed descriptions of the
compositions of different layers of the neutron stars are explained in
the text.
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FIG. 9. Mass radius of a neutron star obtained by integrating the
TOV equation under the EOS of neutron star matter in the FFG and
HMT models, respectively.

with 6.93 × 10−13 fm−3 < ρ < ρout and the FMT EOS for
4.73 × 10−15 fm−3 < ρ < 6.93 × 10−13 fm−3, respectively.

Shown in Fig. 8 are the EOSs of neutron star matter obtained
within the FFG and HMT models. The similarity of the two
model EOSs indicates that the corresponding mass-radius
relations will not be different dramatically. In Fig. 9, the
corresponding mass-radius relations of neutron stars from the
two models are compared. As discussed earlier in Sec. IV,
the skewness of SNM mainly characterizes the high density
behavior of the EOS of SNM. The SRC-induced HMT is to
increase the skewness of SNM and thus hardens the EOS of
neutron star matter. On the other hand, the symmetry energy
effect on the mass-radius relation of neutron stars is relatively
smaller in the RMF models [99]. Therefore, the enhanced
skewness Q0 from the HMT enlarges the maximum mass of
neutron stars as shown in Fig. 9. Quantitatively, the maximum
mass of neutron stars in the HMT and FFG models are Mmax ≈
1.87 M� and Mmax ≈ 1.74 M�, with the corresponding radii
being about 11.21 km and 10.89 km, respectively. The relative
effect on the maximum mass is about 8%. While the maximum
mass is still below the observational data, the EOS with HMT
helps improve the situation.

VIII. SUMMARY AND REMARKS

In summary, within the nonlinear RMF model incorporating
the SRC-modified single-nucleon momentum distribution
constrained by findings of recent electron-nucleus scatter-
ing experiments, we have studied the EOS of asymmetric
nucleonic matter. In particular, the kinetic symmetry energy
in the presence of SRC-induced high-momentum nucleons
is found to be Ekin

sym(ρ0) = −16.94 ± 13.66 MeV consistent
with earlier findings in nonrelativistic models. Similar to the
findings about the nucleon spectroscopic factors, the aver-
age nucleon kinetic energy extracted from electron-nucleus
scattering experiments cannot be reproduced by traditional
RMF models lacking correlations. Including the SRC-induced
high-momentum nucleons in the RMF model, the data can

be well reproduced. Comparing the RMF calculations with
and without the SRC-induced high-momentum nucleons using
two sets of model parameters both reproducing identically
all empirical properties of SNM and the symmetry energy
of ANM at ρ0, the SRC-modified single-nucleon momentum
distribution is found to make the EOS of SNM much harder
at suprasaturation densities and the Esym(ρ) more concave
around ρ0, leading to a larger maximum mass of neutron stars
and an isospin-dependent incompressibility of ANM in better
agreement with existing observational and experimental data.

After introducing the SRC-induced high-momentum nucle-
ons, some isovecor parameters of the RMF model had to be
readjusted to reproduce the same empirical properties of ANM
and known experimental constraints. Ramifications of these
changes and the resulting symmetry energy on experimental
observables, such as neutron skins of heavy nuclei will be
studied in the near future. The SRC and some of its effects
in nuclear structures and reactions are well established both
theoretically and experimentally. While the RMF model was
very successful in helping us understand many fundamental
physics and explaining various experimental phenomena, as
a mean field model by design it lacks correlations that
are important and necessary in understanding some other
experimental phenomena. Going beyond the mean field level,
we take one step forward by replacing the step function
with an experimentally constrained momentum distribution
incorporating the SRC-induced HMT in reformulating some
aspects of the nonlinear RMF model. Compared with fully
microscopic many-body theories where effects of the SRC are
considered self-consistently, our hybrid approach is relatively
simple but transparent, and all relevant physical quantities
are given analytically. While much more work remains to be
done, the analyses and numerical results presented here are
instructive for better understanding effects of the SRC on the
EOS of neutron-rich nucleonic matter which is relevant for
both nuclear physics and astrophysics.
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APPENDIX A: THE DERIVATION OF Ekin
sym(ρ)

We start from the kinetic energy density of (13)

εkin
J = �J

π2

∫ kJ

0
k2

√
k2 + m2

J dk

+ CJ k4
J

π2

∫ φJ kJ

kJ

1

k2

√
k2 + m2

J dk. (A1)

Using the abbreviations of mJ ≡ M∗
J ,kJ = kJ

F ,ξ =
k/mJ ,pJ = φJ kJ , the kinetic energy density can be
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expressed as

εkin
J =�J m4

J

π2

∫ kJ /mJ

0
ξ 2

√
1 + ξ 2dξ + CJ k4

J

π2

∫ φJ kJ /mJ

kJ /mJ

√
1 + ξ 2

ξ 2
dξ. (A2)

To use the following elementary formula,

d

dx

∫ w(x)

dyz(y) = z(w(x))
dw(x)

dx
, (A3)

we rewrite the kinetic energy density as

εkin
J = �J m4

J

π2

∫ kJ /mJ

0
ξ 2

√
1 + ξ 2dξ + CJ k4

J

π2

[ ∫ pJ /mJ

0

√
1 + ξ 2

ξ 2
dξ −

∫ kJ /mJ

0

√
1 + ξ 2

ξ 2
dξ

]
, (A4)

then its derivative with respect to the isospin asymmetry δ is

εkin′
J = 4m′

J �J m3
J + �′

J m4
J

π2
·
∫ kJ /mJ

0
ξ 2

√
1 + ξ 2dξ + k′

J �J k2
J E∗

J

π2
− m′

J �J k3
J E∗

J

π2mJ

+ 4k′
J CJ k3

J + C ′
J k4

J

π2
·
∫ pJ /mJ

kJ /mJ

√
1 + ξ 2

ξ 2
dξ + CJ k4

J

π2
·
(

p′
J F ∗

J

p2
J

− m′
J F ∗

J

pJ mJ

− k′
J E∗

J

k2
J

+ m′
J E∗

J

kJ mJ

)
, (A5)

where F ∗
J = (p2

J + m2
J )1/2 = (φ2

J k2
J + m2

J )1/2.
The second-order derivative of εkin

J with respect to δ can be obtained in a similar way, i.e.,

εkin′′
J = 1

π2

(
8�′

J m′
J m3

J + 12m′2
J �J m2

J + 4m′′
J �J m3

J + �′′
J m4

J

) ∫ kJ /mJ

0
ξ 2

√
1 + ξ 2dξ

+ 1

π2mJ

(
m′

J k′
J �J k2

J E∗
J + �′

J k′
J k2

J mJ E∗
J − 2�′

J m′
J k3

J E∗
J − m′

J E∗′
J �J k3

J − m′′
J E∗

J �J k3
J

)

+ 1

π2

(
�′

J k′
J k2

J E∗
J + 2k′2

J �J kJ E∗
J + k′

J E∗′
J �J k2

J + k′′
J �J k2

J E∗
J

) − 3m′2
J �J k3

J E∗
J

π2m2
J

+ 1

π2

(
8C ′

J k′
J k3

J + 12k′2
J CJ k2

J + 4k′′
J CJ k3

J + C ′′
J k4

J

) ∫ pJ /mJ

kJ /mJ

√
1 + ξ 2

ξ 2
dξ

+ 8k′
J CJ k3

J + 2C ′
J k4

J

π2
·
(

p′
J F ∗

J

p2
J

− m′
J F ∗

J

pJ mJ

− k′
J E∗

J

k2
J

+ m′
J E∗

J

kJ mJ

)

+ CJ k4
J

π2
·
(

F ∗′
J p′

J

p2
J

+ F ∗
J p′′

J

p2
J

− 2F ∗
J p′2

J

p3
J

− F ∗′
J m′

J

pJ mJ

− F ∗
J m′′

J

pJ mJ

+ F ∗
J m′

J p′
J

p2
J mJ

+ F ∗
J m′2

J

pJ m2
J

)

− CJ k4
J

π2
·
(

E∗′
J k′

J

k2
J

+ E∗
J k′′

J

k2
J

− 2E∗
J k′2

J

k3
J

− E∗′
J m′

J

kJ mJ

− E∗
J m′′

J

kJ mJ

+ E∗
J m′

J k′
J

k2
J mJ

+ E∗
J m′2

J

kJ m2
J

)
. (A6)

We introduce the abbreviations f ≡ σ ,w ≡ ω0, and a subscript “0” denotes the symmetric case, for example, f0 ≡ f (δ =
0),f ′

0 = ∂f /∂δ|
δ=0, etc. The scalar density is a function of mJ , i.e., ρS,J = ρS,J (mJ ), then ρ ′

S,J = λJ m′
J with λJ a certain factor.

