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A statistical theory of light nucleus reactions (STLN) is proposed to describe both neutron and light charged
particle induced nuclear reactions with 1p-shell light nuclei involved. The dynamics of STLN is described by the
unified Hauser-Feshbach and exciton model, in which the angular momentum and parity conservations are strictly
considered in equilibrium and pre-equilibrium processes. The Coulomb barriers of the incoming and outgoing
charged particles, which significantly influence the open channels of the reaction, can be reasonably considered
in the incident channel and different outgoing channels. In kinematics, the recoiling effects in various emission
processes are strictly taken into account. The analytical double-differential cross sections of the reaction products
in sequential and simultaneous emission processes are obtained in terms of the new integral formula proposed
in our recent paper [Phys. Rev. C 92, 061601(R) (2015)]. Taking the 9Be(p,xn) reaction as an example, we
calculate the double-differential cross sections of outgoing neutrons and charged particles using the PUNF code
in the frame of STLN. The existing experimental double-differential cross sections of neutrons at Ep = 18 MeV
can be remarkably well reproduced, which indicates that the PUNF code is a powerful tool to set up “file-6” in the
reaction data library for light charged particle induced nuclear reactions with 1p-shell light nuclei involved.
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I. INTRODUCTION

The 1p-shell light elements (Li, Be, B, C, N, and O)
had long been selected as the most important materials
for improving neutron economy in thermal and fast fission
reactors and in the design of accelerator-driven spallation
neutron sources, with uses such as a candidate for target
material in the intense neutron source of the International
Fusion Materials Irradiation Facility (IFMIF) [1], the
plasma facing material of the first wall in the International
Thermonuclear Experimental Reactor (ITER) [2], the neutron
multiplier in fusion blankets [3], the neutron protection layer
of the Molten Salt Fast Reactor (MSFR) [4], the material of the
accelerator-based neutron source in the Fixed Field Alternating
Gradient (FFAG) accelerator [5], and the Accelerator
Driven Advanced Nuclear Energy System (ADANES) [6].
Additionally, some 1p-shell light elements are the materials
used in the determination of radiation shielding requirements
for radiation protection purposes, optimization of dose
delivery to a treatment volume, decisions on biological
effectiveness of different therapy beams, and so on [7]. For
the accurate designs of target systems, neutron shielding, and
nuclear medicine, the double-differential cross sections of
the reaction products are very important as a source term for
light particle (including neutron and light charged particles)
induced nuclear reactions with 1p-shell light nuclei involved.

For neutron induced nuclear reactions with 1p-shell
light nuclei involved, the model calculations of the double-
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differential cross sections of reaction products have been
successfully performed [8]. “File-6” was established in the
CNDEL-3.1 library based on theoretical calculations below
20 MeV incident energy [9]. File-6 is one of the most important
files of the nuclear reaction database, and is recommended
when the energy and angular distributions of the emitted parti-
cles must be coupled, when it is important to give a concurrent
description of neutron scattering and particle emission, when
so many reaction channels are open that it is difficult to provide
separate reactions, or when accurate charged particle or resid-
ual nucleus distributions are required for particle transport,
heat deposition, or radiation damage calculations [10].

However, the double-differential cross sections of reaction
products for light charged particle induced nuclear reactions
with 1p-shell light nuclei involved are scarce, especially below
20 MeV incident energies. For example, in the case of the
p + 9Be reaction, there are some coarse double-differential
cross sections of reaction products only in ENDF/B-VII.1 [11]
and TENDL-2012 [12]. Only some double-differential cross
sections of outgoing neutrons have been measured at several
incident energies, and several peaks are observed for the
9Be(p,xn) reaction. These peaks come mainly from the transi-
tions between the discrete energy levels of the residual nuclei.
The neutron double-differential cross sections of ENDF/B-
VII.1, obtained by the Intranuclear Cascade Evaporation (ICE)
model [13], cannot appropriately reproduce these experimental
peaks (including positions and quantities), although the ICE
model is most applicable to a few hundreds MeV incident
energies. The results of TENDL-2012 calculated by the code
TALYS [14] also cannot reasonably well reproduce the double-
differential cross sections for the 9Be(p,xn) reaction. In
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addition, Monte Carlo calculation using the Particle and Heavy
Ion Transport System (PHITS) code is performed by a method
combining the evaluated nuclear data files of ENDF/B-VII,
the Bertini/GEM model, and the JQMD/GEM model [15]. The
calculated results cannot reproduce very well the experimental
double-differential cross sections for the 9Be(p,xn) reaction at
10 MeV incident energy. Recently, Hashimoto et al. proposed a
nuclear reaction model that is a combination of the intranuclear
cascade model and the distorted wave Born approximation
to estimate neutron spectra of proton induced Li and Be
reactions using the PHITS code [16]. But there are some
divergences between the calculated results and experimental
double-differential cross sections for the 9Be(p,xn) reaction
at 39 MeV with 0 angle.

In addition, the continuum discretized coupled channels
(CDCC) method is used to calculate the double-differential
cross sections both for neutron and proton induced 6,7Li
reactions, but it cannot be applied to the sequentially secondary
particle emission processes [17–20]. Apart from the theoretical
studies, to our knowledge there are no published double-
differential cross sections for light charged particle induced
reactions with the 1p-shell nuclei involved.

Although much effort has been made during the past several
decades, there is a lack of the appropriate theories or methods
that can satisfactorily reproduce the measured double-
differential cross sections for light charged particle induced
nuclear reactions with the 1p-shell light nuclei involved. This
problem may originate from several sources. First, there is no
theoretical method to describe the particle emission processes
between the discrete levels of the residual nuclei with a pre-
equilibrium mechanism, which dominates all of the 1p-shell
light nucleus reactions. Second, because of light mass, the
recoil effect of the energy conservation must be strictly taken
into account. Furthermore, there are individual features of each
energy level (including energy, spin, parity, width, branching
ratio, and so on) for each 1p-shell light nucleus. In this paper,
the statistical theory of light nucleus reactions (STLN), which
can describe the sequential and simultaneous particle emission
processes between the discrete levels, keeping conservations
of energy, angular momentum, and parity, is proposed to
calculate the double-differential cross sections of outgoing
neutrons and charged particles both for neutron and light
charged particle induced reactions with the 1p-shell nuclei
involved. Simultaneously, taking the 9Be(p,xn) reaction at
18 MeV as an example, we calculate the double-differential
cross sections of outgoing neutrons first using the PUNF code
in the frame of STLN. The calculated results are in good
agreement with the existing experimental data.

