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Microscopic coupled-channels calculations of nucleus-nucleus scattering including chiral
three-nucleon-force effects
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We analyze 16O -16O and 12C -12C scattering with the microscopic coupled-channels method and investigate the
coupled-channels and three-nucleon-force (3NF) effects on elastic and inelastic cross sections. In the microscopic
coupled-channels calculation, the Melbourne g-matrix interaction modified according to the chiral 3NF effects
is used. It is found that the coupled-channels and 3NF effects additively change both the elastic and inelastic
cross sections. As a result, the coupled-channels calculation including the 3NF effects significantly improves
the agreement between the theoretical results and the experimental data. The incident-energy dependence of the
coupled-channels and 3NF effects is also discussed.

DOI: 10.1103/PhysRevC.93.014607

I. INTRODUCTION

The microscopic description of many-body nuclear reac-
tions is a long-standing subject in nuclear physics. Elastic
scattering, which is one of the most basic processes, was
first understood phenomenologically with the optical model.
The model was founded upon the multiple scattering theory
[1–3] from the microscopic point of view. According to the
theory, elastic scattering is described by multistep processes
with an effective nucleon-nucleon interaction. So far many
types of density-dependent complex interactions (g-matrix
interactions) have been proposed as effective interactions
based on Brueckner theory. It is, however, still not easy to
reproduce even the elastic scattering data microscopically.

Recently, the Melbourne group achieved a great success
by describing proton scattering with no adjustable parameter.
They applied a g-matrix interaction constructed with the Bonn
potential [4] to the folding model calculation, and reproduced
the measured elastic cross sections and analyzing powers in a
wide incident-energy range [5]. In addition, the Melbourne
interaction was also applied to neutron scattering [6] and
6He-proton scattering [7,8]. Furthermore, total reaction cross
sections of nucleus-nucleus scattering were well reproduced
[9,10]. In spite of the remarkable progress of microscopic
reaction theory in recent years, however, nucleus-nucleus
elastic cross sections cannot be well reproduced in some
cases [11]. One of the reasons for this failure may be the
lack of three-nucleon force (3NF) effects in nucleus-nucleus
scattering; the Melbourne interaction does not include the
effects explicitly.

3NF effects in many-body nuclear reactions are a hot topic
relating to the equation of state of nuclear matter. In the g-
matrix folding model, the 3NF effects are represented through
the density dependence of the g matrix. In Refs. [12,13], the re-
pulsive nature due to 3NF effects is simulated by modifying the
two-nucleon force (2NF) in the nuclear medium to reproduce
the empirical saturation. The g-matrix interaction (CEG07)
obtained by including the 3NF effects gives a less attractive
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and less absorptive potential than the original one. The effects
are rather small for proton scattering, but the agreement
between the theoretical results and the experimental values
are improved for the spin observables at intermediate energies
[12]. For nucleus-nucleus scattering, the measured elastic cross
sections even at large scattering angles are well reproduced
[13]. In Ref. [14], as a first attempt of explicitly applying
the phenomenological 3NF to a nucleon optical potential, the
Urbana 3NF [15] and the three-nucleon interaction [16,17]
were used to construct g-matrix interactions. The obtained
g matrices were applied to proton elastic scattering, which
showed the 3NF effects are again small.

In previous works [11,18], the roles of 3NFs based on the
chiral effective field theory (ChEFT) [19,20] were investigated
in nucleon-nucleus and nucleus-nucleus elastic scattering. One
of the advantages of using the chiral interactions [19–21]
is that the two-, three-, and many-body forces are treated
systematically, so that the uncertainty of interactions is
minimized. At present, the chiral interactions are most reliable
for investigating the 3NF effects, although they cannot be
applied to high-energy reactions beyond the cutoff energy.
The chiral next-to-next-to-leading order (NNLO) 3NF [19–21]
has five low-energy constants. Three of them, c1, c3, and c4,
are fixed in the nucleon-nucleon (NN) sector. The remaining
parameters cD and cE are to be determined in many-body
systems. Calculations in the literature for few-body and light
nuclei found that cD and cE bear continuous uncertainties.
It is appropriate in nuclear matter to adjust these values to
reproduce the empirical nuclear saturation curve, because satu-
ration properties are essential for microscopically considering
optical potentials on the basis of g matrices in nuclear matter.
The perturbation calculations of nuclear-matter energies by
Hebeler et al. [22] based on low-momentum interactions from
ChEFT potentials used the choice of cD = −4.381 and cE =
−1.126 for the EGM parametrization by the Bonn-Jülich group
[19]. This choice provides also a reasonable saturation curve
in lowest-order Brueckner calculations [23]. The later analysis
[24] revealed that, when the relation cD � 4cE is satisfied, the
contributions to the nuclear-matter energy from the cD and cE