From the field equation of f , it is easy to find that f ′
0 = 0. This means that we can omit the terms proportional to m′

J in
the expression of εkin′′

J (because the symmetry energy is obtained by taking δ = 0 in εkin′′
J ), thus we have (omitting the terms

proportional to m′
J )

εkin′′
J = 1

π2

(
4m′′

J �J m3
J + �′′

J m4
J

) ·
∫ kJ /mJ

0
ξ 2

√
1 + ξ 2dξ + 1

π2mJ

(
�′

J k′
J k2

J mJ E∗
J − m′′

J E∗
J �J k3

J

)

+ 1

π2

(
�′

J k′
J k2

J E∗
J + 2k′2

J �J kJ E∗
J + k′

J E∗′
J �J k2

J + k′′
J �J k2

J E∗
J

) + 8k′
J CJ k3

J + 2C ′
J k4

J

π2
·
(

p′
J F ∗

J

p2
J

− k′
J E∗

J

k2
J

)

+ 1

π2

(
8C ′

J k′
J k3

J + 12k′2
J CJ k2

J + 4k′′
J CJ k3

J + C ′′
J k4

J

) ∫ pJ /mJ

kJ /mJ

√
1 + ξ 2

ξ 2
dξ

+ CJ k4
J

π2
·
(

F ∗′
J p′

J

p2
J

+ F ∗
J p′′

J

p2
J

− 2F ∗
J p′2

J

p3
J

− F ∗
J m′′

J

pJ mJ

)
− CJ k4

J

π2
·
(

E∗′
J k′

J

k2
J

+ E∗
J k′′

J

k2
J

− 2E∗
J k′2

J

k3
J

− E∗
J m′′

J

kJ mJ

)
. (A7)
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We then deal with the terms proportional to the second derivative of m′′
J , i.e.,

� = m′′
J

[
4

mJ

�J m4
J

π2

∫ kJ /mJ

0
ξ 2

√
1 + ξ 2dξ − �J k3

J E∗
J

π2mJ

− CJ k4
J

π2

(
F ∗

J

pJ mJ

− E∗
J

kJ mJ

)]
. (A8)

Moreover,

V =
∫ kJ /mJ

0
ξ 2

√
1 + ξ 2dξ = 1

4
x(x2 + 1)3/2 − 1

8
x(x2 + 1)1/2 − 1

8
arcsinh x, (A9)

S =
∫ kJ /mJ

0

ξ 2dξ√
1 + ξ 2

= 1

2
x(x2 + 1)1/2 − 1

2
arcsinh x, (A10)

with x = kJ /mJ . For k < kJ , we then have

εkin,I
J = �J m4

J

π2

∫ kJ /mJ

0
ξ 2

√
1 + ξ 2dξ = �J m4

J V

π2
, ρI

S,J = �J m3
J

π2

∫ kJ /mJ

0

ξ 2dξ√
1 + ξ 2

= �J m3
J S

π2
, (A11)

so

εkin,I
J = �J k3

J E∗
J

4π2
+ mJ

4
ρI

S,J . (A12)

On the other hand, the high-momentum part of the scalar density should be written as

ρII
S,J = CJ k4

J

π2mJ

∫ pJ /mJ

kJ /mJ

dξ

ξ 2
√

1 + ξ 2
= − CJ k4

J

π2mJ

(
F ∗

J

pJ

− E∗
J

kJ

)
. (A13)

Then � should be rewritten as

� = m′′
J

[
4

mJ

(
�J k3

J E∗
J

4π2
+ mJ

4
ρI

S,J

)
− �J k3

J E∗
J

π2mJ

+ ρII
S,J

]
= ρS,J m′′

J . (A14)

After combining this term with the corresponding potential terms in the energy density, it is found that there exist no terms
proportional to f ′′

0 according to the equation of motion of f , thus it is safe to write εkin′′
J as (omitting the terms proportional to

m′′
J )

εkin′′
J = �′′

J m4
J

π2

∫ kJ /mJ

0
ξ 2

√
1 + ξ 2dξ + 1

π2

(
2�′

J k′
J k2

J E∗
J + 2k′2

J �J kJ E∗
J + k′

J E∗′
J �J k2

J + k′′
J �J k2

J E∗
J

)

+ 1

π2

(
8C ′

J k′
J k3

J + 12k′2
J CJ k2

J + 4k′′
J CJ k3

J

) ·
∫ pJ /mJ

kJ /mJ

√
1 + ξ 2

ξ 2
dξ + 8k′

J CJ k3
J + 2C ′

J k4
J

π2
·
(

p′
J F ∗

J

p2
J

− k′
J E∗

J

k2
J

)

+ CJ k4
J

π2
·
(

F ∗′
J p′

J

p2
J

+ F ∗
J p′′

J

p2
J

− 2F ∗
J p′2

J

p3
J

)
− CJ k4

J

π2
·
(

E∗′
J k′

J

k2
J

+ E∗
J k′′

J

k2
J

− 2E∗
J k′2

J

k3
J

)
, (A15)

where the terms proportional to C ′′
J are also omitted for CJ is linear in δ, i.e., C ′′

J = 0.
For

YJ = Y0
(
1 + Y1τ

J
3 δ

)
, (A16)

with Y = C,φ, we have

Y ′
J = Y0Y1τ

J
3 . (A17)

Thus,

�′
J = −3C ′

J

(
1 − 1

φJ

)
− 3CJ φ′

J

φ2
J

−→ −3C0

[
C1

(
1 − 1

φ0

)
+ φ1

φ0

]
τ J

3 , (A18)

�′′
J = −6C ′

J φ′
J

φ2
J

+ 6CJ φ′2
J

φ3
J

−→ −6C0φ1

φ0
(C1 − φ1), (A19)
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and

k′
J = 1

3
kFτ

J
3 (αδ + · · · ) −→ 1

3
kFτ

J
3 , (A20)

k′′
J = −2

9
kF(βδ + · · · ) −→ −2

9
kF, (A21)

p′
J = φ′

J kJ + φJ k′
J −→

(
φ1 + 1

3

)
φ0kFτ

J
3 , (A22)

p′′
J = 2φ′

J k′
J + φJ k′′

J −→ 2

3
φ0kF

(
φ1 − 1

3

)
, (A23)

E∗′
J = mJ m′

J + kJ k′
J

E∗
J

−→ k2
F

3E∗
F

τ J
3 , (A24)

F ∗′
J = mJ m′

J + pJ p′
J

F ∗
J

−→ φ2
0k

2
F(1 + 3φ1)

3F ∗
F

τ J
3 , (A25)

where “−→” means the limit of δ = 0. It is clear that in the FFG model, φ0 = 1,φ0 = 1, then

�J −→ 1, �′
J ,�′′

J −→ 0, (A26)

and

εkin′′
J = 1

π2

(
2k′2

J kJ E∗
J + k′

J E∗′
J k2

J + k′′
J k2

J E∗
J

)
,

which is expected. Evaluating
∑

J=n,p εkin′′
J |δ=0 according to (A15) and then dividing it by 2ρ, we shall obtain (24).