The structure of this paper is as follow. In Sec. II, the
dynamics and kinematics of STLN are introduced in detail.
The reaction channels of the p + 9Be reaction are analyzed,
and the calculated results are compared with the experimental
data in Sec. III. In Sec. IV, a summary is given.

II. STATISTICAL THEORY OF LIGHT
NUCLEUS REACTION

It is assumed that the pre-equilibrium emission process
from a compound nucleus to discrete levels of the residual

nuclei plays a dominant role in light particle induced light nu-
cleus reactions. Thus the dynamics of STLN can be described
by the unified Hauser-Feshbach and exciton model [21–23],
which has been applied successfully to calculate the double-
differential cross sections of outgoing neutrons for neutron
induced 6Li [24], 7Li [25], 9Be [26,27], 10B [28], 11B [29],
12C [7,30,31], 14N [32], 16O [33,34], and 19F [35] reactions.

To conveniently describe the dynamics and kinematics,
some quantities are defined as follows:

MT : mass of the target nucleus with mass number AT , proton
number ZT , and neutron number NT ;
EL: kinetic energy of the incident particle in the laboratory
system;
m0: mass of the incident particle with mass number A0,
proton number Z0, and neutron number N0;
MC : mass of the compound nucleus with mass number
AC = AT + A0 and excited energy E∗ = MT

MC
EL + B0;

m1 and M1: masses of the first emitted particle and its
residual nucleus, respectively;
m2 and M2: masses of the secondary particle emitted from
M1 and its residual nucleus, respectively;
B0, B1, and B2: binding energies of m0, m1 in MC , and m2

in M1, respectively;
εX
m1

and EX
M1

: kinetic energies of m1 and M1 in the X
coordinate system, respectively;
εX
m2

and EX
M2

: kinetic energies of m2 and M2 in the X
coordinate system, respectively.

Here, three motion systems will be used in STLN. Su-
perscripts (X = l,c,r) denote the laboratory system (LS),
the center-of-mass system (CMS), and the recoil nucleus
system (RNS), respectively. For convenience, masses mi (i =
0,1,2) and Mi (i = 1,2,T ,C) defined above also indicate the
corresponding particle or nucleus. It is obvious that there
are approximate relations without lowering precision, i.e.,
MC ≈ m0 + MT ≈ m1 + M1 and M1 ≈ m2 + M2.

A. Dynamics

1. First particle emission process

In the frame of STLN, the cross section of the first emitted
particle m1 with kinetic energy εc

m1
from compound nucleus

MC to the k1th discrete energy level of residual nuclei M1 can
be described as [23]

σm1,k1 (EL) =
∑
jπ

σ jπ
a (EL)

{
nmax∑
n=3

P jπ (n)
W

jπ
m1,k1

(
n,E∗,εc

m1

)
W

jπ
T (n,E∗)

+Qjπ (n)
W

jπ
m1,k1

(
E∗,εc

m1

)
W

jπ
T (E∗)

}
, (1)

where P jπ (n) is the occupation probability of the nth ex-
citon state in the jπ channel (j and π denote the angular
momentum and parity in the final state, respectively). P jπ (n)
can be obtained by solving the j -dependent exciton master
equation under the conservation of angular momentum in
pre-equilibrium reaction processes. Qjπ (n) is the occupation
probability of the equilibrium state in the jπ channel,
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expressed as

Qjπ (n) = 1 −
nmax∑
n=3

P jπ (n). (2)

The absorption cross section σ
jπ
a (EL) in the jπ channel

can be derived by Hauser-Feshbach statistical theory as [36]

σ jπ
a (EL) = π

k2

(2j + 1)

(2IT + 1)(2s0 + 1)

×
IT +s0∑

S=|IT −s0|

min{j+S,lmax}∑
l=|j−S|

Tl

(
εc
m1

)
gl(π,πT ), (3)

where IT ,πT are the spin and parity of the target MT ,
respectively. s0 is the spin of incident particle m0, and k is the
incident wave vector. Tl(εc

m1
) is the reduced penetration factor

of the first emitted particle m1 [37], which can be obtained
by the optical model of the spherical nucleus including the
Coulomb barrier of the incident charged particle.

In addition, parity conservation is determined by the orbit
angular momentum l of the relative motion between the
incident particle m0 and target nucleus MT in incident channel.
For describing the parity conservation, we define the function

gl(π,πT ) =
{

1 if π = (−1)lπT ,

0 if π �= (−1)lπT ,
(4)

where π and πT are the parities of the compound nucleus MC

and the target nucleus MT , respectively.
The emission rate W

jπ
m1,k1

(n,E∗,εc
m1

) of the first emitted
particle m1 in Eq. (1) at the nth exciton state with outgoing
kinetic energy εc

m1
can be expressed as

W
jπ
m1,k1

(
n,E∗,εc

m1

) = 1

2π�ωjπ (n,E∗)

jk1 +sm1∑
S=|jk1 −sm1 |

j+S∑
l=|j−S|

Tl

(
εc
m1

)
gl(π,πk1 )Fm1[λ,m]

(
εc
m1

)
Qm1 (n)[λ,m],

(5)

where ωjπ (n,E∗) is the nth exciton state density. jk1 is the angular momentum of the residual nucleus M1 at energy level Ek1 ,
and sm1 is the spin of the first emitted particle m1. π and πk1 are the parities of the compound MC and residual nuclei M1 at
energy level Ek1 , respectively. The functions of parity conservation are expressed as Eq. (4), only substituting the parity πT of
the target nucleus with the parity πk1 of the residual nucleus at the k1 energy level.