terms almost cancel each other, and this condition is necessary
to obtain a reasonable saturation curve in the case of EGM
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parametrization. It means that, although the specific values of
cD and cE are irrelevant as far as the condition cD � 4cE is
satisfied, the g-matrix calculations using cD = −4.381 and
cE = −1.126 are reliable enough to consider 3NF effects.
In Refs. [11,18], the Melbourne interaction was modified
according to the effects of the chiral NNLO 3NF, based on
the knowledge that g matrices from the Bonn potential and
the chiral 2NF with the EGM parametrization are similar; see
Refs. [11,18] for details. The chiral 3NF effects make the
real (imaginary) part of the folding potential less attractive
(more absorptive). This provides us a new insight into the 3NF
effects, which has not been acquired in the studies employing
phenomenological 3NFs. As a result, the chiral 3NF effects
improve the agreement between the theoretical calculation and
the experimental data for nucleus-nucleus elastic scattering.
The recent study by Toyokawa et al. [25] in which g matrices
are constructed directly using the chiral 2NFs and 3NFs
reinforces previous findings.

Although the 3NF effects improve the description of
nucleus-nucleus elastic scattering, there remain some discrep-
ancies. The theoretical cross sections at large angles overshoot
the data for 16O -16O scattering, whereas the theoretical result
is slightly off the data in the diffraction pattern of 12C -12C
scattering. One of the reasons for these discrepancies will
be the coupled-channels effects due to the projectile and
target excitations. In fact, these effects have been discussed
in the preceding studies [26,27] based on the microscopic
coupled-channels method. In the analyses, inelastic cross
sections were the main focus, and elastic cross sections were

used just to determine the real and/or imaginary parts of the
optical potentials. On the other hand, our interest in this report
is to clarify the coupled-channels effects on both the elastic
and inelastic nucleus-nucleus scattering.

For this purpose, we will perform microscopic coupled-
channels calculations, without any adjustable parameters,
of 16O -16O and 12C -12C scattering using the Melbourne
interaction modified with the chiral 3NF effects, and clarify
the coupled-channels effects together with the 3NF effects on
scattering observables. These two effects are treated simulta-
neously within the microscopic coupled-channels framework,
and their incident-energy dependence is also investigated.

In Sec. II, we give the framework of the microscopic
coupled-channels calculations performed in this paper. In
Sec. III, the results of the calculations are shown and the
coupled-channels and 3NF effects are discussed. This paper
concludes with the summary in Sec. IV.

II. FRAMEWORK

Since the microscopic coupled-channels method to describe
elastic and inelastic scattering is well established, we give just
a brief review of it; see, e.g., Refs. [28–30] for details. We
consider scattering of a projectile P off a target T, where P and
T are identical bosons. The radial part χJ

γL,γ0L0
(R) of the partial

wave between P and T, where L is the P-T relative orbital
angular momentum and J is the total angular momentum, is
obtained by solving the following coupled-channels equations:
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Here, s = R + rP − rT, p = rP − s/2, and t = rT + s/2.
The channel number indicating the intrinsic spins of P (IP)
and T (IT) is specified by γ , and the channel spin S is

defined by |IP − IT| < S < IP + IT. The subscript 0 indicates
the initial channel. Eγ is defined by Eγ = E − εγ with E
the incident energy in the center-of-mass system and εγ
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the sum of the excitation energies of P (εP) and T (εT). M
is defined as M = APAT/(AP + AT), where AP(T) is the
mass number of P (T). UCoul(R) is the Coulomb potential
between P and T. W (LSL′S ′|Jλ) is the Racah coefficient and
NIPεPITεT

= [2(1 + δIPIT
δεPεT

)]−1/2.
The inputs of the microscopic coupled-channels calculation

are the effective nucleon-nucleon interactions g(dr) and g(ex),
and the transition densities ρ

λA

IAI ′
A

(A = P and T). In this
paper, we use the Melbourne g-matrix interaction modified
with the chiral 3NF effects [11,18]. Although a g matrix
contains an effect of single-particle excitation in nuclear
matter, the effect of collective excitation for a specific nucleus
is not adequately included. Following preceding studies,
therefore, we take into account these collective excited states
using the coupled-channels framework. A possible double
counting of the coupling to nonelastic channels is expected
to be negligible, because the channels explicitly included
are specifically collective and have no analog in nuclear
matter.

