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Nuclear annihilation by antinucleons
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We examine the momentum dependence of p̄p and n̄p annihilation cross sections by considering the
transmission through a nuclear potential and the p̄p Coulomb interaction. Compared to the n̄p annihilation cross
section, the p̄p annihilation cross section is significantly enhanced by the Coulomb interaction for projectile
momenta below plab < 500 MeV/c, and the two annihilation cross sections approach the Pomeranchuk’s equality
limit [JETP Lett. 30, 423 (1956)] at plab ∼ 500 MeV/c. Using these elementary cross sections as the basic input
data, the extended Glauber model is employed to evaluate the annihilation cross sections for n̄ and p̄ interaction
with nuclei and the results compare well with experimental data.
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I. INTRODUCTION

In support of experiments of the FAIR (Facility for the
Research with Antiprotons and Ions) at Darmstadt [1,2] and
the AD (Antiproton Decelerator) at CERN [3] for antimatter
investigations, it is of interest to continue our investigation on
the annihilation between an antinucleon with nucleons or a
nucleus that represent an important aspect of the interaction
between antimatter and matter. A recent suggestion of using
n̄A annihilation to study the n-n̄ oscillations [4] provides
an additional impetus to examine the annihilation between
an n̄ and a nucleus. In a recent work [5], we extended the
Glauber model for nucleus-nucleus collisions [6–9] to study
the antiproton-nucleus annihilation process. The extended
Glauber model for the calculation of the p̄A annihilation
cross section [5] consists of treating the nucleon-nucleus
collision as a collection of binary collisions, with appropriate
shadowing and the inclusion of initial-state and in-medium
interactions. The basic ingredients are the elementary p̄p

and p̄n annihilation cross sections, σ
p̄p
ann and σ

p̄n
ann, together

with initial-state Coulomb interactions and the change of the
momentum of the antinucleon inside the nuclear medium. The
model provides an analytical and yet intuitive way to analyze
p̄-nucleus annihilation processes. Qualitative features were
reproduced to give a general map of the annihilation cross
sections as a function of nuclear mass numbers and collision
energies.

We would like to improve upon these earlier results
on several important aspects. In our previous work, the
basic p̄p annihilation cross section, σ

p̄p
ann, was parametrized

semiempirically as 1/v, the inverse of the relative velocity
v, and utilized in our investigation of the stability and the
properties of matter-antimatter molecules [11,12]. Such a
simple dependence arises from the nuclear interaction between
p and p̄ in the s state and gives the main feature of the important
momentum dependence of the annihilation cross section.
Higher partial waves are also present and it is necessary to
includes them properly. In addition to the nuclear interaction, p
and p̄ also interact through the attractive Coulomb interaction
and σ

p̄p
ann is expected to behave as 1/v2 in the lowest energy

region [13,14]. It is of interest to examine the combined
effects of the nuclear and Coulomb interactions to see how

the 1/v behavior of the p̄p annihilation cross section is
modified in the lowest energy region. A proper treatment of
the Coulomb and nuclear interactions for σ

p̄p
ann will also lead

to a better determination of σ
n̄p
ann, which is expected to vary

as 1/v at the lowest energies. Furthermore, in our earlier
work in [5], σ

p̄n
ann/σ

p̄p
ann was taken to be 4/5, based on the

experimental ratio (σ p̄n
ann)D/(σ p̄p

ann)D = 0.749 ± 0.018 for p̄ at
rest and 0.863 ± 0.018 for p̄ in flight [15], and a model of
nucleon-antinucleon annihilation by the annihilation of quark
and antiquarks of the same flavor [5]. Because of the attractive
Coulomb interaction is present in pp̄ annihilation but absent in
p̄n annihilation, σ

p̄p
ann should be greater than σ

p̄n
ann and the ratio

σ
p̄n
ann/σ

p̄p
ann should be energy dependent. Quark and antiquark

can form a string and subsequently fragments, independent
of the flavor contents of the quark and the antiquark. Thus,
the approximate fixed ratio of σ

p̄n
ann/σ

p̄p
ann of Ref. [5] should be

amended and its energy dependencies must be properly taken
into account.