In the exciton model, p and h denote the particle number and hole number at the nth exciton state (n = p + h), respectively.
Qm1 (n)[λ,m], considering the effect of the incident particle memories, is the combination factor of the n th exciton state expressed
as [38]

Qm1 (p,h)[λ,m] =
(

AT

ZT

)Zm1
(

AT

NT

)Nm1
(

p
λ

)−1(
AT − h

m

)−1(
Am1

Zm1

)−1 h∑
i=0

(
h
i

)(
ZT

AT

)i(
NT

AT

)h−i

×
∑

j

(
Zm1 + i

j

)(
Nm1 + h − i

λ − j

)(
Z − i

Zm1 − j

)(
N − h + i

Nm1 − λ + j

)
, (6)

where Am1 , Zm1 , and Nm1 are the mass number, proton
number, and neutron number of the first emitted particle m1,
respectively. Am1 = λ + m denotes that there are λ nucleons
above the Fermi sea and m nucleons blow the Fermi sea
for the emitted particle m1. The notation (n

m) is the binomial
coefficient.

If the first emitted particle m1 is a nucleon, the result is
λ = 1, m = 0. Especially, if m1 is a neutron, i.e., Am1 = Nm1 = 1
and Zm1 = 0, then Eq. (6) can be simplified as [39]

Qn(p,h)[1,0] =
(

AT

NT

)
1

p

h∑
i=0

(
h
i

)(
ZT

AT

)i(
NT

AT

)h−i

× (
Nm1 + h − i

)
. (7)

Similarly, if m1 is a proton, i.e., Am1 = Zm1 = 1 and Nm1 = 0,
Eq. (6) can be also simplified as [39]

Qp(p,h)[1,0] =
(
AT

ZT

)
1

p

h∑
i=0

(
h
i

)(
ZT

AT

)i(
NT

AT

)h−i(
Zm1 + i

)
.

(8)

Obviously, if m1 is a γ photon, i.e., Am1 = Zm1 = Nm1 = 0,
Eq. (6) can be best simplified as Qγ (p,h)[0,0] = 1. Apparently,
the combination factor strictly keeps the particle conservation,
i.e.,

NT

AT

Qn(p,h)[1,0] + ZT

AT

Qp(p,h)[1,0] = 1. (9)

In Eq. (5), Fm1[λ,m](εc
m1

) is the the pre-formation probability
of composite particles m1 at the nth exciton state in compound
nucleus MC , in which the momentum distributions of the
exciton states are taken into account [40]. The consideration of
the momentum distribution, which can improve the Iwamoto-
Harada model with no restriction in the momentum space,
enhances the pre-formation probability of the [1,m] config-
uration and suppresses that of the [l > 1,m] configurations
significantly.

Considering the energy-momentum conservation in the
center-of-mass system (CMS), the definitive kinetic energies
of the first emitted particle m1 can be easily derived as

εc
m1

= M1

MC

(
E∗ − B1 − Ek1

)
. (10)
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However, if the emitted particle m1 is a charged particle, there
is a threshold energy Em1

min because of the Coulomb barrier

VCoul ≈ e2Zm1 ZM1
Rc

[Rc ≈ rc(A1/3
m1 + A

1/3
M1

), rc ≈ 1.2 − 1.5 fm].
Therefore, the open reaction channels must meet the condition
E∗ − Ek1 > B1 + VCoul. Obviously, the Coulomb barrier can
effect the open reaction channels significantly. It is also
obvious that Tl(εc

m1
) is 0, if εc

m1
� Em1

min.

Additionally, the total emission rate W
jπ
T (n,E∗) in pre-

equilibrium reaction processes can be expressed as

W
jπ
T (n,E∗) =

∑
m1,k1

W
jπ
m1,k1

(
n,E∗,εc

m1

)
. (11)

In equilibrium reaction processes, the partial emission rate
of the first particle m1 in the jπ channel and the total emission
rate can be derived as follows [36]:

W
jπ
m1,k1

(
E∗,εc

m1

) = 1

2π�ρjπ (E∗)

j+IM1∑
J=|j−IM1 |

J+sm1∑
l=|J−sm1 |

× (2J + 1)TJ l

(
εc
m1

)
gl

(
π,πk1

)
, (12)

W
jπ
T (E∗) =

∑
m1,k1

W
jπ
m1,k1

(
E∗,εc

m1

)
, (13)

where sm1 and IM1 are the spins of the emitted particle m1 and
the corresponding residual nucleus M1, respectively. TJ l(εc

m1
)

is the penetration factor, and ρjπ (E∗) is the energy level
density.

2. Secondary particle emission process

After the first particle m1 emission, the cross section of
the first residual nucleus M1 at energy level Ek1 emitting the
secondary particle m2 to the secondary residual nucleus M2

at energy level Ek2 can be expressed in the frame of STLN as
follows:

W
jk1 πk1 →jk2 πk2
m2

(
Ek1 → Ek2

)

= 1

2π

jk2 +sm2∑
S=|jk2 −sm2 |

jk1 +S∑
l=|jk1 −S|

Tl

(
εr
m2

)
gl

(
πk1 ,πk2

)
, (14)

where jk1πk1 and jk2πk2 are the angular momenta and parities
of the first and secondary residual nuclei, respectively. Tl(εr

m2
)

is the reduced penetration factor of the secondary emitted
particle m2, and gl(πk1,πk2 ) denotes the parity conservation
in the secondary particle emission process.

The kinetic energy of the secondary emitted particle m2 in
the recoil nucleus system (RNS) is expressed as

εr
m2

= M2

M1

(
Ek1 − B2 − Ek2

)
. (15)

As well as m1, there is a threshold energy Em2
min if the

secondary emitted particle m2 is a charged particle because
of the Coulomb barrier.