APPENDIX B: THE DERIVATION OF L(ρ)

To derive the expressions for L, we should first obtain an expression for ∂f0/∂ρ, which is related to the scalar density that can
be decomposed into two terms, i.e.,

ρS = 2�0

π2

∫ kF

0

k2dkM∗
0√

k2 + M
∗,2
0

+ 2C0k
4
F

π2

∫ pF

kF

1

k4

k2dkM∗
0√

k2 + M
∗,2
0

, (B1)

where M∗
0 = M − gσf0. Putting k = ζM∗

0 , then

ρS = ρI
S + ρII

S = 2�0M
∗,3
0

π2

∫ kF/M∗
0

0

ζ 2dζ√
1 + ζ 2

+ 2C0k
4
F

π2M∗
0

∫ pF/M∗
0

kF/M∗
0

dζ

ζ 2
√

1 + ζ 2
, (B2)

so

∂ρI
S

∂ρ
= 6�0M

∗,2
0

π2

∂M∗
0

∂ρ

∫ kF/M∗
0

0

ζ 2dζ√
1 + ζ 2

+ 2�0M
∗,3
0

π2

(kF/M
∗
0 )2√

1 + (kF/M
∗
0 )2

∂

∂ρ

kF

M∗
0

= 3

M∗
0

∂M∗
0

∂ρ

2�0M
∗,3
0

π2

∫ kF/M∗
0

0

ζ 2dζ√
1 + ζ 2

+ 2�0M
∗,2
0 k2

F

π2E∗
F

∂

∂ρ

kF

M∗
0

= −3gσρI
S

M∗
0

∂f0

∂ρ
+ 2�0M

∗,2
0 k2

F

π2E∗
F

(
π2

2M∗
0 k2

F

+ gσ kF

M
∗,2
0

∂f0

∂ρ

)

= −3gσρI
S

M∗
0

∂f0

∂ρ
+ �0M

∗
0

E∗
F

+ 3�0gσρ

E∗
F

∂f0

∂ρ

= −3gσ

(
ρI

S

M∗
0

− �0ρ

E∗
F

)
∂f0

∂ρ
+ �0M

∗
0

E∗
F

. (B3)

The following two relations are useful in the derivations,

∂kF

∂ρ
= π2

2k2
F

,
∂E∗

F

∂ρ
= π2

2kFE
∗
F

− gσM∗
0

E∗
F

∂f0

∂ρ
. (B4)
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Similarly,

∂ρII
S

∂ρ
= 2C0

π2

∂

∂ρ

k4
F

M∗
0

∫ pF/M∗
0

kF/M∗
0

dζ

ζ 2
√

1 + ζ 2
+ 2C0k

4
F

π2M∗
0

∂

∂ρ

∫ pF/M∗
0

kF/M∗
0

dζ

ζ 2
√

1 + ζ 2

=
(

4

kF

∂kF

∂ρ
− 1

M∗
0

∂M∗
0

∂ρ

)
2C0k

4
F

π2M∗
0

∫ pF/M∗
0

kF/M∗
0

dζ

ζ 2
√

1 + ζ 2
+ 2C0k

4
F

π2M∗
0

[
M

∗,3
0

p2
FF

∗
F

∂

∂ρ

(
pF

M∗
0

)
− M

∗,3
0

k2
FE

∗
F

(
kF

M∗
0

)]

= 4ρII
S

3ρ
+ C0k

2
FM

∗
0

(
φ0

p2
FF

∗
F

− 1

k2
FEF

)
+ gσ

[
ρII

S

M∗
0

+ 2C0k
4
F

π2

(
1

pFF
∗
F

− 1

kFE
∗
F

)]
∂f0

∂ρ
. (B5)

Introducing,

� = C0k
2
FM

∗
0

(
φ0

p2
FF

∗
F

− 1

k2
FEF

)
, � = 2C0k

4
F

π2

(
1

pFF
∗
F

− 1

kFE
∗
F

)
, (B6)

then,

∂ρS

∂ρ
= ∂f0

∂ρ

[
gσ

(
ρII

S

M∗
0

+ �

)
− 3gσ

(
ρI

S

M∗
0

− �0ρ

E∗
F

)]
+ �0M

∗
0

E∗
F

+ 4ρII
S

3ρ
+ �. (B7)

According to the equation of motion of f0, we have

m2
σ

∂f0

∂ρ
= gσ

∂ρS

∂ρ
− 2bσMg3

σ f0
∂f0

∂ρ
− 3cσ g4

σ f 2
0

∂f0

∂ρ
. (B8)

Thus, we obtain the following expression for ∂f0/∂ρ,

∂f0

∂ρ
= gσ

Rσ

(
�0M

∗
0

E∗
F

+ 4ρII
S

3ρ
+ �

)
, (B9)

with

Rσ = m2
σ + 3g2

σ

(
ρI

S

M∗
0

− �0ρ

E∗
F

)
+ 2bσ Mg3

σ f0 + 3cσ g4
σ f 2

0 − g2
σ

(
ρII

S

M∗
0

+ �

)
. (B10)

By taking derivatives term by term in the kinetic symmetry energy of (24), we obtain the following kinetic slope parameter,

Lkin(ρ) =
[
k2

F

(
E

∗,2
F + M

∗,2
0

)
6E

∗,3
F

+ gσ k2
FM

∗
0 ρ

2E
∗,3
F

∂f0

∂ρ

][
1 − 3C0

(
1 − 1

φ0

)]
− 9ρ

E∗
F

(
π2

2kF
− gσM∗

0
∂f0

∂ρ

)
C0

[
C1

(
1 − 1

φ0

)
+ φ1

φ0

]

− 9C0φ1(C1 − φ1)

4π2kFφ0E
∗
F

[√
1 + θ2arcsinh θ

(
3M

∗,5
0 π2

2k2
F

+ 4gσ kFM
∗,4
0

∂f0

∂ρ

)
+ π2

2k2
F

(
2k5

F − k3
FM

∗,2
0 − 3kFM

∗,4
0

)

− 4gσ k2
FM

∗
0 E

∗,2
F

∂f0

∂ρ

]
+ 2kFC0(6C1 + 1)

3

[
arcsinh (φ0θ ) −

√
1 + 1

φ2
0θ

2
− arcsinh θ +

√
1 + 1

θ2

]

+ 2kFρC0(6C1 + 1)

(
M∗

0 π2

2k2
F

+ gσ kF
∂f0

∂ρ

)⎛
⎝ φ0

F ∗
F M∗

0

+ M∗
0

φ2
0k

3
F

√
1 + 1

φ2
0θ2

− 1

M
∗,2
0

√
1 + θ2

− 1

M∗
0 kFθ2

√
1 + 1

θ2

⎞
⎠

+ 3kFC0

2

[
(1 + 3φ1)2

9

(
φ0kF

F ∗
F

− 2F ∗
F

φ0kF

)
+ 2F ∗

F (3φ1 − 1)

9φ0kF
− 1

9

kF

E∗
F

+ 4E∗
F

9kF

]
+ 9kFρC0

2

(
M∗

0 π2

2k2
F

+ gσ kF
∂f0

∂ρ

)

×
⎡
⎣ (1 + 3φ1)2

9

⎛
⎝ φ0

F ∗
F M∗

0

− φ3
0θ

2

M
∗,2
0 (1 + φ2

0θ
2)3/2

+ 2

φ0k
2
F

√
1 + φ2

0θ
2

⎞
⎠ − 2(3φ1 − 1)

9φ0k
2
F

√
1 + φ2

0θ
2

− M∗
0

9E3
F

− 4

9k2
F

√
1 + θ2

⎤
⎦

+ ρC0(4 + 3C1)

⎡
⎣ π2

2k2
F

⎡
⎣ (1 + 3φ1)φ0kF

M∗
0

√
1 + φ2

0θ
2

− kF

M∗
0

√
1 + θ2

⎤
⎦

−gσ

∂f

∂ρ 0

⎡
⎣ (1 + 3φ1)