On the theoretical side, there is the pioneering prediction
of Pomeranchuk [16] on the equality of the annihilation cross
section for p̄p and p̄n at high energies. One can envisage
a q-q̄ pairing model of nucleon-antinucleon annihilation in
which the annihilation between a nucleon and an antinucleon
takes place by pairing the valence quark of any flavor from
the nucleon with any valence antiquark of any flavor from
the antinucleon, with each q-q̄ pair forming a string that
subsequently fragments to many q̄q pairs (mesons), as in the
string fragmentation in pp collisions [9,10]. At high energies
when the long-range Coulomb effects become unimportant,
such a q-q̄ pairing model will predict the equality of σ

p̄n
ann =

σ
p̄p
ann because there are the same numbers of nine ways to

combine the q and q̄ pairs to form strings in p̄n and p̄p
annihilations. An equality of σ

p̄n
ann = σ

p̄p
ann at high energies

will favor the q-q̄ pairing model and is consistent with
Pomeranchuk’s prediction. It will exclude another annihilation
model, as for example, the annihilation only by quarks of the
same flavor [5].

To test Pomeranchuk’s prediction and the annihilation
models, we re-examine the basic cross sections of σ

p̄n
ann and

σ
p̄p
ann to understand their similarities as well as their different

energy dependencies. There are no experimental data of σ
p̄n
ann
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for the collision of a p̄ projectile with an isolated neutron target
in free space. There are however experimental σ n̄p

ann annihilation
cross section data using a n̄ beam source (from the p̄p → n̄n
reaction) colliding on a liquid hydrogen target [17,18], which
are better suited for nucleon-antinucleon annihilation studies
than those of [15] using the p̄-(2H) annihilations. As σ

n̄p
ann =

σ
p̄n
ann, we shall therefore treat them equivalently and consider

the problem of the annihilation of p̄ on n to be equivalent to
the problem of n̄ on the target proton p.

To study the Coulomb and nuclear interactions of an
antinucleon on the proton target, we shall assume for simplicity
a square well potential of a fixed depth for which analytical
results can be readily obtained [19]. The theoretical results and
the comparison with experimental data allows one to draw a
conclusion on Pomeranchuk’s prediction and the annihilation
models. Upon the determination of the improved basic σ

p̄p
ann

and σ
n̄p
ann annihilation cross sections, they can then be used as

the building blocks to evaluate the annihilation cross sections
for antinucleons on a nucleus.

It is worth pointing out that over the years, a large set
of experimental data in the annihilation of nucleons and
nuclei by p̄ and n̄ had been accumulated [17,18,20–36] and
analyzed theoretically [5,36–53]. Klempt, Batty, and Richard
reviewed various phenomenological analyses of microscopic
quark dynamics and symmetry considerations in nucleon-
antinucleon annihilations. The roles of initial- and final-state
interactions are also examined [36]. A theoretical optical
potential based on the Glauber model [6,7] has been developed
by Kuzichev, Lepikhin, and Smirnitsky to investigate the
antiproton annihilation cross sections of various nuclei at
the momentum range of 0.70–2.50 GeV/c [38]. In this
range of relatively high antiproton momenta, the Glauber
model gives a good agreement with the experimental data,
with the exception of the deviations at the momentum of
0.7 GeV/c for heavy nuclei. Batty, Friedman, and Gal have
developed a unified optical potential approach for low-energy
p̄ interactions with proton and with various nuclei using a
density-folded optical potential [42,43]. They found that even
though the density-folding potential reproduces satisfactorily
the p̄ atomic level shifts and widths across the periodic table for
A > 10 and the few annihilation cross sections measured on
Ne, it does not work well for He and Li. Galoyan, Uzshinsky,
and collaborators have previously investigated cross sections
of various processes in p̄p collisions in many different
mechanisms. They have used different parametrizations of
the basic total and elastic p̄p cross sections in the Glauber
model and have successfully implemented these calculations
in the GEANT4 program for the simulation of the passage of
particles through matter in high-energy nuclear detector stud-
ies [45–53]. In the low-momentum regime (plab < 1 GeV/c),
however, many questions remain open to provide additional
motivation for the present study. For example, how does
the electrostatic Coulomb interaction between the collision
pair affects the annihilation cross section as function of
target mass A and charge numbers Z, and the projectile
momentum in the laboratory frame plab? And at approximately
what momentum the contributions of the Coulomb interaction
begins to be less effective? This study attempts to address these
questions.

