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Pygmy and giant dipole resonances in the nitrogen isotopes
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The configuration-interaction shell model with the WBP10 effective interaction has been used to investigate
the pygmy and giant dipole resonances in the nitrogen isotopes. Large enhancement of low-lying dipole strength,
i.e., pygmy dipole resonances (PDRs), is predicted in the neutron-rich 17,18,19,20N. The nature of the PDRs is
analyzed via the transition densities and transition matrix elements. It turns out these PDRs involve a larger
amount of excitations between the 2s1d and loosely bound 1f 2p shells. Combining with the transition densities,
it is concluded that the PDRs in 17,18,19,20N are collective and due to the oscillation between the excess neutrons
and the isospin saturated core. The isospin dependence of energy splitting and sum rule of isospin doublets is
discussed. The theoretical energy splitting of isospin doublets can significantly deviate from the systematic values
when nucleus is far away from the β-stability line. The ratios of T< and T> energy-weighted sum rule (EWSR)
are consistently larger than the systematic values, and it is noticed that the calculated EWSR ratio over the
systematic ratio increases with increasing isospin almost linearly. We also calculated the photoabsorption cross
sections for the nitrogen isotopes. We proposed the normalization factors for 0–1�ω and 2–3�ω calculations.
After the normalization, the shell model has well reproduced the experimental photoabsorption cross sections in
14,15N, especially the detailed structure of resonances.
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I. INTRODUCTION

Isovector giant dipole resonance (GDR) is the most well-
established collective oscillating mode throughout the mass
table with large photoabsorption cross sections [1], exhausting
most of the classical Thomas-Reich-Kuhn (TRK) sum rule
[2,3]. Microscopically the GDR is described as a coherent
superposition of particle-hole excitations resulting from the
action of an electromagnetic operator on the nuclear ground
state [4]. Another kind of electric dipole excitation with
collective characteristics can be developed in nuclei with large
neutron-proton excess; i.e., the less tightly bound nucleons
can oscillate against the isospin saturated core [5–8]. This soft
mode will result in a large enhancement of electric dipole
response in the low-energy region, which exhausts only a few
percent of the total energy-weighted sum rule (EWSR), hence
named the pygmy dipole resonance (PDR). The significance
of the PDRs is that not only do they provide a novel collective
behavior in nuclear structure but also nucleon capture rates
could be largely enhanced in the astrophysical r-process
nucleosynthesis [9].

The PDRs in neutron-rich heavy and medium-heavy nuclei
have been intensely studied by various approaches; see Ref. [7]
for a review. The most widely used microscopical approaches
are based on the relativistic and nonrelativistic mean-field or
density functional theories plus (quasiparticle-)random-phase-
approximation (RPA) [10–18]. Some of the calculations have
also incorporated the phonon coupling [19] or the continuum
states [20]. However, the collectivity of PDRs is still much
debated. In heavy nuclei, the PDRs are predicted to be
collective and due to the vibration of the excess neutrons
against the inert isospin saturated core [21]. In light nuclei,
not only can PDRs be developed by the collective soft mode
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[5,6], but also the fragmentation of the GDRs can shift
the dipole strength to lower energies [21–23]. Relativistic
and nonrelativistic theories have predicted these low-lying
strengths to be of noncollective nature [19,21,24]. Moreover,
the single-particle excitations near the threshold can enhance
the dipole excitations [11,25,26]. The observed dipole strength
at very low excitation energies for the one-neutron halo nuclei
11Be [27] and 19C [28] was interpreted as this threshold effect.

In light nuclei, another option to study the isovector dipole
resonances is using the configuration-interaction shell model
(SM) [29–31]. Decades ago it was already realized that “the
gross structure of photo absorption curves in light nuclei
(position and width of the main maximum, configurational and
isospin splitting) can be well understood on the basis of the
shell model if one takes into account the residual interaction
between the nucleons” [29]. The configuration interaction is
not included in the most widely used mean-field plus RPA
approaches. However, it was shown that the phonon coupling,
which can be seen as including the minimal configuration
interaction in the mean-field-based theories, is crucial to obtain
a reasonable result of PDRs in the study of neutron-rich oxygen
isotopes [19]. It is convenient to take into account of multiple
particle-hole excitations and configuration interactions in the
shell model. For example, the PDRs in neutron-rich oxygen
isotopes were predicted by the shell model [30] and then
confirmed experimentally [22]. In order to get insight into the
collectivity of the PDRs, authors in Ref. [23] have combined
the shell-model transition densities and matrix elements,
showing that the PDR in 17Ne is collective and due to the
oscillation of the valence protons against the interior core,
while in 18Ne the dipole resonance in the PDR region is
noncollective and more likely to be the configuration splitting
of the giant dipole resonances.

For an entire nuclear chain, it is also interesting to
investigate the isospin dependence of electric dipole strength
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as well as photoabsorption cross sections approaching the
neutron drip line. The PDRs in some light-mass even-Z nuclei,
such as oxygen and carbon isotopes, have already been studied
by the shell model in Refs. [30,31].