√
1 + φ2

0θ
2

φ0
− (1 + 3φ1)φ0k

2
F

M
∗,2
0

√
1 + φ2

0θ
2

−
√

1 + θ2 + k2
F

M
∗,2
0

√
1 + θ2

⎤
⎦

⎤
⎦, (B11)
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where ∂f0/∂ρ is given by (B9) and

ρI
S = �0M

∗,3
0

π2
(θ

√
1 + θ2 − arcsinh θ ), ρII

S = 2C0k
4
F

π2M∗
0

(√
1 + 1

θ2
−

√
1 + 1

φ2
0θ

2

)
, (B12)

with θ = kF/M
∗
0 . The potential part of the slope parameter of the symmetry energy is given by

Lpot(ρ) = 3ρ
∂E

pot
sym(ρ)

∂ρ
= 3g2

ρρ

2Qρ

− 3g3
ωg4

ρ�Vw0ρ
2

QωQ2
ρ

, (B13)

with

Qω = m2
ω + 3cωg4

ωw0, (B14)

and Qρ given by (28). The total slope parameter of the symmetry energy is given by

L(ρ) = Lkin(ρ) + Lpot(ρ). (B15)

APPENDIX C: THE DERIVATION OF K0(ρ)

The incompressibility coefficient K0 ≡ K0(ρ) can be obtained through

K0(ρ) =9ρ2 ∂2E0

∂ρ2
= 9

∂P0

∂ρ
− 18P0

ρ
, (C1)

where P0(ρ) is the pressure of SNM. At normal density, the pressure of SNM is zero, thus only the first term of the last expression
is relevant for our aim. So we should first calculate the pressure P0 as a function of density. Before moving on, we first prove the
following relation:

P0(ρ) = ρ2 ∂E0(ρ)

∂ρ
= ρ2 ∂(ε0/ρ)

∂ρ
, (C2)

by calculating the quantities on both sides and then comparing them.
The EOS of SNM is obtained from the energy density,

ε0 = 2εkin
℘,0 + 1

2m2
σ f 2

0 + 1
2m2

ωw2
0 + 1

3bσMg3
σ f 3

0 + 1
4cσ g4

σ f 4
0 + 3

4cωg4
ωw4

0, (C3)

with

εkin
℘,0 = 2

(2π )3

∫ φ0kF

0
n0

k

√
k2 + M

∗,2
0 dk = 1

π2

[
�0

∫ kF

0
k2dk

√
k2 + M

∗,2
0 + C0k

4
F

∫ φ0kF

kF

1

k2

√
k2 + M

∗,2
0 dk

]
, (C4)

where ℘ is just a symbol reminding us that εkin,I
℘,0 + εkin,II

℘,0 = εkin
℘,0 = 2−1εkin

0 , where εkin
0 is the total kinetic energy density (including

n and p). Similarly, the pressure is

P0 = 2P kin
℘,0 − 1

2m2
σ f 2

0 + 1
2m2

ωw2
0 − 1

3bσ Mg3
σ f 3

0 − 1
4cσ g4

σ f 4
0 + 1

4cωg4
ωw4

0, (C5)

with

P kin
℘,0 = 1

3π2

⎡
⎣�0

∫ kF

0
dk

k4√
k2 + M

∗,2
0

+ C0k
4
F

∫ φ0kF

kF

dk
1√

k2 + M
∗,2
0

⎤
⎦. (C6)

For the ω field, we have ∂w0/∂ρ = gω/Qω. The ω part in the energy density has the following relation:

ρ2 ∂

∂ρ

(
1

2
m2

ωw2
0 + 3

4
cωg4

ωw4
0

)
= 1

2
m2

ωw2
0 + 1

4
cωg4

ωw4
0, (C7)

which are just the corresponding terms of the pressure.
The proof for the σ field is somewhat more complicated. The first part of the kinetic energy density is given by

εkin,I
℘,0 =�0M

∗,4
0

π2

∫ kF/M∗
0

0
ζ 2

√
1 + ζ 2dζ = �0M

∗,4
0

π2

[
1

4
θ (1 + θ2)3/2 − 1

8
θ
√

1 + θ2 − 1

8
arcsinh θ

]
, (C8)
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thus

∂εkin,I
℘,0

∂ρ
= �0

π2
· 4M

∗,3
0

∂M∗
0

∂ρ

∫ kF/M∗
0

0
ζ 2

√
1 + ζ 2dζ + �0M

∗,4
0

π2

∂

∂ρ

∫ kF/M∗
0

0
ζ 2

√
1 + ζ 2dζ

= 4εkin,I
℘,0

M∗
0

∂M∗
0

∂ρ
+ �0M

∗,4
0

π2
· k2

F

M
∗,3
0

E∗
F

M
∗,2
0

(
M∗

0
∂kF

∂ρ
− kF

∂M∗
0

∂ρ

)

= 4εkin,I
℘,0

M∗
0

∂M∗
0

∂ρ
+ �0k

2
FE

∗
F

π2M∗
0

(
M∗

0
∂kF

∂ρ
− kF

∂M∗
0

∂ρ

)

=
(

4εkin,I
℘,0

M∗
0

∂M∗
0

∂ρ
− �0k

3
FE

∗
F

π2M∗
0

)
∂M∗

0

∂ρ
+ �0k

2
FE

∗
F

π2

∂kF

∂ρ

=
(

4εkin,I
℘,0

M∗
0

∂M∗
0

∂ρ
− �0k

3
FE

∗
F

π2M∗
0

)
∂M∗

0

∂ρ
+ �0E

∗
F

2
. (C9)

Similarly,

εkin,II
℘,0 =C0k

4
F

π2

∫ pF/M∗
0

kF/M∗
0

√
1 + ζ 2

ζ 2
dζ = C0k

4
F

π2

[
arcsinh(φ0θ ) − arcsinh θ −

√
1 + 1

φ2
0θ

2
+

√
1 + 1

θ2

]
, (C10)

and

∂εkin,II
℘,0

∂ρ
= C0

π2
· 4k3

F
∂kF

∂ρ

∫ pF/M∗
0

kF/M∗
0

√
1 + ζ 2

ζ 2
dζ + C0k

4
F

π2

∂

∂ρ

∫ pF/M∗
0

kF/M∗
0

√
1 + ζ 2

ζ 2
dζ

=
[

4εkin,II
℘,0

kF
+ C0k

4
F

π2

(
φ0F

∗
F

p2
F

− E∗
F

k2
F

)]
∂kF

∂ρ
− C0k

4
F

π2

1

M∗
0

(
F ∗

F

pF
− E∗

F

kF

)
∂M∗

0

∂ρ
. (C11)

Putting into the expression for εkin,II
℘,0 , we have

∂εkin,II
℘,0

∂ρ
= 4

kF

∂kF

∂ρ

[
arcsinh(φ0θ ) − arcsinh θ −

√
1 + 1

φ2
0θ

2
+

√
1 + 1

θ2

]

+ C0k
4
F

π2

(
φ0F

∗
F

p2
F

− E∗
F

k2
F

)
∂kF

∂ρ
− C0k

4
F

π2

1

M∗
0

(
F ∗

F

pF
− E∗

F

kF

)
∂M∗

0

∂ρ
. (C12)

Then we have (only the f0 field is considered here)

ρ2 ∂

∂ρ

(
ε

f0
0

ρ

)
= ρ

∂ε
f0
0

∂ρ
− ε

f0
0 = −1

2
m2

σ f 2
0 − 1

3
bσMg3

σ f 3
0 − 1

4
cσ g4

σ f 4
0 + ρ

∂f0

∂ρ

(
m2

σ f0 + bσMg3
σ f 2

0 + cσ g4
σ f 3

0

)

− 2

[
�0M

∗,4
0

π2

[
1

4
θ (1 + θ2)3/2 − 1

8
θ
√

1 + θ2 − 1

8
arcsinh θ

]

+ C0k
4
F

π2

[
arcsinh(φ0θ ) − arcsinh θ −

√
1 + 1

φ2
0θ

2
+

√
1 + 1

θ2

]]
+ 2ρ

[
−gσ

∂f0

∂ρ

(
4εkin,I

℘,0

M∗
0

− �0k
3
FE

∗
F

π2M∗
0

)
+ �0E

∗
F

2

+
[

4εkin,II
℘,0

kF
+ C0k

4
F

π2

(
φ0F

∗
F

p2
F

− E∗
F

k2
F

)]
∂kF

∂ρ
+ gσ

M∗
0

C0k
4
F

π2

(
F ∗

F

pF
− E∗

F

kF

)
∂f0

∂ρ

]
.

