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Recently we have published a paper [Irgaziev, Phys. Rev. C 91, 024002 (2015)] where the S-matrix pole
method (SMP), which is only valid for resonances, has been developed to derive an explicit expression for the
asymptotic normalization coefficient (ANC) and is applied to the low-energy resonant states of nucleon + α and
α + 12C systems. The SMP results are compared with the effective-range expansion method (EFE) results. In the
present paper the SMP and EFE plus the Padé approximation are applied to study the excited 2+ resonant states
of 8Be. A contradiction is found between descriptions of the experimental phase shift data for αα scattering and
of the 8Be resonant energy for 2+ state. Using the EFE method, we also calculate the ANC for the 8Be ground
0+ state with a very small width. This ANC agrees well with the value calculated using the known analytical
expression for narrow resonances. In addition, for the α + 12C states 1− and 3− the SMP results are compared
with the Padé approximation results. We find that the Padé approximation improves a resonance width description
compared with the EFE results. The EFE method is also used to calculate the ANCs for the bound 16O ground
0+ state and for the excited 1− and 2+ levels, which are situated near the threshold of α + 12C channel.
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I. INTRODUCTION

It is well known that nuclear reactions at very low energies
are key nuclear processes in stellar nucleosynthesis [1–4].
These reactions can occur as direct processes or through the
formation of resonance. A direct reaction near the threshold
is suppressed due to the Coulomb barrier, and the reaction
through resonance therefore becomes critical when it is near
the threshold. Examples of certain resonances of interest to
nuclear astrophysics are presented below. In Ref. [5] we de-
veloped the S-matrix pole method (SMP) to derive an explicit
expression for the asymptotic normalization coefficient (ANC)
of a resonant Gamow radial wave function in the presence
of the Coulomb interaction. We used an analytical S-matrix
approximation in the form of a series of powers of the relative
momentum k for the nonresonant part of the phase shift
for the arbitrary orbital momentum l of colliding particles.
Earlier in Ref. [6], this method was applied to calculate the
resonance pole energy Er and width �. In the earlier paper [5]
we successfully applied the SMP to the resonances of the
nucleon + α and α + 12C systems. We obtained respective
ANC values for different states of the nuclei 5He,5Li, and
16O. We found that the � value calculated by the SMP agrees
better with the other values from the literature, while the
effective-range expansion method (EFE) overestimates �.

In the present paper we apply low-energy approaches (SMP,
EFE, and Padé approximant) to the another nucleus 8Be, which
is unstable even in the ground 0+ state.

Hoyle predicted the existence of the resonance state of the
12C nucleus with an excitation energy of 7.68 MeV [7] even
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before the actual observation of 7.65 MeV in experiments.
Salpeter accepted Hoyle’s idea and theoretically considered
the 12C creation mechanism as the result of a three α particles
fusion with the intermediate creation of the narrow resonance
8Be in the ground state. Fowler and his group carried out
corresponding experiments which confirmed Hoyle’s predic-
tion. At the end of the life of red giant stars compressed by
gravitation, the temperature increases up to values T > 108 K.
At such temperatures carbon creation occurs due to the
two consecutive processes: α + α → 8Be (0+, ground state)
and α + 8Be → 12C* (0+, 7.65 MeV). The small difference
(∼=0.28 MeV) between the 12C energy level and those of the
system α + 8Be is especially important.

The EFE is also used in the present paper to calculate ANCs
for the bound states of the system α + 12C. Besides, we find
that it is possible to improve an agreement for the resonance
width � when a Padé approximant is used instead of the EFE.
In our previous paper [5] we study 16O resonances in α12C
scattering. However, the properties of the 16O bound states
are also studied here because they are quite important for
astrophysics.