In this paper, the electric dipole strengths and photoab-
sorption cross sections in the odd-Z nitrogen isotopes are
investigated by the shell model in the spsdpf space with
the WBP10 interaction [32]. The details of the calculation
are given in Sec. II. In Sec. III, we give the neutron and
proton separation energies for the entire nitrogen chain to
check the appropriateness of the WBP10 interaction. The
single-particle wave functions are checked by comparing the
theoretical mass radius with the experimental values. Then
the strengths of dipole responses in 14−20N are discussed
in Sec. IV. The enhanced pygmy dipole resonances in the
neutron-rich nitrogen isotopes are analyzed by looking into
the transition densities and matrix elements. In Sec. V, the
isospin dependence of sum rule and energy splitting for isospin
doublets are discussed. The systematics of the PDRs in the
odd-Z nitrogen isotopes are compared with the even-Z carbon
and oxygen isotopes in Sec. VI. In Sec. VII, we give the
photoabsorption cross sections in the nitrogen isotopes. Finally
a summary will be given in Sec. VIII.

II. CALCULATION DETAILS

In our shell-model calculations, the NUSHELL@MSU code
[33] with the effective interaction WBP10 [32] in the
0s-0p-1s0d-1p0f model space is used. The Warburton-
Brown interaction WBP10 was originally constructed by
fitting energy levels in the 0–1�ω space and has also been
applied to study the energy spectra of 2p-2h states. In the
WBP10 interaction, the coupling between the following multi-
�ω configurations is cut off: The two-body matrix elements
for 1p-1h 2�ω excitations are all set equal to 0 due to the
Hartree-Fock condition. The cross shell 2�ω two-body matrix
elements between 0s2 and 0p2 have been also set equal to
0. The WBP10 interaction is enclosed in the NUSHELL@MSU

package.
The standard Lawson method is used to remove center-of-

mass spurious components in the wave function by adding a
fictitious Hamiltonian, which acts only on the center-of-mass
excitation [34,35].

The one-body transition density (OBTD) is the stan-
dard output of the shell-model code such as OXBASH and
NUSHELL@MSU [33]. The OBTDs are unrelated to the radial
wave function but related to the angular momentum part
between the initial and final states. Thus the transition matrix
element can be given by the transition operator and the
transition density can be given by the density operator using
the same OBTDs.

The reduced transition matrix element between the final
state |Jf 〉 and initial state |Ji〉 can be expressed by the OBTDs
and reduced single-particle matrix elements of the valence

orbitals,

〈Jf ||Ôλ||Ji〉 =
∑
kαkβ

OBTD(f ikαkβλ)〈kα||Ôλ||kβ〉, (1)

where Ji and Jf include all the quantum numbers needed to
distinguish the states, and OBTD is given by

OBTD(f ikαkβλ) = 〈Jf ||[a+
kα

⊗ ãkβ

]λ||Ji〉√
2λ + 1

. (2)

The OBTD can also be defined to include the isospin freedom
[36].

The radial transition densities are calculated with the same
OBTDs [23],

δρλ(r) =〈Jf |∣∣∑i
1
r2 δ(r − ri)Yλ

∣∣|Ji〉√
2Ji + 1

= 1√
2Ji + 1

∑
kα,kβ

OBTD(f ikαkβλ)

× 〈kα|
∣∣∣∣ 1

r2
δ(r − r ′)Yλ

∣∣∣∣|kβ〉, (3)

where

〈kα|
∣∣∣∣ 1

r2
δ(r − r ′)Yλ

∣∣∣∣|kβ〉 = ψkα
(r)ψkβ

(r)〈kα||Yλ||kβ〉, (4)

and ψkα
(r) is the radial wave function of the valence orbital

kα .
In the calculations we use the spsdpf model space

including excitations up to 2–3�ω for 14N, 15N, and 16N.
Other nuclei are studied in the spsdpf model space including
1�ω excitations.

III. THE PROPERTIES OF THE GROUND STATES IN THE
NITROGEN CHAIN

The shell model with the WBP10 interaction has given the
correct ground-state spins in 12−17N in the 0–1�ω space. In
18N, experimentally the first excited state 2− is of 0.1149 MeV
above the ground state and the shell model has missed the order
of these two states. In 19,20N the ground-state spins given
by experiment are tentative. The values from the shell-model
calculations are consistent with the experimental assumptions
[37].