The total emission rate W
jk1 πk1
T (Ek1 ) from the first residual

nucleus at energy level Ek1 can be expressed as

W
jk1 πk1
T

(
Ek1

) = W
jk1 πk1
γ

(
Ek1

)
+

∑
m2,k2

W
jk1 πk1 →jk2 πk2
m2

(
Ek1 → Ek2

)
, (16)

where W
jk1 πk1
γ (Ek1 ) is the deexcited rate of the γ photon from

energy level Ek1 .
So the branching ratio of the secondary emitted particle m2

from energy level Ek1 of M1 to the energy level Ek2 of M2 can
be expressed as

Rk1→k2
m2

(
Ek1

) = W
jk1 πk1 →jk2 πk2
m2

(
Ek1 → Ek2

)
W

jk1 πk1
T

(
Ek1

) . (17)

Similarly, the branching ratio of γ photon can also be written as

Rk1
γ

(
Ek1

) = W
jk1 πk1
γ

(
Ek1

)
W

jk1 πk1
T

(
Ek1

) . (18)

Thus, the cross section of the secondary particle m2 emitted
from the energy level Ek1 of M1 to Ek2 of M2 can be expressed
as

σk1→k2 (n,m1,m2) = σk1 (n,m1)Rk1→k2
m2

(
Ek1

)
. (19)

If the energy level Ek1 of M1 is only deexcited by the γ
photon to finish the reaction processes, the cross section of
the first particle emission channel reads as

σk1 (n,m1,γ ) = σk1 (n,m1)Rk1
γ

(
Ek1

)
. (20)

Equations (17)–(20) describe the competitions among the
reaction channels of the first particle emission, secondary par-
ticle emission, and γ deexcitation. In addition, the (reduced)
penetration factor T can be derived by the optical model to fit
the cross sections of all of the channels.

B. Kinematics

1. First particle emission process

After the first particle m1 is emitted, the residual nucleus
M1 may remain at the energy level Ek1 . Considering the
energy-momentum conservation in CMS, the definitive kinetic
energies of m1 and M1 can be reexpressed to systematically
describe the kinematics as

εc
m1

= M1

MC

(
E∗ − B1 − Ek1

)
(21)

and

Ec
M1

= m1

MC

(
E∗ − B1 − Ek1

)
. (22)

The normalized angular distributions of the first emitted
particle m1 and its residual nucleus M1 with definitive kinetic
energies can be standardized in nuclear reaction databases
as [10]

dσ

d	c
Y

=
∑

l

2l + 1

4π
f c

l (Y )Pl

(
cos θc

Y

)
. (23)
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Here, Y = m1 or M1. Pl(x) is the Legendre function, and the
Legendre expansion coefficients f c

l (M1) = (−1)lf c
l (m1) can

be derived from the the generalized master equation of the
exciton model [38].

Using the nonrelativistic triangle relationship of the velocity
vectors, the average kinetic energy of the first emitted particle
m1 in LS can be obtained:

εl
m1

=
∫

1

2
m1

(
VC + vc

m1

)2 dσ

d	c
m1

d	c
m1

= m1m0EL

M2
C

+ εc
m1

+ 2

MC

√
m0m1ELεc

m1
f c

1 (m1), (24)

where VC and vc
m1

are the velocity vectors of the center of
mass and the first emitted particle m1 in CMS, respectively.
Similarly to Eq. (24), the average kinetic energy of the first
residual nucleus M1 in LS reads

E
l

M1
= M1m0EL

M2
C

+ Ec
M1

− 2M1

MC

√
m0ELEc

M1

M1
f c

1 (m1). (25)

Thus, it is obvious that the energy conservation for the first
particle emission process in LS can be strictly kept as follows:

El
total = εl

m1
+ E

l

M1
+ Ek1 = EL + B0 − B1. (26)

2. Secondary particle emission processes

For the 1p-shell light nucleus reactions, the secondary
particle emission processes also come from the discrete energy
levels after the first particle m1 emission. There are four kinds
the particle emission processes, as follows.

(1) The residual nucleus M1 at energy level Ek1 emits the
secondary particle m2 with kinetic energy εc

m2
to the

secondary residual nucleus M2 at energy level Ek2 .
(2) The residual nucleus M1 at energy level Ek1 sponta-

neously breaks up into two particles.
(3) The first emitted particle m1, such as 5He, which is

very unstable, spontaneously breaks up into a neutron
and an α.

(4) All of the first emitted particles m1 and their residual
nuclei M1 are unstable and spontaneously break up into
two smaller particles or nuclei. This is the so-called
double two-body breakup reaction.

For case (1), the residual nucleus M1 at energy level
Ek1 with recoiling kinetic energy Ec

M1
in CMS will emit

the secondary particle m2 with kinetic energy εc
m2

, if the
conservations of energy, angular momentum, and parity are
met. Thus, the corresponding residual nucleus M2 at energy
level Ek2 will also gain the recoiling kinetic energy Ec

M2
at

arbitrary directions in CMS. In order to analytically describe
the kinematics of the secondary emitted particle, we assume
M1 is static in RNS, then the definitive kinetic energy of the
secondary emitted particle m2 can be expressed as

εr
m2

= M2

M1

(
Ek1 − B2 − Ek2

)
. (27)

Similarly, the energy of the residual nucleus M2 in the RNS
can be also obtained

Er
M2

= m2

M1

(
Ek1 − B2 − Ek2

)
. (28)

Using the nonrelativistic triangle relationship vc
m2

= vc
M1

+
vr

m2
, we can obtain [29,30]

εc
m2

= εr
m2

(1 + 2γ cos � + γ 2), (29)

cos � =
√

εc
m2

εr
m2

[
cos θc

m2
cos θc

M1

+ sin θc
m2

sin θc
M1

cos
(
ϕc

m2
− ϕc

M1

)] − γ, (30)

where γ ≡
√

m2E
c
M1

M1εr
m2

. The maximum and minimum kinetic

energies of the secondary emitted particle m2 in CMS are
given by

εc
m2, max = εr

m2
(1 + γ )2, εc

m2, min = εr
m2

(1 − γ )2. (31)