The 12C(α,γ )16O reaction is considered one of the key
nuclear processes at the stage of helium combustion in stars
(formation of the red giant). This reaction determines the
relative content of 12C/16O in the process of stellar helium
combustion. It directly affects the sequence and peculiarities
of further combustion stages in massive stars, such as carbon
combustion. One needs to know the ANC for the decay
16O → α + 12C for different final states to find the rate of
this radiative capture reaction. The main goals of the present
paper are the applications of low-energy approaches to the
other nucleus 8Be and to the 16O states which are of interest
to astrophysics but are not investigated in Ref. [5]. The article
is organized as follows. In Sec. II we present main formulas of
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the S-matrix pole method. In Sec. III we study the properties
of the ground 8Be s wave state resonance in the αα scattering.
Short history of this level complex energy studying in the
literature is given as well as our results for the energy, the
nuclear vertex (8Be → α + α) constant (NVC), and the ANC
calculated using the EFE method. We have to use here the
EFE instead of the SMP because this state situated just near
the zero energy where the phase shift has essential singularity
(see Eq. (20) in Ref. [5]). In Sec. IV we use all the three
methods (SMP, EFE, and Padé) to calculate the excited d
wave state resonance in the αα scattering. We compare the
SMP approximation results for the same excited 2+ resonant
state of 8Be for the two variants when fitting the experimental
phase shift data: taking the experimental resonance energy E2

as fixed and considering E2 as an additional fitting quantity.
The latter leads to a very good agreement with the experimental
phase shift data. It is shown that there is disagreement between
the experimental energy dependence of the phase shift on the
one hand and the resonance complex energy on the other. In
Sec. V we consider the 16O bound states: the ground 0+ state
as well as the excited bound states 1− and 2+. These states
are very important for astrophysics. In Sec. VI we study the
16O resonant states 1− and 3− with bigger widths, which
was recently considered in Ref. [5], where the very good
description of the experimental phase shift data was achieved.
We show that the Padé approximant describes width better
than EFE. In Sec. VII (conclusion) the results of the present
paper are discussed. For the bound 16O excited state 2+ our
calculated ANC is compared with the one published in the
literature.

II. THE MAIN FORMULAS OF THE S-MATRIX POLE
METHOD (SMP)

All the SMP formulas needed to calculate the resonance
energy, nuclear vertex constant (NVC), and asymptotic nor-
malization coefficient (ANC) are given in Ref. [5]. Some of
them are given below.1 In the single-channel elastic scattering
case, the partial S-matrix element (without the pure Coulomb
part ei2σl = �(l + 1 + iη)/�(l + 1 − iη) where �(x) is the
gamma function, η = z1z2μα/k is the Sommerfeld parameter,
α is the fine-structure constant, and μ is the reduced mass of
the colliding nuclei with the charge numbers z1 and z2) is
denoted as

Sl(k) = ei2δl . (1)

Near an isolated resonance it can be approximated as [8]

Sl(k) = e2iνl (k) (k + kr )(k − k	
r )

(k − kr )(k + k	
r )

, (2)

where kr = k0 − iki is the complex wave number of a
resonance (k0 > ki > 0, and the symbol (*) means the complex
conjugate operation). Using Eq. (2), one can rewrite Eq. (1) in
the form

Sl(k) = e2i(νl+δr+δa ), (3)

1Here and below we use the unit system � = c = 1.

where δr = − arctan ki

k−k0
stands for the resonance phase shift,

while δa = − arctan ki

k+k0
is an additional phase shift which

contributes to the whole scattering phase shift. Thus the total
phase shift is

δl = νl + δr + δa. (4)

The partial scattering nonresonant phase shift νl(k) is a smooth
function near the pole of the S-matrix element, corresponding
to the resonance. The S-matrix element defined by Eq. (2)
fulfills the conditions of analyticity, unitarity, and symmetry.
Therefore we can expand νl(k) to a series

νl(k) =
∞∑

n=0

cn(k − ks)
n (5)

in the vicinity of the pole corresponding to the resonance. The
point ks denotes a centered point, and a convergence radius
should be shorter than the distance from the centered point
to the closest singular point. The expansion coefficients cn

of Eq. (5) as well as k0 and ki (i.e., a resonance complex
energy value) are determined by fitting the experimental values
of the elastic scattering phase shifts δl given by Eq. (4). It
is enough for the αα system to limit the expansion (5) up
to n = 4. The nonresonant phase shift νl(k) is an analytical
function excluding the origin. In Ref. [9], the authors present
the behavior of δl(k) near the origin as