Figure 1 gives the proton and neutron separation energies of
the ground states of the nitrogen chain. Charge independence
and charge symmetry breaking are not included in the WBP10
effective interaction. To take into account the Coulomb effect
on the proton separation energies, which is usually the main
source of charge symmetry breaking, the normalized proton
separation energies Sp are also given in Fig. 1; i.e., they have
subtracted the difference of Sp − Sn in 14N. This difference,
2.943 MeV, is very close to the roughly estimated Coulomb
barrier 2.987 MeV from the equation

UCoul. = kZ1Z2e
2

R
, (5)

where Z1 = 6, Z2 = 1, ke2 = 1.44 MeV fm and R = 1.2A1/3

fm. As can be seen from Fig. 1, the shell model with the
WBP10 interaction has well reproduced the proton and neutron
separation energies for the entire nitrogen chain, notably a drop
in 16N in which only one neutron sits outside of the N = 8
closed shell.
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FIG. 1. Neutron and proton separation energies of the nitrogen
isotopes. The solid circles are experimental values. The open squares
and stars are the shell-model results in 0–1�ω and 2–3�ω spaces,
respectively. In panel (b), the normalized proton separation energies
which takes into account of the Coulomb barrier are also shown by
open squares. The lines are only guides for the eyes.

In this paper, the self-consistent Skyrme-Hartree-Fock
(SHF) wave functions with the KDE0 interaction [38] are
used in the calculation of electric dipole matrix elements. The
KDE0 effective interaction has survived a series of tests and
is recommended as one of several Skyrme parametrizations
for future studies [39]. The SHF equations are solved in the
coordinate space. The wave functions of the unoccupied states
are obtained by solving the nuclear mean-field potential within
a sphere of 15 fm in radius. And for each unbound orbital,
the nuclear potential is stretched so that its energy is below
the potential barrier and the root-mean-squares radius of this
orbital is inside the barrier. To check the single-particle wave
functions, the mass radii of the nitrogen isotopes are calculated
and compared with the experimental data in Fig. 2. The results
with the SHF approach are also presented. It is seen that the
mass radii calculated by the shell model and the SHF approach
are very close. The shell-model results for 17−23N are slightly
larger than those from the SHF approach, largely due to the
mixing of the orbitals which have long tails. Generally, two
models have reproduced the trend of the experimental data.
It seems the theoretical results are more in line with the
experimental data given by Liatard et al. [41] for 16,17,18,19N,
while these values in Ref. [40] are somewhat smaller. However,
the experimental results deduced from total reaction cross
sections exhibit significant negative isospin shifts at the shells,
i.e., N = 6, 8, and 14 [40]. This feature is not reproduced by
either model.

IV. ELECTRIC DIPOLE STRENGTHS AND PYGMY
DIPOLE RESONANCES IN NITROGEN ISOTOPES

The electric dipole transition strength B(E1) is defined as

B(E1; ωn) =
∑

μ

∣∣〈n|Ôλ+1
μ |g.s.〉∣∣2

, (6)
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2
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FIG. 2. Mass radii of the nitrogen isotopes. The solid cycles
indicate the experimental data compiled by Ozawa et al.; see Ref. [40]
and references in. The open squares indicate the experimental results
given in Ref. [41]. The solid line gives the shell-model results in
0–1�ω space using the SHF single-particle wave functions.

where the matrix element is calculated between the ground
state (|g.s.〉) and the nthE1 excited shell-model state (|n〉) with
the excitation energy �ωn. For E1 transitions, the parities of
initial and final states should be opposite in order to conserve
the total parity. Because in Eq. (7) there are only isoscalar and
isovector excitations, and the isospin of the nuclear ground
state is normally its minimum value, i.e., T = (N − Z)/2, the
electric-dipole absorption of photons by a nucleus can only
lead to the states with isospin T = Tz or T = Tz + 1 with the
first possibility disappearing when Tz = 0.

To further remove the additional spurious components due
to the usage of the Skyrme-Hartree-Fock wave functions, the
center-of-mass removed dipole operator [42] is used in the
calculation of the dipole transition strength,

Q̃λ=1
μ = e

N

A

Z∑
i

riY1μ(r̂i) − e
Z

A

N∑
i

riY1μ(r̂i), (7)

where Z, N , and A are proton, neutron, and mass numbers,
respectively. The effectiveness of this method was demon-
strated in Refs. [30,31]. To smooth out the discrete strengths,
the transition strengths are averaged by a Lorentz-type factor
ρ(ω),

dB̄(E1; ω)

dω
=

∫ ∑
n

B(E1; ωn)R(ω − ωn)dω, (8)

where ω is the photon energy and

R(ω − ωn) = 1

π


/2

(ω − ωn)2 + 
2/4
. (9)

In this paper, an arbitrary total width 
 = 2 MeV is used.
In principle, the R-matrix theory can be used to calculate
the partial and total width of resonances. However, the total
absorption will remain practically unchanged because the
calculated total width values are not much different from the
fixed 
 = 2 MeV [43]. In this way, the response function is like
the superposition of many isolated Breit-Wigner resonances.
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FIG. 3. The calculated electric dipole strengths from the excited
to the ground states for 14,15,16N in the shell-model space up to 0–1�ω

and 2–3�ω excitations. The thin drop lines are the discrete B(E1)
values in the shell-model calculations. The dashed (red), dotted (blue),
and solid (black) lines represent the transitions from T = Tz, T =
Tz + 1 states (labeled as T< and T>) and their sums, respectively. The
arrows separate the continuum from the discrete states.