The paper is organized as follows. In Sec. II, we study the
basic p̄p and p̄n annihilation cross sections by considering
the effects of particles transmission through a nuclear potential
barrier, initial-state Coulomb interaction between the collision
pair and relativistic two-body kinematics. As the results for
the present survey will not be sensitive to the fine structure of
the potential well, we shall assume a square well potential for
which analytical results for the transmission coefficients are
well known. The experimental p̄p and n̄p annihilation cross
sections can be successfully described in terms of transmission
coefficients of various partial waves and Coulomb Gamow
factors. In Sec. III, the basic p̄p and n̄p cross sections
obtained in the theoretical analysis is then included in the
extended Glauber model to calculate p̄-nucleus collisions.
The expressions are given for the p̄-nucleus annihilation cross
sections in terms of basic p̄-nucleon annihilation cross section,
σ

p̄-nucleon
ann . In Sec. IV, we assess the theory by comparing its

numerical results to experimental data at both high and low
energies, Finally, we conclude the present study with some
discussions in Sec. V.

II. THEORY OF p̄ p AND n̄ p ANNIHILATION
CROSS SECTIONS

To analyze the p̄p and n̄p annihilation cross section at a
center-of-mass energy Ec.m., we follow Blatt and Weisskopf
[19] to decompose the incoming plane waves into partial
waves and we use the ingoing-wave strong absorption model
to assume that a partial wave transmitted passing through the
nucleon surface R will lead to a reaction, which in our case
is an annihilation. In the case of p̄p annihilation, there is
in addition the initial-state Coulomb interactions which can
be taken into account through the Coulomb Gamow factor
GL(k) [54] (or the K-factor K(η) in [55,56]). The p̄p and p̄n
annihilation cross sections for a collision with a wave number
k = √

2μEc.m. and a reduced mass μ are then given in terms of
the transmission coefficients TL and the Gamow factor GL by

σann(k) = π

k2

Lmax∑
L=0

(2L + 1)TL(k)GL(k), (1)

where GL(k) is 1 for p̄n annihilation.
To calculate the transmission coefficients, we consider the

nucleon and the antinucleon to interact through a nuclear
interaction, which for simplicity can be taken to be a square
well V (r) = −V0�(R − r). The transmission coefficient is
then given by Eq. (5.5) on p. 360 of [19] as

TL = 4sLKR

�2
L + (sL + KR)2

, (2)

where K =
√

k2 + 2μV0,

sL = R

[
gL(dfL/dr) − fL(dgL/dr)

g2
L + f 2

L

]
r=R

, (3)

�L = R

[
gL(dfL/dr) + fL(dgL/dr)

g2
L + f 2

L

]
r=R

, (4)
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fL(r) =
(

πkr

2

)1/2

JL+1/2(kr), (5)

gL(r) = −
(

πkr

2

)1/2

NL+1/2(kr), (6)

where JL+1/2(kr) and NL+1/2(kr) are Bessel and Neumann
functions, respectively. The Gamow factor for p̄p annihilation
under the Coulomb interaction Vc(r) = α/r is [56]

GL(k) = (L2 + ξ 2)[(L − 1)2 + ξ 2] · · · (1 + ξ 2)

[L!]2

×
(

2πξ

exp{2πξ} − 1

)
, (7)

where ξ = α/v and α is the fine structure constant. Following
Todorov [57] and Eqs. (21.13a)–(21.13c) of Crater et al. [58],
in the center of mass coordinate system, it is shown that the
relative velocity v for two equal-mass particles with rest mass
m is related to their center of mass

√
s and can be expressed

as [55]

v = (s2 − 4sm2)1/2

s − 2m2
(8)

and

s = (a + b)2 = (a0 + b0)2 − (a + b)2, (9)

where a = (a0,a) and b = (b0,b) are the four-momentum
vectors of the two colliding particles with a and b represent
the target and projectile, respectively.