The term proportional to ∂f0/∂ρ in ρ2∂(ε0/ρ)/∂ρ is

�0 =ρ
(
m2

σ f0 + bσMg3
σ f 2

0 + cσ g4
σ f 3

0

) − 2gσρ

(
4εkin,I

℘,0

M∗
0

− �0k
3
FE

∗
F

π2M∗
0

)
+ 2gσρ

M∗
0

C0k
4
F

π2

(
F ∗

F

pF
− E∗

F

kF

)
, (C13)

where

εkin,I
℘,0 = �0k

3
FE

∗
F

4π2
+ M∗

0 ρI
S,℘,0

4
,

4εkin,I
℘,0

M∗
0

− �0k
3
FE

∗
F

π2M∗
0

= ρI
S,℘,0. (C14)
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Similarly, we have

ρII
S,℘,0 = − C0k

4
F

π2M∗
0

(
F ∗

F

pF
− E∗

F

kF

)
, (C15)

thus

�0 = ρ
(
m2

σ f0 + bσ Mg3
σ f 2

0 + cσ g4
σ f 3

0

) − 2gσρI
S,℘,0 − 2gσρII

S,℘,0 = ρ
[(

m2
σ f0 + bσ Mg3

σ f 2
0 + cσ g4

σ f 3
0

) − gσρS
]
, (C16)

where ρS = 2(ρI
S,℘,0 + ρII

S,℘,0) is the total scalar density, and the above equation equals to zero according to the equation of
motion of f0. Thus

ρ2 ∂

∂ρ

(
ε

f0
0

ρ

)
= − 1

2
m2

σ f 2
0 − 1

3
bσMg3

σ f 3
0 − 1

4
cσ g4

σ f 4
0 − 2

[
�0M

∗,4
0

π2

[
1

4
θ (1 + θ2)3/2 − 1

8
θ
√

1 + θ2 − 1

8
arcsinh θ

]

+ C0k
4
F

π2

[
arcsinh(φ0θ ) − arcsinh θ −

√
1 + 1

φ2
0θ

2
+

√
1 + 1

θ2
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+ 2ρ

[
�0E

∗
F

2
+

[
4εkin,II

℘,0

kF
+ C0k

4
F

π2

(
φ0F

∗
F

p2
F

− E∗
F

k2
F

)]
∂kF

∂ρ

]
. (C17)

The expression for pressure is easy to obtain:

P kin,I
℘,0 = �0M

∗,4
0

3π2

∫ kF/M∗
0

0

ζ 4dζ√
1 + ζ 2

= �0M
∗,4
0

3π2

[
1

4
θ3

√
1 + θ2 − 3

8
θ
√

1 + θ2 + 3

8
arcsinh θ

]
, (C18)

P kin,II
℘,0 = C0k

4
F

3π2

∫ pF/M∗
0

kF/M∗
0

dζ√
1 + ζ 2

= C0k
4
F

3π2
[arcsinh(φ0θ ) − arcsinh θ ], (C19)

thus

P
f0
0 = − 1

2
m2

σ f 2
0 − 1

3
bσ Mg3

σ f 3
0 − 1

4
cσ g4

σ f 4
0 + 2�0M

∗,4
0

3π2

[
1

4
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√
1 + θ2 − 3

8
θ
√

1 + θ2 + 3

8
arcsinh θ

]

+ 2C0k
4
F

3π2
[arcsinh(φ0θ ) − arcsinh θ ]. (C20)

It is obvious that the first line of (C17) and that of (C20) are the same. Terms proportional to �0 in (C17) are

�0ρE∗
F − 2�0M

∗,4
0

π2

[
1

4
θ (1 + θ2)3/2 − 1

8
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√
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8
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]
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FE
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− 2�0M

∗,4
0

π2

[
1

4
θ (1 + θ2)3/2 − 1

8
θ
√

1 + θ2 − 1

8
arcsinh θ

]

= 2�0M
∗,4
0

3π2

[
1

4
θ3

√
1 + θ2 − 3

8
θ
√

1 + θ2 + 3

8
arcsinh θ

]
; (C21)

this is the corresponding term in the pressure proportional to �0. Similarly, the remaining terms in (C17) are

2ρ
∂kF

∂ρ

[
4εkin,II

℘,0

kF
+ C0k

4
F

π2

(
φ0F
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F
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F
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[
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arcsinh(φ0θ ) − arcsinh θ −

√
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φ2
0θ

2
+

√
1 + 1

θ2

)
+

(√
1 + 1

φ2
0θ

2
−

√
1 + 1

θ2

)]
, (C22)

and [i.e., the third line of (C17)]

−2C0k
4
F

3π2
· 3

(
arcsinh(φ0θ ) − arcsinh θ −

√
1 + 1

φ2
0θ

2
+

√
1 + 1

θ2

)
, (C23)

combining (C22) and (C23), we obtain the following expression proportional to C0 in (C17),

2C0k
4
F

3π2
[arcsinh(φ0θ ) − arcsinh θ ], (C24)

which is exactly the same as the last line of (C20). Thus we have proved the relation (C2).
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The expression for pressure including w0 field then reads

P0 = − 1

2
m2

σ f 2
0 − 1

3
bσMg3

σ f 3
0 − 1

4
cσ g4

σ f 4
0 + 1

2
m2

ωw2
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4
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1

4
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8
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√

1 + θ2 + 3

8
arcsinh θ

]
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4
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3π2
[arcsinh(φ0θ ) − arcsinh θ ]. (C25)

The contribution to K0 from the w0 field is

9
∂

∂ρ

(
1

2
m2

ωw2
0 + 1

4
cωg4

ωw4
0

)
= 9ρg2

ω

Qω

. (C26)

For the f0 field, we have
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, (C27)

where

W (θ ) = 1
4θ3

√
1 + θ2 − 3

8θ
√

1 + θ2 + 3
8 arcsinh θ, V (θ ) = arcsinh(φ0θ ) − arcsinh θ. (C28)

The corresponding contribution to the K0 of the f0 field is
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) + 8gσ�0M
∗,3
0 W (θ )

3π2

]
+ 12C0kFV (θ )

+ 9

[
2�0k

4
F

3π2M∗
0 E∗

F

+ 2C0k
4
F

3π2M∗
0

(
φ0

F ∗
F

− 1

E∗
F

)](
M∗

0
∂kF
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0
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. (C29)

Combining the above results, we finally obtain the expression for K0(ρ) as

K0(ρ) = − 9
∂f0

∂ρ

[
f0

(
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σ + bσMg3
σ f0 + cσ g4

σ f 2
0
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∗,3
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3π2

]

+ 9
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4
F
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0 π2

2k2
F

+ gσ kF
∂f0
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)
+ 12C0kFV (θ ) + 9ρg2

ω

Qω

− 18P0

ρ
, (C30)

with ∂f0/∂ρ given by (B9) and P0 by (C25).
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Rev. Lett. 102, 122502 (2009).

[83] L. W. Chen, Phys. Rev. C 83, 044308 (2011).
[84] X. Roca-Maza et al., Phys. Rev. C 88, 024316 (2013).
[85] W. D. Myers and W. J. Swiatecki, Ann. Phys. 55, 395 (1969).
[86] P. Danielewicz, Nucl. Phys. A 727, 233 (2003).
[87] P. Danielewicz and J. Lee, Nucl. Phys. A 818, 36 (2009).
[88] P. Danielewicz and J. Lee, Nucl. Phys. A 922, 1 (2014).
[89] L. Lapikas, Nucl. Phys. A 553, 297c (1993).
[90] Z. Zhang and L. W. Chen, Phys. Rev. C 92, 031301(R) (2015).
[91] Z. G. Xiao, B. A. Li, L. W. Chen, G. C. Yong, and M. Zhang,

Phys. Rev. Lett. 102, 062502 (2009).