δl(k) = − 2π

(l!)2
k2l+1η2l+1ale

−2πη, (6)

where al is the scattering length for colliding nuclei.2 The
point k = 0 is an essential singularity point of the scattering
phase shift. However, as a function of the momentum k,ν
has normal analytical properties near the point corresponding
to the resonance. Besides, the convergence region of Eq. (5)
is limited due to the presence of an exchange Feynman
diagram for the elastic scattering, leading to the logarithmic
singularity which is absent in our models. The renormalized
partial amplitude is constructed (see Refs. [10–12]) for its
analytical continuation to a resonance or bound-state energy
region. According to its definition, the nuclear renormalized
vertex constant G̃l (NVC) [13], NVC can be written as

G̃2
l = 2π

μ2

krkie
i2νl (kr )

k0ρl(kr )

= π�

μk0

(1 − iki/k0)ei2νl (kr )

ρl(kr )
, (7)

where ρl is equal to

ρl(k) = 2πη

e2πη − 1

l∏
n=1

(
1 + η2

n2

)
. (8)

2There is a misprint in our paper [5]. In the formula above ν was
written instead of δ [9] but it does not matter because δr and δa do
not have such singularity.
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Using the relationship between NVC G̃l and ANC Cl [13], we
obtain

Cl = i−lμ√
π

�(l + 1 + iηr )

l!
e− πηr

2 G̃l

= i−l

√
μ�

k0
e− πηr

2
�(l + 1 + iηr )

l!

× eiνl (kr )
√

(1 − iki/k0)/ρl(kr ). (9)

In the limit of a small width �, we obtain the formula

Ca
l =

√
μ�

k0
ei[νl (k0)+σl (k0)−πl/2], (10)

which coincides with the expression derived in Ref. [14]. This
formula (10) can be used to check the calculation results. All
the necessary expressions for the EFE are published in the
literature (see Ref. [5] and references therein).

III. THE GROUND 8Be s WAVE STATE RESONANCE IN
THE α α SCATTERING

In the present paper we continue to study resonances for
light nuclei. We consider the nucleus 8Be which is not bound
in the ground state due to the Coulomb repulsion between α
particles. This state presents a very narrow resonance with
the pole at the center-of-mass system (c.m.s.) energy (see the
review [15] and the references therein):

Eα =E0 − i�0/2, E0 =91.84 keV, �0 =5.57 ± 0.25 eV.

The α-particle model is a good approximation for a description
of 8Be characteristics because of the 4He nucleus large
binding energy. The other channels have thresholds situated at
Elab > 35 MeV. The Q value for the reaction α + α → 8Be
has changed over time in the literature. The value Q =
94.5 ± 1.5 keV is found in Ref. [16]. Fowler’s experimental
group obtains Q = 93.7 ± 0.9 keV [17]. In Ref. [18] the
results of the phase shift analysis (see references in Ref. [18])
are used to find the 8Be resonance parameters by applying the
EFE. In Ref. [18] the values of the energy E0 and the width �0

for narrow resonance of 8Be in the ground state in the c.m.s.
frame are as follows:

E0 = 94.5 ± 1.4 keV, �0 = 4.5 ± 3 eV.

The E0 value is determined in Ref. [18] as the energy when
the phase shift δ0 passes π/2 and the resonance width �0 is
obtained from the equation expressed � in terms of the rate
of changing δ0 in the resonance region (π/4 < δ0 < 3π/4).
The nuclear interaction is revealed in the scattering cross
section at energy E0 > 300 keV, i.e., after the resonance region
where the s-wave phase shift δ0 jumps from 0 up almost to
π . For an analytical continuation of the cross section into
the resonance region, the authors of Ref. [18] apply the EFE
with the Coulomb interaction taken into account, using the
formula by Landau and Smorodinsky (see Ref. [19], which
is valid in the physical energy region and the reference to the
original paper). In Ref. [18] the effective-range function Kl(k2)

c.m.

