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We use the finite-amplitude method for computing charge-changing Skyrme—quasiparticle random-phase
approximation (QRPA) transition strengths in axially-deformed nuclei together with a modern Skyrme energy-
density functional to fit several previously unconstrained parameters in the charge-changing time-odd part of the
functional. With the modified functional we then calculate rates of S~ decay for all medium-mass and heavy
even-even nuclei between the valley of stability and the neutron drip line. We fit the Skyrme parameters to
a limited set of S-decay rates, a set of Gamow-Teller resonance energies, and a set of spin-dipole resonance
energies, in both spherical and deformed nuclei. Comparison to available experimental B-decay rates shows
agreement at roughly the same level as in other global QRPA calculations. We estimate the uncertainty in our
rates all the way to the neutron drip line through a construction that extrapolates the errors of known B-decay
rates in nuclei with intermediate Q values to less stable isotopes with higher Q values.
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I. INTRODUCTION

B-decay rates are an important ingredient in simulations
of the astrophysical r process. Because parts of the r-
process path are still not accessible to experiment, it is
up to theoretical models to produce approximate rates for
many relevant neutron-rich isotopes. Models could also help
resolve the issues raised by Ref. [1], which argued that the
flux of antineutrinos from nuclear reactors does not agree
with the standard model. Reference [2] pointed out that the
discrepancy could be attributable to an overly simple treatment
of first-forbidden g decay in fission products.

Several schemes/methods for calculating S-decay rates
across almost the entire nuclear chart have been devised. Be-
sides the phenomenological semigross theory [3], they include
the microscopic proton-neutron quasiparticle random-phase
approximation (pnQRPA) with separable Gamow-Teller (GT)
interaction [4] and an analogous scheme with no dynamic
T = 0 pairing interaction [5] and its extension for the first-
forbidden (FF) transitions added using the gross theory [6].
The self-consistent pnQRPA models were developed based on
the extended Thomas-Fermi plus Strutinsky integral method
[71, on the Fayans density functional [8], and, very recently,
on the spherical pnQRPA [9]. For the interacting shell-model
calculations, see Ref. [10] (in Refs. [8—10] both the GT and
FF transitions were consistently included). An artificial neural
network analysis can be found in Ref. [11]. Full 8-decay tables
for neutron-rich isotopes have been only published by Moller
et al. [4,5] and Marketin et al. [9].

Many other authors have applied more sophisticated and/or
computationally intensive methods to smaller sets of nuclei,
focusing on some of those important for the r process.
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Recent examples of such work include a deformed prnQRPA
computation with the Bonn-CD interaction of the decay of
neutron-rich isotopes with Z = 36-43 [12], of isotopes of
Zr and Mo [13], and of isotopes of Kr and Sr [14]; similar
calculations with Gogny interaction in the N = 82,126,184
isotonic chains [15]; relativistic pnQRPA [16] for 20 < Z <
50; and relativistic pnQRPA for N ~ 50,82 [17].

Computational barriers have thus far prevented the pro-
duction of a B-decay table for the entire nuclear chart
in a fully self-consistent Skyrme mean-field approach that
allows deformation. Recently, however, we reported [18]
an implementation of the charge-changing finite-amplitude
method, which sidesteps the QRPA eigenvalue problem. We
obtain B-decay rates by directly computing the required sums
and integrals over allowed final states of the response to
charge-changing perturbations. We will soon make available a
code called PNFAM that implements the method.

We could proceed by choosing an existing density func-
tional, interpreting it as a density-dependent effective inter-
action, and calculating B-decay rates. If we were interested
in, e.g., the effects of tensor terms discussed in Refs. [19]
and [20], we could take them from already parametrized
functionals. Such a procedure would require some parameter
fitting because pairing interactions and strengths, especially
those associated with isoscalar pairing, are not usually spec-
ified alongside Skyrme particle-hole effective interactions.
However, that approach is still too limiting because not all
Skyrme functionals can be consistently represented as effective
interactions. In particular, the time-even and time-odd parts
of the functional, which are related if the functional is the
mean-field expectation value of a Hamiltonian, need not be
related in more general constructions.

Our main goal here is to assess the ability of the Skyrme
QRPA with deformation to predict 8~ decay and to use existing
data (decay rates and resonance energies) to constrain the
isoscalar-pairing strength and the other time-odd coupling
constants, which, in the general energy-density functional
(EDF) picture, are not fixed by fits to masses, precisely because
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they are independent of the time-even functional. In much of
what follows, therefore, we do not assume that the functional
results from mean-field theory with an interaction and so will
have to fit a significant number of parameters. After presenting
our methods and assessment, we display the (summarized)
results of a full table of 8~ rates, computed with the PNFAM,
for even-even nuclei in all medium-mass and heavy isotopic
chains. We use a simple but apparently accurate model to
quantify and extrapolate theoretical uncertainty.

This article is organized as follows. Section II is a brief
overview of the theoretical background, and Sec. III details
our computational approach and parameter-fitting procedures.
In Sec. IV, we assess the quality of our results, comparing
them to earlier work and to experimental data where available.
Section V contains conclusions.

II. THEORETICAL BACKGROUND
A. Finite-amplitude method

The finite-amplitude method (FAM), a formulation of the
random-phase approximation that speeds the computation of
nuclear response functions, was introduced in nuclear physics
in Ref. [21]. It was later generalized to the QRPA in Ref.
[22] and to the relativistic QRPA in Ref. [23]. In Ref. [18]
we applied the method to charge-exchange transitions, in
particular allowed and first-forbidden g decay.