In the frame of STLN, the double-differential cross section
of the secondary emitted particle m2 in RNS is assumed to
have an isotropic distribution with a definitive kinetic energy
εr
m2

, i.e.,

d2σ

dεr
m2

d	r
m2

= 1

4π
δ
[
εc
m2

− εr
m2

(1 + 2γ cos � + γ 2)
]
. (32)

Starting from the basic relation of the double-differential cross
sections between CMS and RNS, the double-differential cross
section of m2 in CMS can be obtained through the correspond-
ing results in RNS averaged by the angular distribution of the
residual nucleus M1, i.e.,

d2σ

dεc
m2

d	c
m2

=
∫

d	c
M1

dσ

d	c
M1

√
εc
m2

εr
m2

d2σ

dεr
m2

d	r
m2

. (33)

By means of the properties of the δ function and
Eqs. (23)–(33), the double-differential cross section of the
secondary emitted particle m2 in CMS can be rewritten
as [8,41]

d2σ

dεc
m2

d	c
m2

= 1

16π2γ εr
m2

∑
l

(2l + 1)f c
l (M1)

×
∫ π

0
dtPl

(√
(1 − η2) sin2 θc

m2
cos t + η cos θc

m2

)
,

(34)

where η =
√

εr
m2

εc
m2

εc
m2

/εr
m2

−1+γ 2

2γ
. In terms of the new integral

formula [41], which has not been compiled in any integral
tables or mathematical software, Eq. (34) can be simplified as

d2σ

dεc
m2

d	c
m2

=
∑

l

(−1)l

16πγ εr
m2

(2l + 1)f c
l (m1)Pl(η)Pl

(
cos θc

m2

)
.

(35)
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The normalized double-differential cross section of the sec-
ondary emitted particle m2 is also standardized in nuclear
reaction databases as [10]

d2σ

dεc
m2

d	c
m2

=
∑

l

2l + 1

4π
f c

l (m2)Pl

(
cos θc

m2

)
. (36)

By comparing Eqs. (35) and (36), the Legendre expansion
coefficients of the secondary emitted particle m2 in CMS can
be expressed as

f c
l (m2) = (−1)l

4γ εr
m2

f c
l (m1)Pl(η). (37)

Similarly to Eq. (37), we can also derive the analytical
expression of the Legendre expansion coefficients of the
secondary residual nucleus M2 in CMS. The formula is
expressed as [41]

f c
l (M2) = (−1)l

4�Er
M2

f c
l (m1)Pl(H ), (38)

where � =
√

M2E
c
M1

M1E
r
M2

and H =
√

Er
M2

Ec
M2

Ec
M2

/Er
M2

−1+�2

2�
.

It is obvious that the Legendre expansion coefficients of the
secondary emitted particle m2 and its residual nucleus M2 in
CMS are closely related to the first emitted particle m1 and
its recoiling nucleus M1. Analytical expressions of Eq. (37)
and (38) can largely reduce the volume of file-6 in nuclear
reaction databases.

In CMS, the average kinetic energy of the secondary emitted
particle m2 can be obtained by averaging its double differential
cross section, i.e.,

εc
m2

=
∫ εc

m2 , max

εc
m2 , min

εc
m2

d2σ

dεc
m2

d	c
m2

dεc
m2

d	c
m2

= εr
m2

(1 + γ 2). (39)

We also can obtain the average kinetic energy of the secondary
residual nucleus M2 in CMS in the same way, i.e.,

εc
M2

= Er
M2

(1 + �2). (40)

In terms of the nonrelativistic triangle relationship of the
velocity vectors, the average kinetic energy of the secondary
emitted particle m2 in LS can be obtained

εl
m2

=
∫

1

2
m2

(
VC + vc

m2

)2 d2σ

dεc
m2

d	c
m2

dεc
m2

d	c
m2

= m0m2EL

M2
C

+ εc
m2

− 2
m2

MC

√
m0ELEc

M1

M1
f c

1 (m1). (41)

In the same way, the average kinetic energy of the secondary
residual nucleus M2 in LS can be derived as

E
l

M2
= m0M2EL

M2
C

+ E
c

M2
− 2

M2

MC

√
m0ELEc

M1

M1
f c

1 (m1). (42)

Thus, the energy conservation of the initial and final states
for the light nucleus reactions can be strictly kept in LS as

follows:

El
total = εl

m1
+ εl

m2
+ E

l

M2
+ Ek2

= EL + B0 − B1 − B2. (43)

For case (2), the residual nucleus M1 at energy level Ek1

spontaneously break up into two smaller particles m2 and M2.
It is assumed that m2 and M2 are at ground states, i.e., Ek2 = 0.
As in case (1), we assume M1 is static in RNS, then the
definitive kinetic energies of m2 and M2 can be expressed
as

εr
m2

= M2

M1

(
Ek1 + QM2

)
(44)

and

Er
M2

= m2

M1

(
Ek1 + QM2

)
, (45)

where QM2 is the reaction Q value for the breakup process
M1 → m2 + M2.

Similarly, we can obtain the average kinetic energies of m2

and M2 in CMS as follows:

εc
m2

= M2

M1

(
Ek1 + QM2

) + m1m2

M2
1

εc
m1

(46)

and

E
c

M2
= m2

M1

(
Ek1 + QM2

) + m1M2

M2
1

εc
m1

. (47)

Furthermore, we can obtain the average kinetic energies of m2

and M2 in LS as follows:

εl
m2

= m0m2EL

M2
C

+ εc
m2

− 2m2

MCM1

√
m0m1ELεc

m1
f c

1 (m1) (48)

and

E
l

M2
= m0M2EL

M2
C

+ E
c

M2
− 2M2

MCM1

√
m0m1ELεc

m1
f c

1 (m1)

(49)

Obviously, the energy conservation of the initial and final states
can be strictly kept in LS as follows:

El
total = εl

m1
+ εl

m2
+ E

l

M2

= EL + B0 − B1 + QM2 . (50)