The electric dipole strengths from the excited to the ground
states for 14,15,16N are shown in Fig. 3. The states of T = Tz

and T = Tz + 1 are denoted as T< and T>. The general
features by including 2–3�ω excitations have been discussed
in the study of oxygen and carbon isotopes [30,31]. It is
indeed clearly seen that the peak strengths are reduced in
the 2–3�ω calculations, although the discrete level density
generally increases. The remaining strength is pushed up
beyond E > 40 MeV, similar to the discussions in the carbon
isotopes [31]. Recent large-scale shell-model calculations in
calcium isotopes by Y. Utsuno et al. [44] also suggest the
inclusion of 3�ω. Figure 4 gives the electric dipole strengths
for 17−20N in the 0–1�ω space. Compared with the results of
14,15,16N in the same space, we can see that except for 15N,
which has a neutron closed shell, the discrete level density
generally increases with increasing isospin, and meanwhile
discrete B(E1) strengths becomes more spread out.

In 14N, only the de-excitation of T> states contributes to
the dipole strength. The GDR is largely a single-peak shape.
As isospin increases, the competition between the T< and the
T> states gives the GDR more complex structure. If the GDR
peaks of T< and T> have similar height, i.e., in 16,17N, a
plateau is seen. As the isospin further increases, the T< one
will dominate and then the GDR is largely a single peak again.
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FIG. 4. Same as Fig. 3 but for 17−20N in the spsdpf space up to
0–1�ω excitations.

For the further discussion on the splitting of isospin doublets,
see Sec. V.

As can be seen from Fig. 3, in the low-energy region (E <
10 MeV), very little dipole strength is seen in 14,15N, while
some amount appears in 16N. As the nucleus is located further
away from the β-stability line, it is seen in Fig. 4 that the low-
lying dipole strength greatly increases in 17−20N. The picture
remains largely the same if we use the harmonic oscillator wave
function instead of the ones calculated by the SHF approach,
although the pygmy strengths are lowered about ∼10%. It
would be very interesting to investigate the nature of the
enhanced pygmy strengths in 17−20N. To this end, the transition
densities of those discrete levels which have prominent B(E1)
values in the PDR and GDR regions are drawn and shown in
Figs. 5, 6, 7, and 8 for 17,18,19,20N, respectively. The common
feature is that the transition densities near the GDR peaks
have the opposite phase, i.e., the bulk protons and neutrons
move against each other. In 19N, the transition densities at
E = 10.978 MeV with Jπ

f = 5/2+ and T = Tz are also of
GDR type. However, for those states which contribute to the
low-energy bump in Fig. 4, with the energies E � 8 MeV, the
protons and neutrons move in phase in the nuclear interior,
while they are gradually out of phase roughly beyond the
mass radii. This scenario is similar to the observation of the
mean-field plus RPA theory in neutron-rich oxygen isotopes
that this is the typical pygmy resonances of the halo-skin
neutrons oscillating against the inner core [21,45]. For these
neutron-rich nuclei, the neutron wave functions of the weakly
bound orbitals extend far away from the core; therefore long
tails appear in the neutron transition densities of the PDR
states. In contrast, the transition densities of GDR states show
little tail beyond the 2

√
〈r2〉 ∼ 6 fm.

In light nuclei the GDR is not completely collectivized
[43]. The giant peak in 14N is dominated by the 2s1d ↔
1p, particularly 1d5/2 ↔ 1p3/2, transitions. In 15,16N, the
GDRs are also largely 2s1d ↔ 1p transitions, only more
diversified. From 17N to 20N, as the neutron Fermi level
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FIG. 5. Shell-model transition densities of discrete dipole transitions in 17N. The solid red and dashed blue lines are for proton and neutron,
respectively. The dotted brown line gives the location of the mass radius in the shell-model calculations.

is approaching the N = 20 shell gap, although the GDRs
are still largely the 2s1d ↔ 1p transitions, some amount of
contribution comes from the 1f 2p ↔ 2s1d transitions for
the T = Tz states. Meanwhile, because the proton number
is less than 8 while the neutron number is larger than 8,
only the 2s1d ↔ 1p transitions contribute to the GDRs for
the T = Tz + 1 states. However, for the PDRs in 17−20N, the
1f 2p ↔ 2s1d transitions seemingly play a larger role except

for the E = 7.743 MeV state in 19N. Even in that case the
1f 2p ↔ 2s1d transitions still contribute considerably. The
matrix elements of transitions between the valence orbitals for
the selected PDR states are shown Fig. 9. It is also seen that
the PDRs are usually not dominated by one transition, which
is distinctive from the GDRs in the light nuclei. If this is some
collectivity suggested by authors in Ref. [23], then together
with the discussions on the transition densities, the PDRs in
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FIG. 6. Shell-model transition densities of discrete dipole transitions in 18N.
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FIG. 7. Shell-model transition densities of discrete dipole transitions in 19N.