FIG. 1. Comparison of the fitted effective-range function for the
s wave αα elastic scattering with the experimental values. The
experimental data are taken from Ref. [21]. The energy is given
in the c.m.s. frame.

is expanded in a series over k2 up to power of k4:

Kl(k
2) = −1/a + (r/2)k2 − Pr3k4, (11)

or an equivalent expansion in a series over Eα ,

Kl(Eα) = a0 + a1Eα + a2E
2
α, (12)

which adequately describes the experimental values of δ0 at the
c.m.s. energy Eα

∼= 2.5 MeV. Later in Ref. [20] an uncertainty
of the measured cross section from the Coulomb (Mott) cross
section is found experimentally even in the resonance region.
As in Ref. [18], the scattering of the singly charged ion 4He+

on the neutral 4He atoms is investigated. The following results
for E0 and �0 are obtained in Ref. [20]:

E0 = 92.12 ± 0.05 keV, �0 = 6.8 ± 1.7 eV. (13)

In later experiments (see Ref. [18]), the E0 and �0 values
do not change much compared with Eqs. (13), but their
uncertainties appreciably decrease. The scattering amplitude is
defined in Ref. [20] as the sum of the Coulomb and the nuclear
amplitudes. The nuclear amplitude is taken in the Breit-Wigner
form, which may be a reasonable approximation for a narrow
resonance.

In our paper we use the EFE, Padé approximant, and
SMP. The last method is used for defining a resonant energy,
including that of broad resonances [6]. In the case of a narrow
resonance, its energy depends less on the used method. We
show below that our result for the 8Be ground-state energy is
in good agreement with Eq. (13). As input data, we use the
phase shift borrowed from Ref. [21] (see Table II in Ref. [21],
p. 252). We use the following values for the resonance energy
and width (see Ref. [22]):

E0 = 91.84 keV; �0 = 5.57 eV. (14)

In Fig. 1 we show the results of fitting the effective-range
function dependence on energy for the s state of 8Be using
the phase shift table given in Ref. [21]. It was indicated
earlier in Ref. [23] that the radius of convergence of the
expansions in Eq. (11) around zero energy is determined by the
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singularity of the two-pion-exchange Feynman diagram at an
energy of Esing ≈ 5 MeV (more precisely, at 4.76 MeV), since
one-pion exchange is suppressed in isospin. The fitting curve
corresponds to the effective-range function approximation (11)
with the parameters

a = −1724.1 fm; r = 1.0848 fm; P = −0.34717. (15)

This set does not differ much from that given in Ref. [18]:

a = −1760 fm; r = 1.096 fm; P = −0.314. (16)

We note that in Ref. [18], misprints are made in writing the
shape parameter P : a dimension (cm) of P was shown which
actually is a dimensionless quantity, and the wrong sign P =
+0.314 is written (see the top part of Fig. 9 in Ref. [18]). These
misprints are not repeated in the bottom part of Fig. 9, where
the correct formula is written for the energy dependence of the
effective-range function K0(Elab). Furthermore, a reasonable
description of the experimental dependence K0(Elab) is shown
in the same figure in the area Elab � 6 MeV (i.e., Eα � 3 MeV
in c.m.s. frame) with the parameters (16). For the 8Be ground
state with the set (15) we receive the following values of the
resonant energy, width, NVC, and ANC:

E0 = 92.248 keV, �0 = 5.122 eV;

G̃2
0 = (0.5047 − i0.0001151) fm; (17)

|ANC| = |C0| = 0.001615 fm−1/2.

All the results in Eqs. (17) have complex values due to the
pole energy complexity. The resonance energy and width
in Eqs. (17) agree well with Eq. (14). The value of G̃2

0 is
almost real because of the resonance pole proximity to the real
energy axis. Using the expression (10) for narrow resonances
we obtain |C0| = 0.001615 fm−1/2, which actually coincides
with the value in Eqs. (17). This fact is quite natural for a
resonance with such a small �0. When �0 is very small and
energy E0 is situated not far from a threshold, one does not
need to use another method (for example, the SMP) because
the related results are practically the same as those for the
explicit expression (10).