For case (3), the first emitted particle m1 can spontaneously
break up into two smaller particles. For the 1p-shell light
nucleus reactions, the unstable nucleus m1 is only 5He, which
spontaneously breaks up into a neutron (mn) and an α (Mα).
As in case (1), we assume that m1 is static in RNS. Then the
definitive kinetic energies of mn and Mα can be expressed as

εr
n = Mα

m1
Qm1 (51)

and

Er
α = mn

m1
Qm1 , (52)

where Qm1 is the reaction Q value for the breakup process
5He → n + α.
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Similarly, we can obtain the average kinetic energies of mn

and Mα in CMS as follows:

εc
mn

= Mα

m1
Qm1 + mn

m1
εc
m1

(53)

and

E
c

Mα
= mn

m1
Qm1 + Mα

m1
εc
m1

. (54)

Furthermore, we can obtain the average kinetic energies of mn

and Mα in LS as follows:

εl
mn

= m0mnEL

M2
C

+ εc
mn

+ 2mn

MCm1

√
m0m1ELεc

m1
f c

1 (m1)

(55)

and

E
l

Mα
= m0MαEL

M2
C

+ E
c

Mα
+ 2Mα

MCm1

√
m0m1ELεc

m1
f c

1 (m1).

(56)

Obviously, the energy conservation of the initial and final states
can be strictly kept in LS as follows:

El
total = E

l

M1
+ εl

mn
+ E

l

Mα

= EL + B0 − B1 + Qm1 . (57)

It is worth mentioning that the symbols before the Legendre
expansion coefficients f c

1 (m1) of mn and Mα are positive in
case (3), compared to the negative signs in other cases. This is
due to the forward tendency of the first emitted particle m1.

For case (4), all of the first emitted particles m1 and their
residual nuclei M1 can spontaneously break up into two smaller
particles at the same time. As in case (2), the averaged kinetic

energies of m2 and M2 in both CMS and LS coming from the
residual nucleus M1 can be expressed as Eqs. (44)–(49). For
this double two-body breakup process of the 1p-shell light
nucleus reactions, the first emitted particle m1 is 5He, which
can spontaneously break up into a neutron (mn) and an α (Mα).
The averaged kinetic energies of the neutron (mn) and α (Mα)
in both CMS and LS coming from 5He can be expressed as
Eqs. (51)–(56). Thus, the energy conservation of the initial and
final states can be strictly kept in LS as follows:

El
total = E

l

M2
+ εl

m2
+ E

l

Mα
+ εl

mn

= EL + B0 − B1 + Qm1 + QM2 . (58)

III. APPLICATIONS TO p + 9Be REACTIONS

For neutron induced nuclear reactions with 1p-shell light
nuclei involved, such as 6Li [24], 7Li [25], 9Be [26,27],
10B [28], 11B [29], 12C [7,30,31], 14N [32], 16O [33,34],
and 19F [35], the calculated double-differential cross sections
of outgoing neutrons agree very well with the experimental
data. In this section, taking p + 9Be reaction at 18 MeV as
an example, we analyze the open reaction channels in detail
at 18 MeV, and calculate the double-differential cross sections
of outgoing neutrons using the PUNF code in the frame of
STLN. The calculated results are compared with the existing
experimental data, and the partial double-differential cross
sections of outgoing neutron from possible energy levels are
shown in detail.

A. Analysis of the reaction channels

For the proton induced 9Be reaction, theoretically reaction
channels exist at incident energy Ep � 20 MeV in terms of
the reaction threshold energies Eth as follows:

p + 9Be → 10B∗ →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

(p,γ ) 10B , Q = +6.586 MeV, Eth = 0.000 MeV,

(p,n) 9B , Q = −1.850 MeV, Eth = 2.067 MeV,

(p,p) 9Be , Q = 0.000 MeV, Eth = 0.000 MeV,

(p,α) 6Li , Q = +2.127 MeV, Eth = 0.000 MeV,

(p, 3He) 7Li , Q = −11.202 MeV, Eth = 12.455 MeV,

(p,d) 8Be , Q = +0.559 MeV, Eth = 0.000 MeV,

(p, 5He) 5Li , Q = −4.434 MeV, Eth = 4.930 MeV,

(p,np) 8Be , Q = −1.665 MeV, Eth = 1.851 MeV,

(p,nα) 5Li , Q = −3.539 MeV, Eth = 3.935 MeV,

(p,pn) 8Be , Q = −1.665 MeV, Eth = 1.851 MeV,

(p,pα) 5He , Q = −2.467 MeV, Eth = 2.743 MeV,

(p,αn) 5Li , Q = −3.539 MeV, Eth = 3.935 MeV,

(p,αp) 5He , Q = −2.467 MeV, Eth = 2.743 MeV.

(59)
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Considering the conservations of the energy, angular momen-
tum, and parity in the particle emission processes, the reaction
channels of the first particle emission are listed as follows:

p + 9Be → 10B∗ →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n + 9B∗ (k1 = gs,1,2, . . . ,10),

p + 9Be∗ (k1 = gs,1,2, . . . ,21),

α + 6Li∗ (k1 = gs,1,2, . . . ,7),
3He + 7Li∗ (k1 = gs,1,2, . . . ,4),

d + 8Be∗ (k1 = gs,1,2, . . . ,8),

t + 7Be (k1 = gs),
5He + 5Li∗ (k1 = gs,1),

(60)

where gs and k1 denote the ground state and the k1th energy
level of the residual nuclei M1, respectively.

For the first particle emission channel 9Be(p,n) 9B∗, the
first residual nucleus 9B∗ can still emit a proton at some excited
energy levels, and the secondary residual nucleus 8Be∗ can
spontaneously break up into two α [28]. Thus, these reaction
processes belong to the reaction channel 9Be(p,np2α) at the
final state.