17−20N are collective due to the soft mode between the excess
neutrons and the core.

V. SUM RULE AND SYSTEMATICS OF ISOSPIN
DOUBLETS IN NITROGEN ISOTOPES

The sum rules are useful measures of the collectivity of
the giant resonances. In Table I, the ground-state spins, the
GDR peaks, the nonenergy-weighted sum rule (NESR), and

the energy-weighted sum rule (EWSR) of dipole strengths in
the nitrogen isotopes are shown. The total sum rule is obtained
by summing up to 40 MeV. For the isovector GDR, the classical
energy-weighted sum rule value is given by

S (TRK) =
∫∑
n

�ωn

∣∣〈n|Ôλ=1
μ |g.s.〉∣∣2 = �

2

2m

9

4π

NZ

A

= 14.9
NZ

A
e2 (MeV fm2), (10)
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FIG. 8. Shell-model transition densities of discrete dipole transitions in 20N.
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FIG. 9. Contributions to the total matrix elements of valence orbitals for the de-excitations from the selected PDR states in 17−20N. The
horizontal axis is the single-particle excitation energies of valence orbitals. The magenta bars with slanted lines, the solid red bars, and the
open blue bars indicate the transitions between the valence orbitals of 1s ↔ 1p, 1p ↔ 2s1d , and 2s1d ↔ 1f 2p, respectively.

neglecting the contributions of exchange terms. This sum rule
is known as the Thomas-Reiche-Kuhn (TRK) sum rule.

It is seen from Table I that the GDR centroids of 14,15,16N are
pushed up ∼0.5 MeV with the inclusion of 2–3�ω excitations.
For the 0–1�ω calculations, the GDR energies and the sum
rules show some isospin dependency. To show this feature
more clearly, the GDR energies and the splittings of the
isospin doublets are drawn in Fig. 10. It is seen that the GDR
energies for the T> states generally increase with increasing
isospin, although the increasing shows some staggering with
the neutron number. However, for the T< states, the variation
of GDR energies with the isospin is more intricate, i.e., lacking
clear isospin dependency. In contrast, the GDR energy for the
heavy nuclei, where the transition of T< states dominates, is
proportional to the linear combination of A−1/6 and A−1/3

[3,46]. In Fig. 10(b), the GDR energy differences between
T< and T> states calculated by the shell model are compared
with the systematics of energy displacement of dipole isospin
doublets derived from the symmetry energy, i.e., Ref. [47],

E> − E< = 60(T + 1)

A
MeV. (11)

We can see that the trend of the shell-model results is consistent
with the systematic splittings, especially near the β-stability
line. The staggering on even-odd neutron number is also more
apparent. However, when the nucleus is far away from the
β-stability line, the systematic deviation from the values with
Eq. (11) can be significant.

As discussed in the last section, the dipole responses are
less enhanced in the 2–3�ω space calculations than those in
the 0–1�ω space calculations. Correspondingly the NESR and
EWSR values in the 2–3�ω space calculations, as well as

the EWSR values against the TRK sum rule, are also less
enhanced, about 80% of those values in the 0–1�ω calculations
for 14,15,16N. In the normal shell-model calculations, the
excitation of nucleons is restricted in several adjacent major
shells, and thus a large number of configurations, although
usually at higher energies, are neglected. The decorrelation
of those configurations pushes the strengths to lower energies
and hence enhances response functions.

In the 0–1�ω space calculations, the EWSR values for the
T> states are decreasing with increasing isospin, while it is
vice versa for the T< states. However, the ratio of EWSR
in the shell-model calculations over the TRK values remain
largely stable around 1.4–1.5. In medium and heavy nuclei,
the systematic ratio of EWSR values between the T< and T>

states reads [48]

EWSR(T>)

EWSR(T<)
= σ>

σ<

= 1

T

1− 3
2 T A−2/3

1+ 3
2 T A−2/3

. (12)

The shell-model EWSR ratios are compared with the sys-
tematic values in Fig. 11. We can see that generally the
shell model has reproduced the trend of the systematic
values throughout the entire nitrogen chain. However, the
consistent overestimation of the EWSR ratios indicates that the
enhancement of response functions are incoherent for the T<

and T> states. In other words, the enhancement for the T> states
are relatively larger than that for the T< states. Considering
that only those states below 40 MeV have been included in the
calculation of EWSR values, some amount of sum rule would
be missing for the T> states (the EWSR values would be about
3%, 5% 9%, and 13% larger for 17,18,19,20N if we sum up to
50 MeV), then the overestimation of the ratio would be even
larger. It is also interesting to notice that the calculated EWSR

014317-7



MA, DONG, YAN, ZHANG, YUAN, ZHU, AND ZHANG PHYSICAL REVIEW C 93, 014317 (2016)

TABLE I. Ground-state spins, nonenergy-weighted sum rule, and energy-weighted sum rule of E1 transitions in the nitrogen isotopes. The
peak energies in the response function and the photoadsorption cross sections are usually very close, but if there are competing peaks, e.g., the
T< states in 17N and the T> states in 20N, the chosen GDR peaks are set between the peaks. The total sum rule values are obtained by summing
up to Ex = 40 MeV, while for the sum rule of the PDRs, the sums are extend to Ex = 10 and 15 MeV in the last two columns respectively. In
19,20N, the ground-state spins and parities are only tentatively set according to the shell-model calculation; also see the discussion in Ref. [37].