IV. THE EXCITED 8Be: THE d WAVE STATE RESONANCE
IN THE α α SCATTERING

Along with a description of the 8Be ground state, the survey
in Ref. [15] gives some features of the first excited state of the
8Be nucleus (J = 2+). The amplitude for the αα scattering
in the d wave has a pole at a c.m.s. energy of Eα = Ec.m. =
E2 − i�2/2 (see Table (8.11) in Ref. [15] and notes to it on p.
184). In the laboratory frame, the respective energy is Elab =
2Ec.m.(Ec.m. = k2/2μ, where k is the relative momentum of
colliding α particles and μ is the reduced mass of the αα
system). The weighted-mean values of the real part of the
energy at the pole, E2 ± �E2, and of the resonance width,
�2 ± ��2, are given in Ref. [15] along with the respective
inaccuracies:

E2 = 3.03 ± 0.01 MeV, �2 = 1.49 ± 0.02 MeV. (18)

These values are found from later results on the yields of the
reactions 9Be(p,d) and 9Be(d,t) (see also Ref. [24]). Similar

results of analyses performed for various reactions by various
groups of authors at various times are also given in Ref. [15]
[see the references in Table (8.9)]. Those results differ only
in the value of the uncertainty in the resonance width, ��2 =
0.015 MeV. From Table (8.11) in Ref. [15], we find the ranges
of mean values of E2 and �2 and the scatter of the uncertainties
in them:

2.82 � E2 � 3.18 MeV, 10 � �E2 � 200 keV;

1.20 � �2 � 1.75 MeV, 20 � ��2 � 300 keV. (19)

One can see that E2 and �2 and the boundaries of their
variations are commensurate. It is noteworthy, however, that
αα scattering is not present among the reactions appearing in
Table (8.11) from Ref. [15]. One of the objectives of the present
study is to supplement the data quoted in Ref. [15] with data on
αα scattering by using the effective-range theory and S-matrix
pole method. For the d wave resonance in question, we present
the effective-range function in the form (11) of an expansion
in the powers of k2 up to k4, and in the form which is the
equivalent of the expansion in (12):

K2(Eα) = A2 + B21Eα + B22Eα
2. (20)

The calculated values of the functions K2(Eα) and δ2(Eα) are
highly sensitive to the position of the pole in the complex
energy plane, and especially to the value E2. The use of the
values in Eq. (18) in fitting the parameters of the effective-
range function K2(Eα) along with the experimental value
of the phase shift δ2 from Ref. [21] (see Table II there) at
the energy where the uncertainty �δ2 is minimal distorts the
shape of the energy dependence in relation to the experimental
data. A partial-wave phase shift analysis of αα scattering
was performed more than 40 years ago (see references in
Ref. [21]). The more recent publication by Warburton [25]
contains information on the experimental dependence δ2(E) in
the form of a graph. There is virtually no difference between the
data in Ref. [25] and the data on δ2(Eα) in Ref. [21] (Table 2 on
p. 252), with the exception of several extra points in the region
where δ2 � π/2. The positions of these points fit well with the
general character of the energy dependence of δ2 in Ref. [21].
The phase shift δ2 begins to manifest itself for Eα � 1.25 MeV,
the resonance lying completely in the region of convergence
of K2(Eα). Indeed, we find from Eq. (18) that |E2 − i�2/2| ≈
3 MeV < 5 MeV. As soon as the considered resonance is
broad enough, we apply both methods (the EFE and the SMP)
to describe its characteristics. We take the experimental [22]
resonance energy and width as

E2 = 3.122 MeV, �2 = 1.513 MeV. (21)

First, we use the EFE method. The corresponding fitting
effective-range function K(Eα) taken in the form (20) leads to
K(Eα) parameters (with an energy in MeV):

A2 = 0.0182 fm−5, B21 = −0.0056 fm−5 MeV−1,

B22 = 0.0027 fm−5 MeV−2. (22)

The set (22) corresponds to the parameters of Eq. (11):

a = −55.0 fm5, r = −0.1166 fm−3, P = 183.9 fm8.
(23)
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c.m.