014619-19

http://dx.doi.org/10.1140/epja/i2014-14018-9
http://dx.doi.org/10.1140/epja/i2014-14018-9
http://dx.doi.org/10.1140/epja/i2014-14018-9
http://dx.doi.org/10.1140/epja/i2014-14018-9
http://dx.doi.org/10.1146/annurev.ns.21.120171.000521
http://dx.doi.org/10.1146/annurev.ns.21.120171.000521
http://dx.doi.org/10.1146/annurev.ns.21.120171.000521
http://dx.doi.org/10.1146/annurev.ns.21.120171.000521
http://dx.doi.org/10.1016/j.ppnp.2012.04.002
http://dx.doi.org/10.1016/j.ppnp.2012.04.002
http://dx.doi.org/10.1016/j.ppnp.2012.04.002
http://dx.doi.org/10.1016/j.ppnp.2012.04.002
http://dx.doi.org/10.1016/j.physrep.2015.06.002
http://dx.doi.org/10.1016/j.physrep.2015.06.002
http://dx.doi.org/10.1016/j.physrep.2015.06.002
http://dx.doi.org/10.1016/j.physrep.2015.06.002
http://dx.doi.org/10.1103/PhysRevLett.114.012501
http://dx.doi.org/10.1103/PhysRevLett.114.012501
http://dx.doi.org/10.1103/PhysRevLett.114.012501
http://dx.doi.org/10.1103/PhysRevLett.114.012501
http://dx.doi.org/10.1103/PhysRevC.92.054311
http://dx.doi.org/10.1103/PhysRevC.92.054311
http://dx.doi.org/10.1103/PhysRevC.92.054311
http://dx.doi.org/10.1103/PhysRevC.92.054311
http://dx.doi.org/10.1126/science.1256785
http://dx.doi.org/10.1126/science.1256785
http://dx.doi.org/10.1126/science.1256785
http://dx.doi.org/10.1126/science.1256785
http://dx.doi.org/10.1103/PhysRevC.92.045205
http://dx.doi.org/10.1103/PhysRevC.92.045205
http://dx.doi.org/10.1103/PhysRevC.92.045205
http://dx.doi.org/10.1103/PhysRevC.92.045205
http://dx.doi.org/10.1103/PhysRevC.92.024604
http://dx.doi.org/10.1103/PhysRevC.92.024604
http://dx.doi.org/10.1103/PhysRevC.92.024604
http://dx.doi.org/10.1103/PhysRevC.92.024604
http://dx.doi.org/10.1103/PhysRevLett.96.082501
http://dx.doi.org/10.1103/PhysRevLett.96.082501
http://dx.doi.org/10.1103/PhysRevLett.96.082501
http://dx.doi.org/10.1103/PhysRevLett.96.082501
http://dx.doi.org/10.1103/PhysRevLett.97.162504
http://dx.doi.org/10.1103/PhysRevLett.97.162504
http://dx.doi.org/10.1103/PhysRevLett.97.162504
http://dx.doi.org/10.1103/PhysRevLett.97.162504
http://dx.doi.org/10.1103/PhysRevLett.99.072501
http://dx.doi.org/10.1103/PhysRevLett.99.072501
http://dx.doi.org/10.1103/PhysRevLett.99.072501
http://dx.doi.org/10.1103/PhysRevLett.99.072501
http://dx.doi.org/10.1126/science.1156675
http://dx.doi.org/10.1126/science.1156675
http://dx.doi.org/10.1126/science.1156675
http://dx.doi.org/10.1126/science.1156675
http://dx.doi.org/10.1103/PhysRevLett.106.052301
http://dx.doi.org/10.1103/PhysRevLett.106.052301
http://dx.doi.org/10.1103/PhysRevLett.106.052301
http://dx.doi.org/10.1103/PhysRevLett.106.052301
http://dx.doi.org/10.1103/PhysRevLett.113.022501
http://dx.doi.org/10.1103/PhysRevLett.113.022501
http://dx.doi.org/10.1103/PhysRevLett.113.022501
http://dx.doi.org/10.1103/PhysRevLett.113.022501
http://arxiv.org/abs/arXiv:1104.2075
http://dx.doi.org/10.1088/1742-6596/420/1/012090
http://dx.doi.org/10.1088/1742-6596/420/1/012090
http://dx.doi.org/10.1088/1742-6596/420/1/012090
http://dx.doi.org/10.1088/1742-6596/420/1/012090
http://dx.doi.org/10.1103/PhysRevC.84.062801
http://dx.doi.org/10.1103/PhysRevC.84.062801
http://dx.doi.org/10.1103/PhysRevC.84.062801
http://dx.doi.org/10.1103/PhysRevC.84.062801
http://dx.doi.org/10.1103/PhysRevC.83.054003
http://dx.doi.org/10.1103/PhysRevC.83.054003
http://dx.doi.org/10.1103/PhysRevC.83.054003
http://dx.doi.org/10.1103/PhysRevC.83.054003
http://dx.doi.org/10.1209/0295-5075/97/22001
http://dx.doi.org/10.1209/0295-5075/97/22001
http://dx.doi.org/10.1209/0295-5075/97/22001
http://dx.doi.org/10.1209/0295-5075/97/22001
http://dx.doi.org/10.1103/PhysRevC.89.044303
http://dx.doi.org/10.1103/PhysRevC.89.044303
http://dx.doi.org/10.1103/PhysRevC.89.044303
http://dx.doi.org/10.1103/PhysRevC.89.044303
http://dx.doi.org/10.1140/epja/i2014-14013-2
http://dx.doi.org/10.1140/epja/i2014-14013-2
http://dx.doi.org/10.1140/epja/i2014-14013-2
http://dx.doi.org/10.1140/epja/i2014-14013-2
http://dx.doi.org/10.1103/PhysRevC.91.025803
http://dx.doi.org/10.1103/PhysRevC.91.025803
http://dx.doi.org/10.1103/PhysRevC.91.025803
http://dx.doi.org/10.1103/PhysRevC.91.025803
http://dx.doi.org/10.1103/PhysRevC.92.011601
http://dx.doi.org/10.1103/PhysRevC.92.011601
http://dx.doi.org/10.1103/PhysRevC.92.011601
http://dx.doi.org/10.1103/PhysRevC.92.011601
http://dx.doi.org/10.1016/j.physletb.2013.10.006
http://dx.doi.org/10.1016/j.physletb.2013.10.006
http://dx.doi.org/10.1016/j.physletb.2013.10.006
http://dx.doi.org/10.1016/j.physletb.2013.10.006
http://dx.doi.org/10.1103/PhysRevC.91.044601
http://dx.doi.org/10.1103/PhysRevC.91.044601
http://dx.doi.org/10.1103/PhysRevC.91.044601
http://dx.doi.org/10.1103/PhysRevC.91.044601
http://arxiv.org/abs/arXiv:1503.8523
http://dx.doi.org/10.1103/PhysRevC.92.034603
http://dx.doi.org/10.1103/PhysRevC.92.034603
http://dx.doi.org/10.1103/PhysRevC.92.034603
http://dx.doi.org/10.1103/PhysRevC.92.034603
http://dx.doi.org/10.1103/PhysRevC.92.015802
http://dx.doi.org/10.1103/PhysRevC.92.015802
http://dx.doi.org/10.1103/PhysRevC.92.015802
http://dx.doi.org/10.1103/PhysRevC.92.015802
http://dx.doi.org/10.1103/PhysRevC.90.065809
http://dx.doi.org/10.1103/PhysRevC.90.065809
http://dx.doi.org/10.1103/PhysRevC.90.065809
http://dx.doi.org/10.1103/PhysRevC.90.065809
http://dx.doi.org/10.1103/PhysRevLett.95.160401
http://dx.doi.org/10.1103/PhysRevLett.95.160401
http://dx.doi.org/10.1103/PhysRevLett.95.160401
http://dx.doi.org/10.1103/PhysRevLett.95.160401
http://dx.doi.org/10.1140/epja/i2009-10755-0
http://dx.doi.org/10.1140/epja/i2009-10755-0
http://dx.doi.org/10.1140/epja/i2009-10755-0
http://dx.doi.org/10.1140/epja/i2009-10755-0
http://dx.doi.org/10.1103/PhysRevLett.110.032504
http://dx.doi.org/10.1103/PhysRevLett.110.032504
http://dx.doi.org/10.1103/PhysRevLett.110.032504
http://dx.doi.org/10.1103/PhysRevLett.110.032504
http://dx.doi.org/10.1103/PhysRevC.88.025802
http://dx.doi.org/10.1103/PhysRevC.88.025802
http://dx.doi.org/10.1103/PhysRevC.88.025802
http://dx.doi.org/10.1103/PhysRevC.88.025802
http://dx.doi.org/10.1103/PhysRevLett.111.032501
http://dx.doi.org/10.1103/PhysRevLett.111.032501
http://dx.doi.org/10.1103/PhysRevLett.111.032501
http://dx.doi.org/10.1103/PhysRevLett.111.032501
http://dx.doi.org/10.1103/PhysRevC.81.025803
http://dx.doi.org/10.1103/PhysRevC.81.025803
http://dx.doi.org/10.1103/PhysRevC.81.025803
http://dx.doi.org/10.1103/PhysRevC.81.025803
http://dx.doi.org/10.1016/j.aop.2008.03.004
http://dx.doi.org/10.1016/j.aop.2008.03.004
http://dx.doi.org/10.1016/j.aop.2008.03.004
http://dx.doi.org/10.1016/j.aop.2008.03.004
http://dx.doi.org/10.1016/j.aop.2008.03.005
http://dx.doi.org/10.1016/j.aop.2008.03.005
http://dx.doi.org/10.1016/j.aop.2008.03.005
http://dx.doi.org/10.1016/j.aop.2008.03.003
http://dx.doi.org/10.1016/j.aop.2008.03.003
http://dx.doi.org/10.1016/j.aop.2008.03.003
http://dx.doi.org/10.1103/PhysRevLett.104.235301
http://dx.doi.org/10.1103/PhysRevLett.104.235301
http://dx.doi.org/10.1103/PhysRevLett.104.235301
http://dx.doi.org/10.1103/PhysRevLett.104.235301