We take the frozen density approximation for evaluating ρ
in the argument of the g matrix; that is, ρ = ρP(rm) + ρT(rm)
is used, where rm means the midpoint of the interacting two
nucleons. For the coupling potentials, we take the average of
the densities in the initial and final states, i.e., ρA = (ρ

λA=0
I ′

AI ′
A

+
ρ

λA=0
IAIA

)/2 for A = P or T.
Since we need not only the ground state density but also

transition densities for excited states, we adopt microscopic
cluster models to obtain them. For 12C, we consider the 0+

1 ,
2+

1 (4.44 MeV), 0+
2 (7.65 MeV), and 2+

2 (10.3 MeV) states,
and we use the transition densities obtained by the resonating
group method (RGM) based on a 3α model [31]. These
densities are found to reproduce the elastic and inelastic form
factors determined by electron scattering and thus are highly
reliable. Note that the transition density between the 2+

1 and
0+

2 states is modified as suggested in Ref. [31]. For 16O,
the 0+

1 , 3−
1 (6.13 MeV), and 2+

1 (6.92 MeV) states are taken
into account. We use the transition densities obtained by the
orthogonality condition model (OCM) assuming an α + 12C
structure [32]. However, the transition densities between the
excited states are not calculated; we thus neglect the coupling
between the excited states in the calculation of the 16O -16O
scattering. Note that we multiply the 16O transition density
between the 0+

1 and 3−
1 (2+

1 ) states by 0.816 (1.17), so as to
reproduce the experimental values of B(E3) and B(E2), i.e.,
1490 ± 70 e6fm6 and 39.3 ± 1.6 e4fm4 [33], respectively. A
similar procedure was adopted in Refs. [28,34] using the same
transition densities of 16O. In the reaction calculation, we do
not use the excitation energies of 12C and 16O evaluated by the
microscopic models but adopt the experimental values of them.

In the present calculation, we treat transitions only by
the nuclear interaction, although the Coulomb interaction
is included in the diagonal components of the coupling
potentials. The symmetrization of the identical bosons as well
as the mutual excitation is included properly. We adopt the
relativistic kinematics of P and T. As for the integration to
calculate the coupling potentials in Eq. (3), we perform the
Monte-Carlo integration with random numbers generated by
the Mersenne Twister method [35].
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FIG. 1. Differential cross sections of elastic and inelastic
16O -16O scattering at (a) 70 MeV/nucleon and (b) 44 MeV/nucleon.
The solid (dashed) line corresponds to the result with (without) the
3NF effects, and the dotted (dot-dashed) line corresponds to the
result of the one-step calculation with (without) the 3NF effects.
The experimental data are taken from Refs. [36–38]. The inelastic
cross sections are scaled by the factor shown inside the panel for
clarity.

III. RESULTS AND DISCUSSIONS

Figure 1 shows the differential cross sections for the
16O -16O scattering at (a) 70 MeV/nucleon and (b) 44 MeV/
nucleon as a function of the scattering angle θ in the center-of-
mass system. In each panel, three cross sections corresponding
to the 0+

1 (top), 3−
1 (middle), and 2+

1 (bottom) states of the
ejectile are shown; the other particle is in the ground state
in the final state. For the 0+

1 state, i.e., the elastic scattering,
the ratio to the Rutherford cross section is plotted. The solid
(dashed) line is the result of the coupled-channels calculation
with (without) the 3NF effects, and the dotted (dot-dashed)
line corresponds to the result of the one-step calculation with
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(without) the 3NF effects. The experimental data are taken
from Refs. [36–38].

From Fig. 1(a), we see that the calculation including both
the 3NF and coupled-channels effects well reproduces the
elastic scattering data up to θ = 15◦. The 3NF and coupled-
channels effects are found to be comparable at forward angles
θ < 12◦, whereas the former is more important than the latter
at larger angles. As shown in Ref. [11], the 3NF effects change
mainly the interior part of the nucleus-nucleus potential, which
is influential to the scattering at larger angles. On the other
hand, it is well known that in general the coupled-channels
effects generate the so-called dynamical polarization potential
in the nuclear surface region. The separation of the regions
sensitive to the 3NF and coupled-channels effects makes the
two effects rather independent. In fact, one sees that the 3NF
(coupled-channels) effects do not change essentially whether
the coupled-channels (3NF) effects are included or not.