Epeak NESR EWSR S(TRK) EWSR/TRK EWSR < 10 MeV) EWSR (<15 MeV)
Nuclides J π

g.s. Isospin (MeV) (e2fm2) (MeVe2fm2) (MeVe2fm2) (%) (MeVe2fm2) (%) (MeVe2fm2) (%)

14N(1�ω) 1+ T = 1 21.6 3.283 74.17 52.15 142.2 0.67(1.3) 3.32(6.4)
[(1 + 3)�ω] T = 1 22.0 2.591 60.98 52.15 116.9 0.24(0.5) 1.51(2.9)
15N(1�ω) 1/2− T< = 1/2 19.4 1.508 30.63 0.49 2.57

T> = 3/2 25.2 2.206 53.97 0.17 1.12

Total 3.714 84.60 55.63 152.1 0.65(1.2) 3.69(6.6)

[(1 + 3)�ω] 1/2− T< = 1/2 19.9 1.244 25.65 0.33 2.41
T> = 3/2 25.7 1.654 41.59 0.10 0.73

Total 2.898 67.24 55.63 120.9 0.43(0.8) 3.14(5.6)
16N(1�ω) 2− T< = 1 19.6 2.339 48.85 1.46 5.79

T> = 2 26.5 1.504 38.49 0.09 0.51

Total 3.843 87.34 58.67 148.9 1.55(2.6) 6.30(10.7)

[(1 + 3)�ω] 2− T< = 1 19.0 1.799 34.41 1.01 4.58
T> = 2 26.9 1.162 30.92 0.06 0.27

Total 2.961 65.33 58.67 111.3 1.07(1.8) 4.85(8.3)
17N(1�ω) 1/2− T< = 3/2 17.8 2.940 63.18 2.58 11.68

T> = 5/2 29.8 1.107 29.21 0.05 0.25

Total 4.047 92.38 61.35 150.6 2.63(4.3) 11.93(19.4)
18N(1�ω) 1− T< = 2 18.7 3.504 71.73 2.79 10.94

T> = 3 29.4 0.806 21.51 0.04 0.15

Total 4.502 93.24 63.74 146.3 2.82(4.4) 11.09(17.4)
19N(1�ω) (1/2−) T< = 5/2 18.4 3.923 80.12 3.24 12.58

T> = 7/2 31.2 0.559 16.49 0.02 0.08

Total 4.483 96.61 65.87 146.7 3.26(4.9) 12.66(19.2)
20N(1�ω) (2−) T< = 3 18.6 4.120 85.25 3.22 11.99

T> = 4 31.0 0.397 12.08 0.01 0.05

Total 4.517 97.33 67.80 143.6 3.24(4.8) 12.04(17.8)

ratio over the systematic ratio is increasing with the increasing
isospin almost linearly. The linearity would be even better if the
sums are up to 50 MeV. There is no immediate explanation for
this linearity; thus it poses an interesting question for theorists
working on the shell model.

VI. SYSTEMATIC COMPARISON OF PDRS IN NITROGEN,
CARBON, AND OXYGEN ISOTOPES

In Sec. IV, it is shown that sizable pygmy dipole resonances
appear in the low-energy region in 17,18,19,20N. In the last two
columns of Table I, the EWSR values summing up to 10 MeV
and their ratios to the classical TRK sum rule are given for the
nitrogen isotopes. It is seen the EWSR of the PDRs exhausts
nearly 5% of the classical sum rule. If we sum up to 12 MeV,
the EWSR would exhaust 7.2%, 7.6%, 8.6%, and 8.2% for
17,18,19,20N and if we sum up to 15 MeV they will further
increase to exhaust 19.4%, 17.4%, 19.2%, and 17.8% of the
classical sum rule, respectively.

The evolution of PDRs in an isotopic chain has been
discussed in several isotopes, such as C [31], O [19,21,30], Ca
[10,49–51], Ni, Sn [16,21], and Pb [52]. It is also interesting
to compare the PDRs of neighboring nuclei, since not only
the neutron-proton disparity N − Z but also the mass A
weights in EWSRs. In this paper, the dipole resonances of
neighboring nuclei of nitrogen, i.e., the carbon and oxygen
isotopes (including 19,21,23O, whose results were not provided
in Ref. [30]), were recalculated using the KDE0 Skyrme
parameters and the EWSR values are summed up to 10 and
15 MeV. The exhaustion of EWSR values in these isotopes
is then compared in Fig. 12. For each isotopic chain, marked
increases of EWSR in the low-energy region are first seen
when the neutron-proton disparity N − Z increases from zero.
However, at some point (N − Z ∼ 2–3 for summing up to
10 MeV, N − Z ∼ 3–4 for summing up to 15 MeV), the
exhaustion of EWSR values then seems to stop increasing
steeply and even drops in some cases. Only for the sum up
to 10 MeV does the EWSR pick up at very large N − Z. In
neutron-rich oxygen isotopes, the experimental dipole strength
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FIG. 10. (a) GDR energies and (b) splitting of isospin doublets
in the nitrogen isotopes. The stars indicate the systematic values
obtained from Eq. (11). The open circles and solid squares represent
the shell-model results in the 0–1�ω and 2–3�ω spaces.