III. THE p̄ p AND n̄ p ANNIHILATION CROSS SECTIONS

Expression (1) shows that for the antinucleon-nucleon an-
nihilation cross section all necessary information is contained
in the magnitudes TL(k) and GL(k); they define the cross
section completely. To determine TL(k) and hence the cross
section, we assume the nuclear contact radius R = 0.97 fm
and the strong interaction potential V0 = 85 MeV. Figure 1
displays the σ ann

p̄p cross section result obtained with Eq. (1) as
a function of p̄ incident momenta. Clearly shown in Fig. 1(a)
is the theoretical result fits the experimental data impressively
well over a broad energy range. The different contributions
to the cross section from L = 0–3 partial waves as a function
of energy is demonstrated in Fig. 1(b). Strong momentum
dependence is observed for all the partial waves. The S wave
is obviously dominated at momentum below 240 MeV/c.
As pp̄lab increases from 240 to 750 MeV/c, the contribution
from the P wave becomes important. As the incident energy
increases further, i.e., above 750 MeV/c, the D wave begins
to dominate, and so forth.

At this point, we are interested not only in the magnitude of
the cross section given in Eq. (1), but also in its behavior for
smaller values of pp̄lab. To examine the cross section behavior
at low-energy limit, we restrict ourselves to the case where
the entrance channel wave number k � K and the S wave is
dominant. This simplifies the analysis and helps to elucidate
the essential points. According to Eq. (1), the annihilation
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FIG. 1. (a) Antiproton-proton annihilation cross sections as a
function of the antiproton momentum in the laboratory frame. The
solid curve represents the p̄p annihilation cross section of Eq. (1).
The experimental data points are from the compilation of [25], where
the individual experimental sources can be found. (b) Contributions
from different partial waves to the total annihilation cross sections.

cross section is reduced to

σ ann
p̄p = π

k2
T0(k)G0(k)

= π

(
4K

k(K + k)2

)(
2πξ

exp{2πξ} − 1

)
. (10)

The first factor in the formula clearly displays the 1/v behavior
for k � K while the parameter ξ → ∞ gives

2πξ

exp{2πξ} − 1
→ 2πα

v
. (11)

In that event, the product of the two factors leads to σ ann
p̄p ∝

1/v2 behavior at low-energy limit. This 1/v2 law was first
pointed out by Wigner [13] and now its discussions can be
found in quantum mechanics textbooks [14,59].

Having demonstrated that Eq. (1) is capable of reasonably
describing the experimental p̄p annihilation cross section for
a wide momentum range, we next examine the n̄p annihilation
cross section as a function of the antineutron momentum for
which GL(k) = 1. Fig. 2(a) shows a comparison between the
theoretical and two sets of experimental data from Brookhaven
National Laboratory (BNL) [18] and from the OBELIX
Collaboration [17]. Relative to the p̄p measurements, the
annihilation cross section data for n̄p still remains relatively
sparse to date and contain significant degrees of uncertainties.
The two sets of data fall within the error bars of each
other. The OBELIX data at around plab ∼ 200–300 MeV/c
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FIG. 2. (a) Antineutron-proton annihilation cross sections as a
function of the antineutron momentum in the laboratory frame. Solid
curve: n̄p annihilation cross section using Eq. (1) with the Gamow
factor equal to 1. Solid triangle: experimental data from the OBELIX
Collaboration [17] and open circle denotes experimental data from
BNL [18]. (b) Contributions from different partial waves to the total
annihilation cross sections.

appears to show an enhancement whereas the BNL data show
greater fluctuation and appear to be qualitatively consistent
with the theoretical predictions. Ultimately, we concur with
Friedman’s opinion [44] that the broad enhancement in the
experimental finding for n̄p annihilation cross sections around
200–300 MeV/c [17] remains an open question.