For the 3−
1 and 2+

1 inelastic cross sections, the solid line
reproduces the data for θ < 5◦ but slight overshooting is seen
at larger angles. One sees that the 3NF effects improve the
agreement with the inelastic cross section data. The 3NF
effects on the inelastic cross sections appear at large angles as
in the elastic cross sections, although the effects are relatively
small. In general, inelastic cross sections at very forward angles
are mainly determined by the strength of the coupling potential.
The negligibly small difference between the solid and dashed
lines at forward angles suggests the small 3NF effects on the
coupling potentials. It is found that the 3NF effects on the
inelastic cross sections come from the changes in the diagonal
part of the 16O -16O potential for each channel. It was pointed
out in Ref. [34] that the inelastic cross sections may be varied
by couplings with even higher excited states. This can be a
reason for the discrepancy of the 3−

1 and 2+
1 cross sections at

larger angles and should be investigated in the future.
At 44 MeV/nucleon [Fig. 1(b)], the coupled-channels

effects are larger and the 3NF effects are smaller than those
at 70 MeV/nucleon. This is because at lower energies the
reaction takes place in the peripheral low-density region.
Nevertheless, the 3NF effects are still non-negligible at large
scattering angles. To be precise, the correspondence between
the calculation and the data for the elastic cross sections is
worsened from that at 70 MeV/nucleon. One of the reasons
for this will be the fact that at lower incident energies the
higher excited states, which are not taken into account, may
play a more significant role.

Figure 2 shows the differential cross sections for
the 12C -12C scattering at (a) 85 MeV/nucleon and (b)
30 MeV/nucleon. The meaning of the lines is the same as in
Fig. 1. We show only the elastic and the 2+

1 inelastic cross
sections, for which the experimental data are available. It
should be noted that the 0+

1 , 2+
1 , 0+

2 , and 2+
2 states of 12C are

taken into account in the calculation as mentioned in Sec. II.
The experimental data are taken from Refs. [39–41].

At 85 MeV/nucleon, we find larger coupled-channels
effects than those in the 16O -16O scattering. As a result, the
solid line decreases significantly and undershoots the data.
It is found that the coupling between the 0+

1 and 2+
1 states

plays a dominant role in the 12C -12C scattering. Unfortunately,
coupled-channels effects give no change in the diffraction
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FIG. 2. Differential cross sections of elastic and inelastic 12C -12C
scattering at (a) 85 MeV/nucleon and (b) 30 MeV/nucleon. The
meaning of the lines is the same as in Fig. 1. The experimental data
are taken from Refs. [39–41].

pattern. For the inelastic cross section the solid line well agrees
with the data. At 30 MeV/nucleon, as shown in Fig. 2(b), the
3NF effects do not affect both the elastic and inelastic cross
sections. The measured elastic and inelastic cross sections are
well reproduced by the coupled-channels calculations, except
for the small difference at large scattering angles.

In Table I, we show the total reaction cross sections σR ob-
tained by the coupled-channels and one-step calculations; the
3NF effects are included in both calculations. One sees that σR

increases by 2–4% depending on the strength of the coupled-
channels effects. For the 12C -12C scattering, the calculated
results are slightly larger than the experimental values [42,43].
This may be due to the fact that the root-mean-square (RMS)
radius of the proton density calculated by the RGM is larger
than its empirical value by 3%. Since σR is very sensitive to
the proton and neutron RMS radii, some fine tuning of the mi-
croscopic density will be needed for a detailed analysis of σR.
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TABLE I. Calculated and measured total reaction cross sections
σR (in mb). The results calculated with and without coupled-channels
effects are shown; the 3NF effects are taken into account in both
calculations.

System CC 1 ch. Expt.

16O -16O at 70 MeV/nucleon 1453 1426
16O -16O at 44 MeV/nucleon 1519 1473
12C -12C at 85 MeV/nucleon 1078 1052 998 ± 13a, 960 ± 30b

12C -12C at 30 MeV/nucleon 1262 1214 1209 ± 32c, 1315 ± 40d

aAt 86.3 MeV/nucleon [42].
bAt 83 MeV/nucleon [43].
cAt 32.5 MeV/nucleon [42].
dAt 30 MeV/nucleon [43].