http://dx.doi.org/10.1103/PhysRevLett.105.070402
http://dx.doi.org/10.1103/PhysRevLett.105.070402
http://dx.doi.org/10.1103/PhysRevLett.105.070402
http://dx.doi.org/10.1103/PhysRevLett.105.070402
http://dx.doi.org/10.1016/0146-6410(96)00054-3
http://dx.doi.org/10.1016/0146-6410(96)00054-3
http://dx.doi.org/10.1016/0146-6410(96)00054-3
http://dx.doi.org/10.1016/0146-6410(96)00054-3
http://dx.doi.org/10.1142/S0218301397000299
http://dx.doi.org/10.1142/S0218301397000299
http://dx.doi.org/10.1142/S0218301397000299
http://dx.doi.org/10.1142/S0218301397000299
http://dx.doi.org/10.1088/0034-4885/52/4/002
http://dx.doi.org/10.1088/0034-4885/52/4/002
http://dx.doi.org/10.1088/0034-4885/52/4/002
http://dx.doi.org/10.1088/0034-4885/52/4/002
http://dx.doi.org/10.1016/j.ppnp.2005.06.001
http://dx.doi.org/10.1016/j.ppnp.2005.06.001
http://dx.doi.org/10.1016/j.ppnp.2005.06.001
http://dx.doi.org/10.1016/j.ppnp.2005.06.001
http://dx.doi.org/10.1103/PhysRevC.82.055803
http://dx.doi.org/10.1103/PhysRevC.82.055803
http://dx.doi.org/10.1103/PhysRevC.82.055803
http://dx.doi.org/10.1103/PhysRevC.82.055803
http://dx.doi.org/10.1103/PhysRevC.87.015806
http://dx.doi.org/10.1103/PhysRevC.87.015806
http://dx.doi.org/10.1103/PhysRevC.87.015806
http://dx.doi.org/10.1103/PhysRevC.87.015806
http://dx.doi.org/10.1103/PhysRevC.90.055203
http://dx.doi.org/10.1103/PhysRevC.90.055203
http://dx.doi.org/10.1103/PhysRevC.90.055203
http://dx.doi.org/10.1103/PhysRevC.90.055203
http://dx.doi.org/10.1016/0375-9474(96)00187-X
http://dx.doi.org/10.1016/0375-9474(96)00187-X
http://dx.doi.org/10.1016/0375-9474(96)00187-X
http://dx.doi.org/10.1016/0375-9474(96)00187-X
http://dx.doi.org/10.1103/PhysRevLett.86.5647
http://dx.doi.org/10.1103/PhysRevLett.86.5647
http://dx.doi.org/10.1103/PhysRevLett.86.5647
http://dx.doi.org/10.1103/PhysRevLett.86.5647
http://dx.doi.org/10.1103/PhysRevC.64.062802
http://dx.doi.org/10.1103/PhysRevC.64.062802
http://dx.doi.org/10.1103/PhysRevC.64.062802
http://dx.doi.org/10.1103/PhysRevC.64.062802
http://dx.doi.org/10.1103/PhysRevC.66.055803
http://dx.doi.org/10.1103/PhysRevC.66.055803
http://dx.doi.org/10.1103/PhysRevC.66.055803
http://dx.doi.org/10.1103/PhysRevC.66.055803
http://dx.doi.org/10.1103/PhysRevLett.95.122501
http://dx.doi.org/10.1103/PhysRevLett.95.122501
http://dx.doi.org/10.1103/PhysRevLett.95.122501
http://dx.doi.org/10.1103/PhysRevLett.95.122501
http://dx.doi.org/10.1103/PhysRevC.76.054316
http://dx.doi.org/10.1103/PhysRevC.76.054316
http://dx.doi.org/10.1103/PhysRevC.76.054316
http://dx.doi.org/10.1103/PhysRevC.76.054316
http://dx.doi.org/10.1103/PhysRevC.85.024302
http://dx.doi.org/10.1103/PhysRevC.85.024302
http://dx.doi.org/10.1103/PhysRevC.85.024302
http://dx.doi.org/10.1103/PhysRevC.85.024302
http://dx.doi.org/10.1103/PhysRevLett.82.691
http://dx.doi.org/10.1103/PhysRevLett.82.691
http://dx.doi.org/10.1103/PhysRevLett.82.691
http://dx.doi.org/10.1103/PhysRevLett.82.691
http://dx.doi.org/10.1140/epja/i2006-10100-3
http://dx.doi.org/10.1140/epja/i2006-10100-3
http://dx.doi.org/10.1140/epja/i2006-10100-3
http://dx.doi.org/10.1140/epja/i2006-10100-3
http://dx.doi.org/10.1088/0954-3899/37/6/064038
http://dx.doi.org/10.1088/0954-3899/37/6/064038
http://dx.doi.org/10.1088/0954-3899/37/6/064038
http://dx.doi.org/10.1088/0954-3899/37/6/064038
http://dx.doi.org/10.1088/0954-3899/39/3/035104
http://dx.doi.org/10.1088/0954-3899/39/3/035104
http://dx.doi.org/10.1088/0954-3899/39/3/035104
http://dx.doi.org/10.1088/0954-3899/39/3/035104
http://dx.doi.org/10.1140/epja/i2014-14026-9
http://dx.doi.org/10.1140/epja/i2014-14026-9
http://dx.doi.org/10.1140/epja/i2014-14026-9
http://dx.doi.org/10.1140/epja/i2014-14026-9
http://dx.doi.org/10.1103/PhysRevC.80.014322
http://dx.doi.org/10.1103/PhysRevC.80.014322
http://dx.doi.org/10.1103/PhysRevC.80.014322
http://dx.doi.org/10.1103/PhysRevC.80.014322
http://dx.doi.org/10.1007/s11433-011-4415-9
http://dx.doi.org/10.1007/s11433-011-4415-9
http://dx.doi.org/10.1007/s11433-011-4415-9
http://dx.doi.org/10.1007/s11433-011-4415-9
http://arxiv.org/abs/arXiv:1402.4242
http://dx.doi.org/10.1016/S0375-9474(96)00453-8
http://dx.doi.org/10.1016/S0375-9474(96)00453-8
http://dx.doi.org/10.1016/S0375-9474(96)00453-8
http://dx.doi.org/10.1016/S0375-9474(96)00453-8
http://dx.doi.org/10.1088/0004-637X/722/1/33
http://dx.doi.org/10.1088/0004-637X/722/1/33
http://dx.doi.org/10.1088/0004-637X/722/1/33
http://dx.doi.org/10.1088/0004-637X/722/1/33
http://arxiv.org/abs/arXiv:1303.0064
http://dx.doi.org/10.1103/PhysRevC.90.054327
http://dx.doi.org/10.1103/PhysRevC.90.054327
http://dx.doi.org/10.1103/PhysRevC.90.054327
http://dx.doi.org/10.1103/PhysRevC.90.054327
http://dx.doi.org/10.1103/PhysRevC.92.015210
http://dx.doi.org/10.1103/PhysRevC.92.015210
http://dx.doi.org/10.1103/PhysRevC.92.015210
http://dx.doi.org/10.1103/PhysRevC.92.015210
http://dx.doi.org/10.1103/PhysRevC.89.034305
http://dx.doi.org/10.1103/PhysRevC.89.034305
http://dx.doi.org/10.1103/PhysRevC.89.034305
http://dx.doi.org/10.1103/PhysRevC.89.034305
http://arxiv.org/abs/arXiv:1312.2263
http://arxiv.org/abs/arXiv:1102.3973
http://dx.doi.org/10.1103/PhysRevLett.102.122502
http://dx.doi.org/10.1103/PhysRevLett.102.122502
http://dx.doi.org/10.1103/PhysRevLett.102.122502
http://dx.doi.org/10.1103/PhysRevLett.102.122502
http://dx.doi.org/10.1103/PhysRevC.83.044308
http://dx.doi.org/10.1103/PhysRevC.83.044308
http://dx.doi.org/10.1103/PhysRevC.83.044308
http://dx.doi.org/10.1103/PhysRevC.83.044308
http://dx.doi.org/10.1103/PhysRevC.88.024316
http://dx.doi.org/10.1103/PhysRevC.88.024316
http://dx.doi.org/10.1103/PhysRevC.88.024316
http://dx.doi.org/10.1103/PhysRevC.88.024316
http://dx.doi.org/10.1016/0003-4916(69)90202-4
http://dx.doi.org/10.1016/0003-4916(69)90202-4
http://dx.doi.org/10.1016/0003-4916(69)90202-4
http://dx.doi.org/10.1016/0003-4916(69)90202-4
http://dx.doi.org/10.1016/j.nuclphysa.2003.08.001
http://dx.doi.org/10.1016/j.nuclphysa.2003.08.001
http://dx.doi.org/10.1016/j.nuclphysa.2003.08.001
http://dx.doi.org/10.1016/j.nuclphysa.2003.08.001
http://dx.doi.org/10.1016/j.nuclphysa.2008.11.007
http://dx.doi.org/10.1016/j.nuclphysa.2008.11.007
http://dx.doi.org/10.1016/j.nuclphysa.2008.11.007
http://dx.doi.org/10.1016/j.nuclphysa.2008.11.007
http://dx.doi.org/10.1016/j.nuclphysa.2013.11.005
http://dx.doi.org/10.1016/j.nuclphysa.2013.11.005
http://dx.doi.org/10.1016/j.nuclphysa.2013.11.005
http://dx.doi.org/10.1016/j.nuclphysa.2013.11.005
http://dx.doi.org/10.1016/0375-9474(93)90630-G
http://dx.doi.org/10.1016/0375-9474(93)90630-G
http://dx.doi.org/10.1016/0375-9474(93)90630-G
http://dx.doi.org/10.1016/0375-9474(93)90630-G
http://dx.doi.org/10.1103/PhysRevC.92.031301
http://dx.doi.org/10.1103/PhysRevC.92.031301
http://dx.doi.org/10.1103/PhysRevC.92.031301
http://dx.doi.org/10.1103/PhysRevC.92.031301
http://dx.doi.org/10.1103/PhysRevLett.102.062502
http://dx.doi.org/10.1103/PhysRevLett.102.062502
http://dx.doi.org/10.1103/PhysRevLett.102.062502
http://dx.doi.org/10.1103/PhysRevLett.102.062502