Figure 3 indicates the importance of the Coulomb effect by
comparing the n̄ and p̄ on proton annihilation as a function en-
ergy. The theoretical data are also plotted against the available
experimental data. At high energy limit plab > 500 MeV/c,
both the n̄p and p̄p curves coincide. As σ

p̄n
ann = σ

n̄p
ann, the

result in Fig. 3 validates the Pomeranchuk prediction [16]
of σ

p̄p
ann = σ

p̄n
ann for plab > 500 MeV/c.

At the low-energy limit, it immediately becomes obvious
that the slope for the p̄p interaction is much steeper compared
to the n̄p one. Parametrizing the theoretical annihilation cross
section in a power law form σann ∝ px

p̄lab, the exponential value
x can be simply obtained via x = ∂ln(σann)/∂ln(pp̄lab). For the
case of p̄p, it is found that x = −1.544 in the momentum range
between 30 and 50 MeV/c. Although it is not quite equal to
x = −2.0 as expected to be at the low-energy limit [13,14], the
behavior of the cross section is rightly approaching this limit as
the projectile momentum further decreases. For the case of n̄p,
it is found that x = −1.080 in the momentum range between
30 and 95 MeV/c. Indeed, this exponential value is very close
to the expected x = −1.0 value, a clear indication of the 1/v

100 1000
plab (MeV/c)

100

1000

σ 
N

p
an

n   
  (

m
b)

pp
np

FIG. 3. Comparison of p̄p and n̄p annihilation cross sections as
a function of the antiproton momentum in the laboratory frame.

behavior. The cross sections of these two cases have distinct
power indices at low energies, depending on the charged or
neutral character of the interaction pair.

IV. THE EXTENDED GLAUBER MODEL AND
COMPARISON WITH EXPERIMENTAL

σ N̄ A
ann FOR A > 1 NUCLEI

The results in the last section pertain to the annihilation
with A = 1 nucleus. To consider p̄ or n̄ annihilation with
heavier A > 1 targets, we shall make use of our previously
developed extended Glauber model. Because the derivations
of the extended Glauber model are given in [5], here we review
and emphasize only the essential formulas for describing p̄
the experimental p̄-nucleus annihilation cross sections for all
energies and mass numbers. In the extended Glauber model, we
first consider the incoming p̄ travels along a linear trajectories
as p̄ approaches the nucleus and makes multiple collisions with
the target nucleons along its way. The target and the projectile
are represented by a density distribution function. For the target
nucleus with small mass numbers A < 40, Gaussian density
distribution function is considered. On the other hand, for the
target nucleus with larger mass numbers, i.e., A > 40, uniform
density distribution function with sharp-cut off is considered.
The integral of the density distribution along the p̄ trajectories
gives the thickness functions which, in conjunction with the
basic σ

p̄p
ann and σ

p̄n
ann annihilation cross sections, determines the

probability for an p̄-nucleon annihilation and consequently the
high-energy p̄-nucleus annihilation cross section

σ p̄A
ann

(
σ p̄−nucleon

ann

) =
∫

db
{
1 − [

1 − Tp̄p(b)σ p̄p
ann

]Z

× [
1 − Tp̄n(b)σ p̄n

ann

]N}

=
Z∑

i=0

N∑′

j=0

(
(−1)1+i+jZ!N !

(Z − i)!(N − j )!i!j !

)

× (
σ p̄p

ann

)i(
σ p̄n

ann

)j
∫

db[Tp̄p(b)]i[Tp̄n(b)]j ,

(12)
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where Tp̄p and Tp̄n denote the thickness functions for protons
and neutrons, respectively. The argument σ

p̄−nucleon
ann on the

left-hand side stands for σ
p̄p
ann and σ

p̄n
ann, and the summation

∑′
j

allows for all cases except when i = j = 0. The Z and N
represent the number of protons and neutrons, respectively, in
the nucleus.