IV. SUMMARY

We have analyzed the elastic and the 3−
1 and 2+

1 in-
elastic cross sections for the 16O -16O scattering at 70 and
44 MeV/nucleon, and also the elastic and the 2+

1 inelastic cross
sections for the 12C -12C scattering at 85 and 30 MeV/nucleon,
by means of the microscopic coupled-channels method. The
coupled-channels and 3NF effects on these cross sections were
investigated.

Since the coupled-channels and 3NF effects additively
change both the elastic and inelastic cross sections, it is
important to consider the two effects together for a quantitative
comparison between the calculation and the experimental data
for nucleus-nucleus scattering. It was found that the 3NF
effects on the inelastic cross sections are almost the same
as those on the elastic cross sections.

In detail, the relative importance of the 3NF and coupled-
channels effects depends on the incident energies and scatter-
ing angles. A key feature for understanding this dependence is

the fact that the 3NF effects strongly affect the interior part of
the nucleus-nucleus potential, whereas the coupled-channels
effects affect the surface part of it. As a general tendency, we
can say that the 3NF (coupled-channels) effects are important
at relatively high (low) incident energies and at large (small)
scattering angles. It was found that the 3NF effects are
negligibly small below about 30 MeV/nucleon.

We have also shown that the 3NF effects on the coupling
potentials are quite small. This may allow one to neglect the
3NF effects in the analysis of the inelastic cross sections at
very forward angles. The coupled-channels effects are found
to increase the total reaction cross sections by about a few
percent.

In conclusion, the coupled-channels calculation including
the 3NF effects significantly improves the agreement between
the theoretical results and the experimental data. However,
there remain some discrepancies between them, at backward
angles in particular. It will be important to perform coupled-
channels calculations including even higher excited states. A
more detailed examination of the effective interactions and
transition densities will be another important subject.
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[19] E. Epelbaum, W. Glöckle, and Ulf-G. Meißner, Nucl. Phys. A
747, 362 (2005).

[20] E. Epelbaum, H.-W. Hammer, and Ulf-G. Meißner, Rev. Mod.
Phys. 81, 1773 (2009).

[21] R. Machleidt and D. R. Entem, Phys. Rep. 503, 1 (2011).
[22] K. Hebeler, S. K. Bogner, R. J. Furnstahl, A. Nogga, and A.

Schwenk, Phys. Rev. C 83, 031301(R) (2011).