summed up to 15 MeV exhausts up to 12% of the classical sum
rule [22], of which the trend is in good agreement with the
shell-model results albeit general overshooting in the 0–1�ω
space. In Fig. 12(a) some twists can be seen at close shell
nuclei 14C and 20C and 22O, mostly due to relative low-level
density in the low-energy region. These twists are not obvious
or even disappear in Fig. 12(b).

It is also interesting to note that the low-lying strengths of
15−18C are almost twice those in oxygen with the same N − Z.
For the nitrogen isotopes the EWSR values summing up to 10
MeV are close to the carbon isotopes for N − Z � 3. However,
by summing up to 15 MeV, the EWSR values show a clear
tendency of decreasing with the increasing Z with the same
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isotopes. The subfigure shows the shell-model ratios over the
systematic values.
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FIG. 12. The EWSR values of the PDRs in nitrogen, carbon, and
oxygen isotopes. The EWSR values are summed up to (a) 10 and (b)
15 MeV. The experimental values of oxygen isotopes are taken from
Ref. [22].

N − Z. There is another sum rule, named the energy-weighted
cluster sum rule, which can be viewed as a measure of the
adiabaticity between the giant and pygmy resonances [53].
Assuming that the nucleus (A,Z) can be decomposed into
two clusters with (A1,Z1) and (A2,Z2), the cluster sum rule is
given by

S(cluster) = �
2

2m

9

4π

(Z1A2 − Z2A1)2

AA1A2
. (13)

If we take (A1 = 2Z,Z1 = Z) as the core and (A2 = A −
2Z,Z2 = 0) as the valence nucleons, then the ratio of cluster
over TRK sum rules is given by

S(cluster)

S(TRK)
= N − Z

2N
. (14)

Thus for nuclei with the same N − Z, the S(cluster)/S(TRK)
ratio will decrease with increasing N or equivalently with
increasing Z. The consistency between the EWSR values and
the cluster sum rules supports the idea that the PDRs in the
neutron-rich light mass nuclei, especially those with the closed
proton shell, are caused by the soft mode where the excess
neutrons oscillate against the isospin saturated core.
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VII. PHOTOABSORPTION CROSS SECTIONS IN
NITROGEN ISOTOPES

As far as only the dipole strength is concerned, the
photoabsorption cross section can be expressed as follows:

σ (ω) = 16π3

9�c
ω

dB̄(E1; ω)

dω
. (15)

As discussed in Sec. V, the dipole responses calculated in
the restricted shell-model space result in an enhancement of
EWSR compared with the classical TRK sum rule. In order
to obtain a quantitative agreement with available experimental
cross sections of 14,15N, the theoretical cross sections need to
be renormalized. We introduce two renormalization factors for
the T< and T> states respectively, i.e.,

σ (ω) = η<σ<(ω) + η>σ>(ω). (16)

In the 2–3�ω space calculation of 15N, it is found the
theoretical cross sections are very close to the experimental
data for E � 20 MeV; see Fig. 13(d). It indicates that η< ≈ 1
in this case and the enhancement of EWSR mainly results from
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FIG. 13. Theoretical and experimental photo absorption cross
sections in 14,15,16N. The solid lines with error bars are experimental
data. The solid without error bars are total photoabsorption cross
sections in the shell-model calculations, and dashed and dotted lines
are contributions from T< and T> states. The experimental data of
14N are taken from the evaluated version [54], and we add 10% of
the data as the error bars. The experimental data of 15N are taken
from Ref. [55]. For the reduction factors in the legends, see the text
for details.

TABLE II. The reduction factors in the shell-model calculation
of the photoabsorption cross sections.

η< η>

0–1�ω 0.8 0.56
2–3�ω 1.0 0.70

T> states. In Ref. [31], the authors analyzed the enhancement
of EWSR in 12C where only T> states contribute to the
photoabsorption cross sections. They estimated that 25 ± 10%
of the calculated strength obtained within the 2–3�ω space
should be in the energy region higher than 35 MeV, thus the
calculated cross sections for 12C were multiplied by a factor
0.7. The cross sections for 14N also are reasonably reproduced
with this reduction factor in the 2–3�ω calculations; see
Fig. 3(b). In the 0–1�ω calculations, considering that the
EWSR values are about 25% larger than the values in the
2–3�ω space calculations, the η< value would be further
reduced to 0.7/1.25 = 0.56. A summary of reduction factors
is given in Table II.