To ensure Eq. (12) is also applicable for low-energy
annihilation process, we extended the high-energy Glauber
model by considering the Coulomb and nuclear interactions
that are additional to those between the incoming antiproton
and an annihilated target nucleon. The initial-state Coulomb
correction resulted the modification of the projectile trajectory
from linear to curved. The strong nuclear force, on the other
hand, gives rise to the change of the antiproton momentum in
the nucleus interior. The development of the extended Glauber
model therefore resulted a compact p̄-nucleus annihilation
cross section


p̄A
ann(pp̄lab) =

{
1 − Vc(Rc)

E

}
σ p̄A

ann

(
σpp̄

ann(p′′
p̄lab)

)
, (13)

where

p′′
p̄lab = pp̄lab

√
1 − 〈Vc(r)〉 + 〈Vn(r)〉

E
(14)

represents the change of the p̄ momentum inside the nucleus
due the average interior Coulomb 〈Vc(r)〉 and nuclear 〈Vn(r)〉
interactions. The {1 − Vc(Rc)/E} factor on the other hand
takes into account of the initial-state Coulomb effect that
creates the path-deviation between the interaction pair from
a straight-line trajectory with Vc(Rc) is the Coulomb potential
energy for p̄ to be at the nuclear contact radius Rc and E is
the center of mass kinetic energy of p̄-nucleus collisions. This
analytical formula is simple. Ultimately, to evaluate the p̄A
or n̄A annihilation cross sections, one only needs to know the
fundamental p̄p and n̄p annihilation cross sections.

We consider first the p̄A annihilation cross sections. In
Fig. 4, the black solid curve represents the σ

p̄p
ann we discussed

0001001
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p
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FIG. 4. p̄A annihilation cross sections as a function of the
antiproton momentum in the laboratory frame. The experimental data
are from Ref. [25]. The basic p̄p curve is calculated from Eq. (1) and
the rest are from the extended Glauber model.

TABLE I. Fitting parameters.

Nuclei Gaussian Uniform 〈Vn〉(MeV)
r ′

0(fm) r0(fm)

2H 1.20 −1.0
4He 1.20 −4.0
Be 1.00 −20.0
C 1.00 −20.0
Ne 1.00 −35.0
Al 1.00 −35.0
Ni 1.00 −35.0
Cu 1.00 −35.0
Cd 1.00 −35.0
Sn 1.00 −35.0
Pt 1.00 −35.0
Pb 1.00 −35.0

earlier. The rest of the curves are results obtained from
the extended Glauber model with the basic σ

p̄p
ann and σ

p̄n
ann

obtained in the last section as input. Because σ
p̄p
ann and σ

p̄n
ann are

slightly different from those we reported earlier [5], we find it
necessary to readjust slightly some of the fitting parameters
in the extended Glauber model in order to reproduce the
experimental results. We use the same functional forms and
notations of the geometrical parameters as in [5]. For a
light nucleus with A < 40, we consider a Gaussian thickness
function with the geometrical parameter β2 = β2

A + β2
B +

β2
p̄p, where βA = r ′

0A
1/3, βB = 0.68 fm, and βp̄p = σ

p̄p
ann/2π .

For a heavy nucleus with A > 40, we consider a uniform
density distribution with the sharp cut-off thickness function

and the geometrical parameters Rc = RA + RB +
√

σ
p̄p
ann/2π ,

where RA = r0A
1/3 and RB = 0.95 fm. The new parameters

r0, r ′
0, and nuclear potential depth 〈Vn〉 are tabulated in

Table I. Here, we also find a slightly smaller radius parameter
r0 = 1.00 fm that gives a better description of the experimental
data. It is worthwhile to note that in the present work all
the parameter values r0 and r ′

0 remain close to those used
in [5].

The fits to the p̄A annihilation cross sections in the present
manuscript in Fig. 4 are almost identical to our previous results
in Fig. 1 of Ref. [5]. This indicates that the gross features of
the p̄A annihilation cross sections is insensitive to the basic
p̄p and p̄n cross sections, when the annihilation process is
properly described. There is however only the minor difference
that with p̄p and p̄n annihilation cross sections approaching
each other at high energies, the new results describe better
the p̄(2H ) annihilation cross section at around plab = 400–
600 MeV/c. The discrepancies of the p̄(2H ) annihilation cross
section at around plab = 270 MeV/c remains an unresolved
theoretical and perhaps experimental problem that needs to be
rechecked.