FIG. 2. Comparison of the fitted effective-range function for the
d wave αα elastic scattering (red color line) with the experimental
values (points). The dashed line represents the result of fitting with the
Padé approximant. The experimental data are taken from Ref. [21].
The energy is given in the c.m.s. frame.

The function K2(Eα) fitting results are shown in Fig. 2
(a solid curve) where the experimental energy interval up to
11 MeV (in the c.m.s. frame) is considered. One can see
that this EFE variant describes the experimental phase shift
dependence on the energy only when Elab < 5 MeV. We get
the following results:

E2 = 2.897 MeV, �2 = 1.470 MeV;

G̃2
2 = (0.0137 − i0.0169) fm; (24)

|ANC| = |C2| = 0.3152 fm−1/2.

The resonant energy E2 and the �2 in Eqs. (24) are smaller than
the experimental values given in Ref. [22] but the differences
are not large. We also note that when using Eq. (10) (for
a narrow resonance) |C2| = 0.3624 fm−1/2. The difference is
not very big for such a broad resonance. To extend a good
description of K2(Eα) when Eα > 5 MeV, we apply a Padé
approximant, adding one more parameter to the effective-range
function, which takes the form:

K2(Eα) = [
a0 + a1Eα + a2Eα

2
]
/(1 + b1Eα), (25)

where

a0 = 0.028 fm−5, a1 = −0.009799 fm−5 MeV−1,

a2 = 0.002549 fm−5 MeV−2, b1 = −0.05122 MeV−1. (26)

In Fig. 2 the dashed curve for Eq. (25) practically coincides
with the solid curve at Eα � 5 Mev but also reproduces well the
experimental points at Eα � 5 Mev. We obtain the following
results:

E2 = 2.9380 MeV �2 = 1.2296 MeV;

G̃2
2 = (0.0117 − i0.0136) fm; (27)

|ANC| = |C2| = 0.289 fm−1/2.

The differences between the related values in Eqs. (24) and (27)
are not very large. One can see that the resonance energy and
width are smaller than the experimental values (21).

FIG. 3. Comparison of the fitted phase shifts for the d wave αα

elastic scattering obtained by the S-matrix pole method with the
experimental data taken from Ref. [21]. The solid line shows when
the complex momentum kr of the resonance is added to the parameters
of fitting. The dashed line indicates when the energy and width of
resonance is fixed as in Eq. (21). The energy is given in the laboratory
frame.

We apply the S-matrix pole method to the excited 2+ state.
We use the experimental resonance energy (21) as a trial
value to estimate the centered momentum value for the series
expansion (5). A very good phase shift fitting is achieved
with four members up to (k − ks)3 in Eq. (5). The model
describes the phase shift behavior as a function of the energy
in the whole energy region (see Fig. 3) with the exception of
the two experimental points with large uncertainties, which
obviously disagree with the general trend of the phase shift
energy dependence. We find the following results:

E2 = 2.916 MeV, �2 = 1.437 MeV;

G̃2
2 = (0.01537 − i0.0145) fm; (28)

|ANC| = |C2| = 0.3120 fm−1/2. (29)

We also perform a fitting parameters of the S-matrix pole
method with the fixed values of the energy and width of
the d state resonance, which are generally accepted as the
experimental values and which are given in Eq. (21). In this
case we also use the expansion up to terms (k − ks)3 of the
nonresonant phase shift. However, as can be seen from Fig. 3
(dashed line), the agreement with the curve of the experimental
points is worse compared with the previous method of the
fitting, when we take the real and imaginary momentum of
the resonance as the fitting parameters. We find the following
results for the NVC and ANC:

G̃2
2 = (0.0160 − i0.0067) fm;

|ANC| = |C2| = 0.2914 fm−1/2. (30)

One can see from Eqs. (24), (27), (28), and (30) that the
results are very sensitive to the method used for fitting. In
spite of the good phase shift fitting, we find that the different
low-energy approaches lead to quite different results. The
resonant energy occurs to be especially changeable and varies.
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TABLE I. States, energies, and widths of 16O nucleus levels above the α12C threshold from our fits, as well as the corresponding values of
the calculated NVC and ANC from the elastic α12C scattering phase shifts [26]. Four terms of Eq. (5) are used for fitting. The energies of the
resonances are given in the center-of-mass system of α12C.