014607-5

http://dx.doi.org/10.1103/RevModPhys.30.565
http://dx.doi.org/10.1103/RevModPhys.30.565
http://dx.doi.org/10.1103/RevModPhys.30.565
http://dx.doi.org/10.1103/RevModPhys.30.565
http://dx.doi.org/10.1016/0003-4916(59)90076-4
http://dx.doi.org/10.1016/0003-4916(59)90076-4
http://dx.doi.org/10.1016/0003-4916(59)90076-4
http://dx.doi.org/10.1016/0003-4916(59)90076-4
http://dx.doi.org/10.1143/PTP.120.767
http://dx.doi.org/10.1143/PTP.120.767
http://dx.doi.org/10.1143/PTP.120.767
http://dx.doi.org/10.1143/PTP.120.767
http://dx.doi.org/10.1016/S0370-1573(87)80002-9
http://dx.doi.org/10.1016/S0370-1573(87)80002-9
http://dx.doi.org/10.1016/S0370-1573(87)80002-9
http://dx.doi.org/10.1016/S0370-1573(87)80002-9
http://dx.doi.org/10.1103/PhysRevC.65.057603
http://dx.doi.org/10.1103/PhysRevC.65.057603
http://dx.doi.org/10.1103/PhysRevC.65.057603
http://dx.doi.org/10.1103/PhysRevC.65.057603
http://dx.doi.org/10.1103/PhysRevC.87.054623
http://dx.doi.org/10.1103/PhysRevC.87.054623
http://dx.doi.org/10.1103/PhysRevC.87.054623
http://dx.doi.org/10.1103/PhysRevC.87.054623
http://dx.doi.org/10.1103/PhysRevC.88.054602
http://dx.doi.org/10.1103/PhysRevC.88.054602
http://dx.doi.org/10.1103/PhysRevC.88.054602
http://dx.doi.org/10.1103/PhysRevC.88.054602
http://dx.doi.org/10.1103/PhysRevLett.108.052503
http://dx.doi.org/10.1103/PhysRevLett.108.052503
http://dx.doi.org/10.1103/PhysRevLett.108.052503
http://dx.doi.org/10.1103/PhysRevLett.108.052503
http://dx.doi.org/10.1103/PhysRevC.89.044610
http://dx.doi.org/10.1103/PhysRevC.89.044610
http://dx.doi.org/10.1103/PhysRevC.89.044610
http://dx.doi.org/10.1103/PhysRevC.89.044610
http://dx.doi.org/10.1103/PhysRevC.90.051601
http://dx.doi.org/10.1103/PhysRevC.90.051601
http://dx.doi.org/10.1103/PhysRevC.90.051601
http://dx.doi.org/10.1103/PhysRevC.90.051601
http://dx.doi.org/10.1103/PhysRevC.78.044610
http://dx.doi.org/10.1103/PhysRevC.78.044610
http://dx.doi.org/10.1103/PhysRevC.78.044610
http://dx.doi.org/10.1103/PhysRevC.78.044610
http://dx.doi.org/10.1103/PhysRevC.80.044614
http://dx.doi.org/10.1103/PhysRevC.80.044614
http://dx.doi.org/10.1103/PhysRevC.80.044614
http://dx.doi.org/10.1103/PhysRevC.80.044614
http://dx.doi.org/10.1103/PhysRevC.87.014003
http://dx.doi.org/10.1103/PhysRevC.87.014003
http://dx.doi.org/10.1103/PhysRevC.87.014003
http://dx.doi.org/10.1103/PhysRevC.87.014003
http://dx.doi.org/10.1103/PhysRevC.56.1720
http://dx.doi.org/10.1103/PhysRevC.56.1720
http://dx.doi.org/10.1103/PhysRevC.56.1720
http://dx.doi.org/10.1103/PhysRevC.56.1720
http://dx.doi.org/10.1016/0375-9474(81)90649-7
http://dx.doi.org/10.1016/0375-9474(81)90649-7
http://dx.doi.org/10.1016/0375-9474(81)90649-7
http://dx.doi.org/10.1016/0375-9474(81)90649-7
http://dx.doi.org/10.1016/0375-9474(81)90241-4
http://dx.doi.org/10.1016/0375-9474(81)90241-4
http://dx.doi.org/10.1016/0375-9474(81)90241-4
http://dx.doi.org/10.1016/0375-9474(81)90241-4
http://dx.doi.org/10.1088/0954-3899/42/2/025104
http://dx.doi.org/10.1088/0954-3899/42/2/025104
http://dx.doi.org/10.1088/0954-3899/42/2/025104
http://dx.doi.org/10.1088/0954-3899/42/2/025104
http://dx.doi.org/10.1016/j.nuclphysa.2004.09.107
http://dx.doi.org/10.1016/j.nuclphysa.2004.09.107
http://dx.doi.org/10.1016/j.nuclphysa.2004.09.107
http://dx.doi.org/10.1016/j.nuclphysa.2004.09.107
http://dx.doi.org/10.1103/RevModPhys.81.1773
http://dx.doi.org/10.1103/RevModPhys.81.1773
http://dx.doi.org/10.1103/RevModPhys.81.1773
http://dx.doi.org/10.1103/RevModPhys.81.1773
http://dx.doi.org/10.1016/j.physrep.2011.02.001
http://dx.doi.org/10.1016/j.physrep.2011.02.001
http://dx.doi.org/10.1016/j.physrep.2011.02.001
http://dx.doi.org/10.1016/j.physrep.2011.02.001
http://dx.doi.org/10.1103/PhysRevC.83.031301
http://dx.doi.org/10.1103/PhysRevC.83.031301
http://dx.doi.org/10.1103/PhysRevC.83.031301
http://dx.doi.org/10.1103/PhysRevC.83.031301


KOSHO MINOMO, MICHIO KOHNO, AND KAZUYUKI OGATA PHYSICAL REVIEW C 93, 014607 (2016)

[23] M. Kohno, Phys. Rev. C 88, 064005 (2013).
[24] M. Kohno, Prog. Theor. Exp. Phys. 2015, 123D02 (2015).
[25] M. Toyokawa, M. Yahiro, T. Matsumoto, K. Minomo, K. Ogata,

and M. Kohno, Phys. Rev. C 92, 024618 (2015).
[26] D. T. Khoa and D. C. Cuong, Phys. Lett. B 660, 331 (2008).
[27] M. Takashina, T. Furumoto, and Y. Sakuragi, Phys. Rev. C 81,

047605 (2010).
[28] M. Katsuma, Y. Sakuragi, S. Okabe, and Y. Kondō, Prog. Theor.
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