It is illuminating to clarify why the p̄Pt annihilation
cross section at plab = 100 MeV/c is as large as 9000 mb,
corresponding to a black disk of annihilation with a maximum
impact parameter radius, bmax, of about 17 fm, when the
geometrical touching radius, RPt + Rp̄, is only about 8 fm.
It should be pointed out that without the Coulomb initial-
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FIG. 5. n̄Fe annihilation cross section as a function of the
antineutron momentum in the laboratory frame. Comparing the result
from Eq. (1) with several sets of experimental data.

state interaction for p̄Pt annihilation, the extended Glauber
model [the second factor σ

p̄A
ann in Eq. (13)] leads to a black-

nucleus result for heavy nuclei, as the p̄ particle makes
multiple collisions and has many chances of annihilation with
nucleons along its path in the nucleus. The black-nucleus
cross section obtained in the extended Glauber model is
approximately π (b′

max)2 = π (RPt + Rp̄)2 ∼ π (8 fm)2, which
is about 2000 mb. In the presence of the Coulomb initial-state
interaction, the trajectory of a p̄ at an impact parameter
bmax = 17 fm will be pulled down to collide with the Pt nucleus
at an impact parameter of b′

max = 8 fm, and the p̄ is annihilated.
The Coulomb enhancement factor (1 − Vc(Rc)/E) in Eq. (13)
corresponds to the ratio of b2

max/b
′2
max and is about 4–5, which

enhances the annihilation cross section from about 2000 mb
to about 9000 mb, as indicated in Fig. 4.

We consider next the n̄A annihilation cross sections.
Unfortunately, compared to the p̄A annihilation, experiments
with antineutrons are to date scarce, in particular regarding
their interaction with heavier nuclei. Nonetheless, there are
a few have been reported in literature. Figure 5 shows
the comparison of the result of extended Glauber model
with the experimental cross section for n̄Fe annihilation.
The data indicate a strong dependence on the incoming n̄
momentum, similar to that of the n̄p annihilation cross section
discussed earlier. The theoretical results also appear to fit the
experimental data reasonably well, suggesting the long-range
Coulomb interaction is negligible despite the A value is large.

To better understand how well the present theory in
describing the n̄A annihilation, it is necessary for us to examine
the annihilation cross sections of n̄ with other nuclei, namely
C, Al, Cu, Ag, Sn, and Pb. Figure 6 shows the quality of
agreement between the calculations and experimental data for
projectile momentum pn̄ < 400 MeV/c.

In Fig. 6, we observe, for the case of C and Al targets, the
agreement between theoretical calculations and experimental
data becomes poorer as one goes down in momentum.
Contrasting this with the rest of the targets, the trend seems
to go the opposite way. All said, even though the level of the
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FIG. 6. n̄A annihilation cross section as a function of the
antineutron momentum in the laboratory frame. Comparing the result
from Eq. (1) with experimental data from [24].

overall agreement between the theoretical and experimental
data within 20% is not that desirable, it is somewhat encour-
aging and not to mention the extended Glauber model has
reasonably captured the main features of the annihilation cross
sections for the energy range and mass numbers concerned.
Unfortunately, at this point we cannot offer any reasonable
explanation for the origin of the discrepancy between the
theory and experiment. But we think that both theoretical
and experimental investigations will be needed to clarify the
situation.

V. DISCUSSION AND CONCLUSIONS

By considering the transmission through a nuclear potential
and the p̄p Coulomb interaction, the nuclear annihilation cross
sections can be properly evaluated in a simple analytical form.
The present formulation is rigorous enough and therefore
amends our earlier simple approach in which a semiempirical
1/v function has been employed in order to determine the
basic σ

p̄p
ann and σ

p̄n
ann cross sections. The strong absorption model

formulated here decomposes the incoming plane waves into
a sum of partial waves of given orbital angular momentum
L and assumes these partial waves transmit to the nucleon
surface R leads to annihilation reaction. It is shown the
cross sections for nuclear annihilation by p̄ and n̄ are simple
functions of the momentum of the incident particles. Across
the momenta range considered here, contrasting it to the σ

n̄p
ann
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annihilation cross section, the σ
p̄p
ann annihilation cross section

is significantly enhanced by the Coulomb interaction for the
plab momenta of the incident particle below 500 MeV/c. As
the plab increases, the two annihilation cross sections become
almost identical, approaching the Pomeranchuk’s equality
limit at plab ∼ 500 MeV/c. In addition, the theoretical anni-
hilation cross sections agree well with the experimental data.
Concerning the broad enhancement in the experimental n̄p
annihilation cross sections around 200–300 MeV/c, it is still a
puzzle.