Method J π Er (MeV) � (MeV) G̃2
l (fm) Cl (fm−1/2) |Cl | (fm−1/2)

SMP 1− 2.364 0.356 4.970−i1.797 0.1530−i0.1032 0.185
Padé 1− 2.362 0.347 4.862−i1.789 0.1516−i0.1015 0.182
SMP 3− 4.214 0.812 0.276−i0.142 −0.233−i0.020 0.234
Padé 3− 4.239 0.786 0.270−i0.112 −0.228−i0.029 0.230

This means there is disagreement between the experimental
energy dependence of the phase shift on the one hand and the
resonance complex energy on the other. So we recommend
refining the phase shift for αα scattering. Nevertheless some
estimations of the ANC found in this work can be used in
astrophysics.

V. 16O BOUND-STATE PROPERTIES FROM THE α12C
SCATTERING PHASE SHIFTS

The SMP is applicable to resonances but not to bound states.
So in this section we apply the effective-range theory and the
Padé approximant. For all considered 16O bound states, the
fitted effective-range function is quite well reproduced when
the expansion (EFE) is limited to the expression (11) or (20)
(with the dependence on k2 or Ec.m.). For the ground state
Jπ = 0+, the fitting curve for K0(Ec.m.) is almost linear with
the set of parameters in Eq. (12):

a0 = −0.000328 fm−1; a1 = 0.019450 fm−1 MeV−1;

a2 = 0.000171936 fm−1 MeV−2. (31)

The curve K0(Ec.m.) crosses the point corresponding to
the ground state at the experimental binding energy ε =
7.162 MeV. The fitting parameters (31) lead to the following
results:

G̃2
0 = 5.197 fm; ANC = 20.33 fm−1/2. (32)

For the excited state Jπ = 1− with the binding energy ε1 =
0.045 MeV, we find the following fitting set of parameters:

a0 = −0.00001773 fm−3; a1 = 0.02930 fm3 MeV−1;

a2 = 0.003321 fm−3 MeV−2. (33)

The curve K1(Ec.m.) crosses the point Ec.m. = −0.045 Mev
corresponding to the excited 1− state almost at the the
point corresponding to the experimental binding energy and
describes the experimental points quite well. The set of
parameters (33) leads to the following results:

G̃2
1 = 0.03584 fm; ANC = 1.032 × 104 fm−1/2. (34)

The very large ANC value for 1− state is due to the small
binding energy for this subthreshold level. For the excited
state Jπ = 2+ with the binding energy ε1 = 0.245 MeV, we
find the following fitting set of parameters:

a0 = −0.0004657 fm−5; a1 = 0.00993814 fm−5 MeV−1;

a2 = 0.007050 fm−5 MeV−2. (35)

The curve K2(Ec.m.) crosses the point corresponding to the
excited 2+ state almost at the point Ec.m. = −0.245 MeV,
corresponding to the experimental binding energy, and de-
scribes the experimental points reasonably well. The set of
parameters (35) leads to the following results:

G̃2
2 = 0.001183 fm; ANC = 21060 fm−1/2. (36)