For reaction channel 9Be(p,p) 9Be∗, if the first residual
nucleus 9Be∗ is at ground state, then this channel belongs to
the compound nucleus elastic scattering. If the first residual
nucleus 9Be∗ is at the k1th (k1 � 1) excited energy level, some
energy levels will emit a neutron and the secondary residual
nucleus 8Be∗ can spontaneously break up into two α. Thus,
these reaction processes also belong to the reaction channel
9Be(p,np2α) at the final state. Especially, if the first residual

nucleus 9Be∗ is at the k1th (k1 � 4) excited energy level,
some energy levels may emit an α, and the secondary residual
nucleus 5He∗ can also spontaneously break up into a neutron
and an α. Thus, this reaction process also belongs to the
reaction channel 9Be(p,np2α) at the final state. Therefore,
the particle emission processes of the first residual nucleus
9Be∗ can be described as follows [26,27]:

9Be∗ →

⎧⎪⎨
⎪⎩

k = gs, (p,p) 9Be,

k � 1, n + 8Be∗ → 2α, (p,np2α),

k � 4, α + 5He∗ → n + α, (p,np2α).

(61)

For reaction channel 9Be(p,α) 6Li∗, the first residual
nucleus 6Li∗ may emit a neutron at different excited energy
levels through 6Li∗ → p + 5He ( 5He → n + α) and 6Li∗ →
n + 5Li ( 5Li → p + α) [24,25], but the cross section of this
first particle emission process is so small that its contribution
to neutron products can be reasonably neglected.

For reaction channel 9Be(p, 3He) 7Li∗ at Ep = 18 MeV,
the first residual nucleus 7Li∗ [24,25] only at the ground, first,
and second excited energy levels cannot emit neutron. So the
contributions of this reaction channel to neutron products are
not considered in this work, as well as the reaction channels
9Be(p,d) 8Be∗ and 9Be(p,t) 7Be∗.

In addition, the double two-body breakup reaction
9B∗(p, 5He∗) 5Li∗ also belongs to channel (p,np2α) through
breakup reactions 5He → n + α and 5Li → p + α. In con-
clusion, for the proton induced 9Be reaction, reaction channels
exist at incident energy Ep � 20 MeV as follows:

p + 9Be → 10B∗ →

⎧⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎪⎩

n + 9B∗ (k1 = gs,1, . . . ,10) → p + 8Be∗ → 2α, (p,np2α),

p + 9Be∗ (k1 = gs), compound nucleus elastic scattering

(k1 � 1) → n + 8Be∗ → 2α, (p,np2α),

(k1 � 4) → α + 5He∗ → n + α, (p,np2α),

α + 6Li∗ (k1 = gs,2), (p,α) 6Li,

(k1 = 1,3,4, . . . ,7) → d + α, (p,d2α),
3He + 7Li∗ (k1 = gs,1,2,3), (p, 3He) 7Li,

d + 8Be∗ (k1 = gs,1, . . . ,8) → 2α, (p,d2α),

t + 7Be (k1 = gs), (p,t) 7Be,
5He + 5Li∗ (k1 = gs,1) → n + α + p + α, (p,np2α).

(62)

From Eq. (62), one can see that the contributions to the double-
differential cross sections of outgoing neutrons only come
from reaction channel (p,np2α), which consists of four kinds
of particle emission processes.

B. Calculation of the double-differential cross sections
of outgoing neutrons

In the case of the p + 9Be reaction at Ep = 18 MeV with
outgoing angle 60◦ in LS, the partial double-differential cross
sections of outgoing neutrons from reaction channel (p,n) 9B

are shown in Fig. 1. The black lines denote the partial neutron
spectra coming from the ground state to ninth excited energy
levels (k1 = gs,1, . . . ,9, as labeled in the figure) of the first
residual nucleus 9B. Because of the level widths and energy
resolution in the measurements, the measured data are always
in broadening form. Therefore, the broadening effect must be
taken into account in the first particle emission processes [30].
Only the cross sections with values larger than 0.1 mb are
given; this applies also to the following figures.

The partial double-differential cross sections of outgoing
neutrons from reaction channel (p,pn) 8Be → (p,pn + 2α)
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FIG. 1. The partial double-differential cross sections of outgoing
neutrons from reaction channel (p,n) 9B with outgoing angle 60◦

at Ep = 18 MeV in LS. The points denote the experimental data
taken from Ref. [42], and the red solid line denotes the calculated
total double-differential cross sections. The black solid lines denote
the partial spectra of the first emitted neutron from the compound
nucleus to the ground state, up to the ninth excited energy levels
(as labeled in the figure) of the first residual nucleus 9B, in which
broadening effects must be taken into account. Only the cross sections
with values larger than 0.1 mb are given.

are shown in Fig. 2, but the black lines denote the partial
spectra of the secondary emitted neutron from the k1th excited
energy levels (k1 = 1,2, . . . ,17, as labeled in the figure) of the
first residual nucleus 9Be to the ground state of the secondary
residual nucleus 8Be. In Fig. 3, the black solid lines denote the
partial spectra of the secondary emitted neutron from the k1th
excited energy levels (k1 = 6, . . . ,17, as labeled in the figure)
of the first residual nucleus 9Be to the first excited energy level

FIG. 2. The same as Fig. 1, but for the partial double-differential
cross sections from reaction channel (p,pn) 8Be → (p,pn + 2α).
The black solid lines denote the partial spectra of the secondary
emitted neutron from the first to 17th excited energy levels (as labeled
in the figure) of the first residual nucleus 9Be to the ground state of
the secondary residual nucleus 8Be.

FIG. 3. The same as Fig. 2, but the black solid lines denote the
partial spectra from the sixth to 17th excited energy levels (as labeled
in the figure) of 9Be to the first excited energy level of 8Be. The green
dashed lines denote the partial spectra from the 12th to 17th excited
energy levels of 9Be to the second excited energy level of 8Be, and
the blue dotted lines denote the partial spectra from the 14th and 17th
excited energy levels of 9Be to the third excited energy level of 8Be.

of the secondary residual nucleus 8Be. The green dashed lines
denote the partial spectra of the secondary emitted neutron
from the k1th (k1 = 12, . . . ,17) excited energy levels of the
first residual nucleus 9Be to the second excited energy level
of the secondary residual nucleus 8Be. The blue dotted lines
denote the partial spectra of the secondary emitted neutron
from the k1th (k1 = 14, . . . ,17) excited energy levels of the
first residual nucleus 9Be to the third excited energy level of
the secondary residual nucleus 8Be. But the calculated results
show that the contributions (>0.1 mb) only come from two
energy levels (k1 = 14 and 17) of 9Be.