The equality of σ
p̄n
ann and σ

p̄p
ann at the limit of high energies

predicted by Pomeranchuk can be perceived as a q-q̄ pairing
model in which the annihilation between a nucleon and an
antinucleon takes place by pairing the valence quark of any
flavor from the nucleon to any valence antiquark of any
flavor from the antinucleon, with each q-q̄ pair creating
a string that subsequently fragments to many meson pairs
[9,10]. Such model will explain the equality of σ

p̄n
ann and

σ
p̄p
ann when the Coulomb effects become negligible at high

energies. It overturns our naive quark model for annihilation—
with annihilation takes place by pairing only the quark and
antiquark of the same flavor.

Subsequently, with the help of these elementary cross
sections, the extended Glauber model is used to evaluate
the annihilation cross sections for the p̄ and n̄ interaction
with other nuclear elements. For the case of p̄A interactions,
we reproduced our previous results [5] and again these
annihilation cross sections are found to be in good agreement
with the measurements. For the case of n̄A interactions,
predictions of the annihilation cross section are found to be
in good agreement for Fe nuclei. However, for elements, C,
Al, Cu, Ag, Sn, and Pb, agreement between the theory and
experiments is found to be reasonable.

As it is now formulated, the behavior of the p̄A annihilation
cross section at low energies varies as 1/E arising from
the Coulomb enhancement factor, in addition to the energy
dependencies of the basic p̄p and p̄n annihilation cross
sections as described in Sec. III. Because these basic p̄p
and p̄n annihilation cross sections increase substantially as
the collision energy decreases, the granularity nature of the
individual p̄p and p̄n collisions may not play a significant
role in low-energy annihilations. A macroscopic description of
the nucleus as a single potential without a granular structure
may alternatively be a reasonable formulation. It will be of
interest to re-examine the antinucleon-nucleus cross section at
very low energies in a new light, by extending the potential
approach as formulated in Sec. III for p̄p and n̄p annihilations
to p̄A and n̄A annihilations in low-energy collisions. Future
analysis along such lines will be of great interest.
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APPENDIX

Following [19], the expressions for the transmission coef-
ficient TL(k) for L = 1, 2, and 3 partial waves

TL(k) = 4xXvL

X2 + (2xX + x2v′
L)vL

(A1)

with x = kr and X = KR. The quantity TL(k) can be
evaluated exactly with the functions vL and v′

L given by

v1 = x2

1 + x2
, v′

1 = 1

x2
+

(
1 − 1

x2

)2

, (A2)

v2 = x4

9 + 3x2 + x4
,

(A3)

v′
2 =

(
1 − 6

x2

)2

+
(

6

x3
− 3

x2

)2

,

v3 = x6

225 + 45x2 + 6x4 + x6
,

(A4)

v′
3 =

(
1 − 21

x2
+ 45

x4

)
+

(
45

x3
− 6

x

)2

.

Similarly, following [56] with Eq. (76), the expressions for
the Gamow factor

GL(ξ ) = (L2 + ξ 2)[(L − 1)2 + ξ 2] · · · (1 + ξ 2)

[L!]2

×
(

2πξ

exp{2πξ} − 1

)
(A5)

for L = 1, 2, and 3 partial waves can be evaluated using

G0(ξ ) = 2πξ

exp{2πξ} − 1
, (A6)

G1(ξ ) = 1 + α2

v2

12
G0(ξ ), (A7)

G2(ξ ) =
[
22 + α2

v2

][
1 + α2

v2

]
(2!)2

G0(ξ ), (A8)

G3(ξ ) =
[
32 + α2

v2

][
22 + α2

v2

][
1 + α2

v2

]
(3!)2

G0(ξ ). (A9)
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