VI. 16O RESONANT-STATE PROPERTIES FROM THE α12C
SCATTERING PHASE SHIFTS FOUND USING THE PADÉ

APPROXIMANT FOR THE EFFECTIVE-RANGE
FUNCTION

In our paper [5] we find that the effective-range method
(EFE) is not able to reproduce properly the widths of the
16O resonances while the S-matrix pole method can give
reasonable results. In Ref. [5] we conclude that the SMP is
successful because the central point ks for expansion (5) is
situated just near the resonance pole. In this section of the
present paper we try to improve this situation by applying the
Padé approximant for the effective-range function instead of
the polynomial expansion (EFE), taking into account the fact
that the Padé approximant better reproduces the phase shift
energy dependence. To do this, we study the resonances for
the states with Jπ = 1− and 3− where the widths are bigger
compared with other states (see Table III in Ref. [5]). The SMP
fits the experimental phase shifts for these states quite well.
Figure 3 of Ref. [5] shows that the resulting curves actually
cross the experimental points. In Table I we compare the
respective results obtained by the SMP and Padé approximant.
Again we see that the results are not very different.

VII. CONCLUSION

In the present paper we continue to study the resonant states
of light nuclei. Concretely we consider 8Be in the 0+ and 2+
states and 16O in the 1− and 3− states using three different
low-energy methods: the effective-range expansion, the Padé
approximant, and the S-matrix pole method to calculate ANCs.
We use as an input the phase shift energy behavior for the
αα and α12C scattering borrowed from the literature. The
SMP method is not applicable to bound states, so the EFE
is used in the present paper to obtain the ANC for the
three 16O bound states: one ground (ε = 7.162 MeV, J π =
0+) and two excited (ε = 0.245, MeV, J π = 2+) and (ε =
0.045 MeV, J π = 1−). All the nuclei considered are very
important in astrophysics. But until now their ANC (at least
for resonance states) has not been estimated theoretically. We
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emphasize that our methods for finding the resonant-state ANC
allow us to normalize the Gamov wave function, which is quite
difficult, especially in the presence of the Coulomb interaction.
All the methods considered here are based on the phase shift
analysis and on the analytical continuation of elastic scattering
amplitudes (renormalized due to the Coulomb interaction) to
nonphysical energy region. The results of this work show the
contradiction between the resonance energy and the phase shift
energy dependence. As the phase shift data for αα scattering
is about 40 years old, we recommend remeasuring. From our
calculations we draw the following conclusions.

The 8Be ground 0+ resonant state is so narrow that the
results are not sensitive to the model applied. In this case, a
simple expression (10) can be used for the ANC, which is
developed in Ref. [14].

The resonance for the 8Be excited 2+ state is broad enough
to be more sensitive to the model used. We find in Ref. [5] that
the EFE does not reproduce the � value while the SMP leads to
a reasonable result for �. We also find that the application of the
Padé approximant instead of the EFE shows a better agreement
with the SMP results. In this case, adding another parameter to
introduce the pole into the effective-range function (zero for a
partial scattering amplitude) leads to a much better description
of K2(Eα) in a larger energy area.

We show that applying the Padé approximant to the 16O
in 1− and 3− state resonances also improves the agreement
with the SMP results published in Ref. [5]. So in a way
effective-range methods are rehabilitated in the present paper

after increasing the number of the fitting parameters and
introducing a pole. In spite of this, the SMP is a better method
for describing properties for broad resonances. A very good
description of the experimental phase shift data is shown in
Fig. 3 of our previous paper [5].

The 16O bound states are also studied. We find very large
differences in the ANC depending on the binding energy. The
resonance near the threshold has a very big ANC due to the
� function in its definition (9). We note that in Ref. [27]
the authors calculate the ANC for the first 2+ excited state
of 16O. They choose a nuclear Gaussian potential, which
reads V (r) = −112.3319 exp(−r2/2.82) MeV, where r is the
distance between the clusters in fm, and the screened Coulomb
potential is e2erf(r/2.5)/r , where erf(x) is the error function.
This potential has a bound state when Eα = −245.0 keV.
Numerically, the authors find the ANC = 1.384 × 105 fm−1/2.
This value can be compared with our result ANC = 1.0323 ×
104 fm−1/2.

The results of this paper can be used for solving nuclear
astrophysical problems and may be applied to the theory of
nuclear reactions using Feynman diagrams to describe the
reaction mechanisms.
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