With the reduction factors discussed above, the theoretical
photoabsorption cross sections in the 14,15,16N isotopes are
compared with available experimental data in Fig. 13. After the
normalization, both the 0–1�ω and 2–3�ω space calculations
have reasonably well reproduced the experimental data in
14,15N. For 14N, there is only one giant peak, which is
located at 22.2 MeV in the 2–3�ω calculations, very close
to the experimental one at 22.5 MeV. Both theoretical and
experimental data show a high-energy tail (>25 MeV). In 15N,
besides the giant peak, there are several fragmented bumps
around 15.5 and 20 MeV, which are due to transition of T<

states. This feature is also clearly seen in the experimental
data. In 16N, the GDR peaks of T< and T> states are of similar

0 5 10 15 20 25 30 35 40
E (MeV)

0

5

10

15

20

25

30

σ(
γ,

x)
 (m

b)

Τ  ×0.8
Τ  ×0.56
T +T

17N (0-1h_ω)

0 10 20 30 40
E (MeV)

0

5

10

15

20

25

30
18N (0-1h_ω)

0 10 20 30 40
E (MeV)

0

5

10

15

20

25

30

σ(
γ,

x)
 (m

b)

19N (0-1h_ ω)

0 10 20 30 40
E (MeV)

0

5

10

15

20

25

30
20N (0-1h_ ω)

FIG. 14. Same as Fig. 13, but for 17,18,19,20N in the 0–1�ω

space calculations. The same set of reduction factors is used in all
subfigures; see the text for details.
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height. Correspondingly, the cross sections are more spread up
than those in 14,15N. This feature will also be seen in 17N.

Figure 14 gives the normalized photoabsorption cross
sections for 17,18,19,20N in the 0–1�ω space calculations.
Because different reduction factors are used for the T< and T>

states, the GDRs are more increasingly dominated by the single
T< peaks as the isospin increases. The overall peak height also
increases with the increasing isospin, which is consistent with
increasing TRK sum rule. The center of the PDR locates at
∼ 7 MeV, a few MeVs to the neutron separation threshold for
the even neutron 17,19N. Therefore, the astrophysical neutron
capture cross sections for 16,18N can increase tremendously.

VIII. SUMMARY

In summary, we have used the shell model to study the
pygmy and giant dipole resonances in the nitrogen isotopes.
The shell-model OBTDs and SHF single-particle wave func-
tions were combined to to calculate matrix elements of electric
dipole transitions. We checked the effective interaction and
single-particle wave functions by comparing the nucleon
separation energies and nuclear mass radii with available
experimental data. The proton and neutron separation energies
for the entire nitrogen chain are well reproduced by the WBP10
interaction. The SHF mean field was solved in the coordinate
space to obtain the single-particle wave functions. The general
trend of the experimental mass radii has been reproduced by
combining shell model with the SHF single-particle wave
functions, although the theory failed to reproduce the large
negative isospin shifts at the shells of N = 6, 8, and 14.

Large enhancement of low-lying dipole strength, i.e.,
pygmy dipole resonances, was predicted in the neutron-rich
17,18,19,20N. The nature of these PDRs was analyzed via the
transition densities and transition matrix elements. It turns out
these PDRs involve a larger amount of excitations between

the 2s1d and loosely bound 1f 2p shells. Combined with the
transition densities, we concluded that the PDRs in 17,18,19,20N
are collective and due to the oscillation between the excess
neutrons and the isospin saturated core, contrary to those states
in the neutron-rich oxygen isotopes studied by the mean-field
plus RPA approaches.

We also investigated the isospin dependence of energy
splitting and sum rule of isospin doublets. It is shown that the
splitting of GDR isospin doublets deviates from the systematic
values when nucleus is away from the β-stability line. The ratio
of T< and T> EWSR values are consistently larger than the
systematic values, and it is noticed that the calculated EWSR
ratio over the systematic ratio increases with increasing isospin
almost linearly. How this linearity is explained poses a very
interesting question to nuclear theorists.

The EWSRs of the PDRs in odd-Z nitrogen were compared
with those in the neighboring even-Z carbon and oxygen. The
exhaustion of the EWSRs summing up to 15 MeV shows a
decreasing tendency with increasing Z for neutron-rich nuclei
with the same N − Z, which is consistent with tendency of
the cluster sum rule over the classical sum rule. Thus it is also
consistent with the suggestion that the PDRs in the light-mass
neutron-rich nuclei are caused by the soft dipole mode.

The photoabsorption cross sections of the nitrogen isotopes
were calculated from the electric dipole strengths. To mend
the enhancement of transition strengths, normalization factors
were proposed for the 0–1�ω and 2–3�ω calculations. After
the normalization, the shell model has well reproduced
the experimental photoabsorption cross sections in 14,15N,
especially the detailed structure of resonances.
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