BAO-JUN CAI AND BAO-AN LI PHYSICAL REVIEW C 93, 014619 (2016)

[92] L. L. Frankfurt, M. Sargsian, and M. I. Strikman, Int. Mod. Phys.
A 23, 2991 (2008).

[93] J. M. Dong, U. Lombardo, H. F. Zhang, and W. Zuo,
arXiv:1512.2746.

[94] H. Fleming, W. G. Newton, I. Vidaña, and B.-A. Li,
[http://meetings.aps.org/link/BAPS.2015.TSF. F3.1].

[95] W. G. Newton and I. Vidaña (private communication).

[96] J. Xu, L. W. Chen, B. A. Li, and H. R. Ma, Phys. Rev. C 79,
035802 (2009); Astrophys. J. 697, 1549 (2009).

[97] J. Carriere, C. J. Horowitz, and J. Piekarewicz, Astrophys. J.
593, 463 (2003).

[98] G. Baym, C. Pethick, and P. Sutherland, Astrophys. J. 170, 299
(1971); K. Iida and K. Sato, ibid. 477, 294 (1997).

[99] B. D. Serot, Phys. Lett. B 86, 146 (1979).

014619-20

http://dx.doi.org/10.1142/S0217751X08041207
http://dx.doi.org/10.1142/S0217751X08041207
http://dx.doi.org/10.1142/S0217751X08041207
http://dx.doi.org/10.1142/S0217751X08041207
http://arxiv.org/abs/arXiv:1512.2746
http://meetings.aps.org/link/BAPS.2015.TSF. F3.1
http://dx.doi.org/10.1103/PhysRevC.79.035802
http://dx.doi.org/10.1103/PhysRevC.79.035802
http://dx.doi.org/10.1103/PhysRevC.79.035802
http://dx.doi.org/10.1103/PhysRevC.79.035802
http://dx.doi.org/10.1088/0004-637X/697/2/1549
http://dx.doi.org/10.1088/0004-637X/697/2/1549
http://dx.doi.org/10.1088/0004-637X/697/2/1549
http://dx.doi.org/10.1088/0004-637X/697/2/1549
http://dx.doi.org/10.1086/376515
http://dx.doi.org/10.1086/376515
http://dx.doi.org/10.1086/376515
http://dx.doi.org/10.1086/376515
http://dx.doi.org/10.1086/151216
http://dx.doi.org/10.1086/151216
http://dx.doi.org/10.1086/151216
http://dx.doi.org/10.1086/151216
http://dx.doi.org/10.1086/303685
http://dx.doi.org/10.1086/303685
http://dx.doi.org/10.1086/303685
http://dx.doi.org/10.1086/303685
http://dx.doi.org/10.1016/0370-2693(79)90804-9
http://dx.doi.org/10.1016/0370-2693(79)90804-9
http://dx.doi.org/10.1016/0370-2693(79)90804-9
http://dx.doi.org/10.1016/0370-2693(79)90804-9