In Fig. 4, the black solid lines denote the partial spectra
of the emitted neutron from reaction channel (p,pα) 5He →
(p,pα + nα). The contributions of these partial neutron spec-
tra come from the emissions between the fouth and 17th excited
energy levels of the first residual nucleus 9Be and the lowest
two energy levels of the secondary residual nucleus 5He,
which can spontaneously break up into a neutron and an α.
The blue dashed lines denote the partial spectra of the emitted
neutron from reaction channel (p, 5He) 5Li → (p,nα + pα).
The contributions of these partial neutron spectra come from
the ground state and the first excited energy level of 5He.

Summing up all of the partial double-differential cross
sections of outgoing neutrons, we can obtain the total double-
differential cross sections at Ep = 18 MeV with outgoing
angle 60◦ (as shown the red lines in Figs. 1–4). In these
figures, the points denote the experimental data measured by
Verbinski et al. [42]. One can see that the calculated total
double-differential cross sections of outgoing neutrons agree
very well with the experimental data. Similarly, the calculated
total double-differential cross sections of outgoing neutrons
at other angles also agree well with the experimental data as
shown in Figs. 5 and 6. In addition, the calculated results are
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FIG. 4. The same as Fig. 1, but the black solid lines denote
the partial spectra of the emitted neutron in reaction channel
(p,pα) 5He → (p,pα + nα) from the fourth to 17th excited energy
levels of 9Be to the lowest two energy levels of the secondary residual
nucleus 5He, which can spontaneously break up a neutron and an α.
The blue dashed lines denote the partial spectra of the emitted neutron
in double two-body breakup channel (p, 5He) 5Li → (p,nα + pα)
from the ground state and first excited energy level of the 5He.

slightly larger than the measured data in low outgoing neutron
energy regions at angles 0◦ and 20◦, as shown in Fig. 5. The
reason is that the 4-mm-thick polyethylene beam stopper in
the secondary Faraday cup slightly depresses the yields about
0.5–1.5 MeV at forward angles, as mentioned in Ref. [42].

We would like to state that all of the final states are the
discrete levels of the residual nuclei in light nucleus reactions.

FIG. 5. The total double-differential cross sections of outgoing
neutron for the reaction 9Be(p,xn) with outgoing angles 0◦, 20◦,
40◦, 60◦, and 80◦ at Ep = 18 MeV in LS. The points denote to the
experimental data taken from Ref. [42]. The red solid lines denote
the calculated results using the real and two predicted energy levels
of 9Be, and the green dashed lines denote the calculated results only
using the real energy levels of 9Be.

FIG. 6. The same as Fig. 5, but with outgoing angles 100◦, 120◦,
145◦, and 170◦, respectively.

Therefore, the theoretical calculations are very sensitive to the
level schemes of the target and residual nuclei. Although the
updated energy level schemes of the target and the residual
nuclei [43,44] are employed for the reaction 9Be(p,xn), the
contributions coming from the real ninth and tenth energy
levels of the target nucleus 9Be, as shown by the green dashed
lines in Figs. 5 and 6, are still deficient. So two predicted levels
9.0( 5

2

+
) and 10.0( 5

2

+
) between the ninth and tenth levels have

been artificially added in this paper as neutron induced 9Be
reactions [26]. In Figs. 5 and 6, the red solid lines denote the
results using the real energy levels and two predicted energy
levels of 9Be, and the green dashed lines denote the results only
using the real energy levels. One can see that the calculated
results of adding two predicted levels are in better agreement
with the existing experimental data.

IV. SUMMARY

Our previous studies indicate that the calculated double-
differential cross sections agree very well with the experimen-
tal data for neutron induced nuclear reactions with 1p-shell
light nuclei involved, which have been successfully used to
set up file-6 in the CENDL 3.1 library. In this paper, STLN
is proposed to describe the light particle (including neutron
and light charged particles) induced nuclear reactions with
1p-shell light nuclei involved. In the dynamics of STLN,
not only the angular momentum and parity conservations
for both equilibrium and pre-equilibrium processes but also
the Coulomb barriers of the incoming and outgoing charged
particles are considered in different particle emission pro-
cesses. In the kinematics of STLN, the recoiling effects in
various emission processes are strictly taken into account.
Taking the 9Be(p,xn) reaction as an example, we further
calculate the double-differential cross sections of outgoing
neutrons and charged particles using the PUNF code in the
frame of STLN. The calculated results agree very well with
the existing experimental neutron double-differential cross
sections at Ep = 18 MeV, and indicate that the PUNF code

014609-10



STATISTICAL THEORY OF LIGHT-NUCLEUS REACTIONS . . . PHYSICAL REVIEW C 93, 014609 (2016)

is a powerful tool to set up file-6 in the reaction data library for
the light particle induced nuclear reactions with 1p-shell light
nuclei involved. However, one should note that STLN and the
PUNF code are applied to nuclear reactions without polarization
of incoming light particles and orientation of target nuclei.

In addition, two predicted levels of target nucleus 9Be
have been employed in this paper. The agreement between
the calculated results and the experimental data shows again
that there may be a lack of several levels of 9Be. We hope
these predicted levels could be validated by experiment in
the future. For analytically describing the double-differential
cross sections of reaction products in the sequential particle
emission processes, a new integral formula, which has not been
compiled in any integral tables or mathematical softwares,
is employed to obtain analytical Legendre expansion coeffi-
cients. This integral formula can largely reduce the volume of
file-6 in nuclear reaction databases with full energy balance.

This integral formula and STLN are being tested by light
charged particles induced nuclear reactions with 1p-shell light
nuclei involved.
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