The FAM solves equations for the amplitude of the linear
response to a small but finite perturbation. As a result, the
method does not directly yield the poles and residues of the
response, which are the central objects in the matrix version
of the QRPA. However, if the goal of the computation is to get
transition strength functions in a large model space the FAM
can yield results in orders of magnitude less CPU time than
matrix QRPA.

The FAM offers another advantage for S decay: The
weighted sums or integrals of transition strength can be
expressed as contour integrals. This fact was first exploited
by Hinohara er al. [24], who evaluated the response at a
relatively small number of complex frequencies to compute
sum rules. In Ref. [18] we used the idea to evaluate the
more complicated B-decay phase-space-weighted integrals,
which are not analytic and contain interference terms between
first-forbidden operators. With the FAM we can thus use
typical supercomputer resources to calculate many observables
in a large number of nuclei. We are able to extend systematic
Skyrme parameter fitting from mean-field calculations to
deformed QRPA calculations, at least in a preliminary way.

B. Model parameters and fitting targets

Our starting point in the particle-hole channel is a generic
Skyrme EDF:

+t
&€= Z Z /dr[H?;en(l‘)-i-Hfgd(r)]_ (1
t=0,113=—t

Here H;7°" contains products of time-even local densities only,
with coefficients fixed by fitting to masses and perhaps a few
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other quantities, and H;; " is given by
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with the spin density s;,, the current density j;,, the spin-
kinetic density T, and the tensor-kinetic density F;,, defined,
e.g., in Ref. [25]. If one requires the functional to be the
mean-field expectation value of a Skyrme interaction, EDF
coupling constants are completely determined by the (fewer)
parameters that specify the interaction, as discussed in Refs.
[25,26] and mentioned above. In this work, we adopt the view
that the effective “interaction” comes from the EDF rather
than the other way around. Consequently, we are free to fit all
the time-odd coupling constants without spoiling the mass fits
generated by the time-even couplings. We do, however, adopt
the values obtained from the Skyrme parametrization as our
starting point for the fits, unless we note otherwise.

The subset {C],C],C{} of time-odd coupling constants
maps directly to the parameters of the Landau-Migdal interac-
tion for infinite homogeneous nuclear matter with tensor terms
[27]. In that sense, these couplings are intimately related to
the bulk properties of the nuclear matter. The constant C! is
purely tensor in character, and it determines the tensor term
in the Landau-Migdal interaction. The spin-density coupling
constant Cy strongly affects the GT strength distribution and
can be fit to the locations of GT resonances [26]. The last term
CT maps to a linear combination of the Landau parameters of
both the tensor term and a term that depends on the scattering
angle of the Landau-Migdal quasiparticles.

Two other parameters have a large effect in the QRPA:
the strengths of the residual particle-particle (or pairing)
interaction between protons and neutrons,

Poo(T)

c

Vpp=(voﬁT=o+v1ﬁT=1>[1—a }S(r), A3)

where p. = 0.16 fm™ is the saturation density of nuclear
matter and o € [0,1] controls the pairing density-dependence
(throughout this work we use mixed pairing, i.e.,« = 0.5). The
isovector (7' = 1) proton-neutron pairing mainly affects Fermi
B decay, which plays almost no role in heavy nuclei; we simply
set its strength V) to be the average of the neutron-neutron
and proton-proton pairing strengths [both fixed in the Hartree-
Fock-Bogoliubov (HFB) part of the calculation]. The isoscalar
(T = 0) pairing is a different story; it has a strong effect on GT
decay, and determining a reasonable value for its strength is
a common issue in single and double B-decay computations.
The HFB mean field is independent of the T = 0 pairing term
as long as explicit proton-neutron mixing is neglected. We are
thus free to fit V; in the QRPA.

We include three types of observables in our fitting
procedure: Gamow-Teller resonance energies, spin-dipole res-
onance energies, and total 8-decay rates, all in both spherical
and deformed isotopes. Although we pick several sets of target
nuclei for fitting the decay half-lives, each set includes a large
range of mass values so that our fits can be global. To assess
the success of the fits and to compare them to earlier work in
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very different models, we also compute the following metrics
for B-decay tables, as laid out, e.g., in Refs. [4,5]: the residual
of each computed log;,¢ value (where ¢ is the half-life),

1
r= loglo( th ), @
texp
the average of the residuals,
mo=Ly 5)
r— - i
n -

(where we have used an index i to indicate that there is an r
for every nucleus), and the standard deviation of the residuals
around the average,

(6)

o, =

Reference [11] contains an excellent compilation of these
quantities.

C. Uncertainty analysis

As theoretical approaches grow more sophisticated, the
analysis of theoretical uncertainty is growing in importance.
Here we attempt to provide reasonable estimates for the
uncertainty in our predicted half-lives, particularly in isotopes
that are too short lived to allow measurement.

The standard prescription for assigning a theoretical (sta-
tistical) uncertainty AQ to a computed observable O is [28]

00 00
AO = b —— , 7
\/Z 0xy | — b 0xp |, @)
ab X=Xq X=X
where C is the covariance matrix
c=J"n" 8)

and x = (xi, ...,xy,) are the N, parameters of the model. The
partial derivatives of all the observables {O,} with respect to
all the parameters evaluated at the result of the fit xo form the
Jacobian J:

90,
- Bxb

®

J, ab
X=X(

When not analytically accessible, the needed partial derivatives
can be estimated through finite central differences. (In general,
the theoretical uncertainty related to the Jacobian must be
supplemented by numerical and experimental uncertainties.
We have assumed that the theoretical uncertainty is much larger
than the other two, which we therefore neglect.)

To use Eq. (7) to assign an uncertainty to every S-decay
rate in our table, we would need to evaluate the Jacobian in
Eq. (9) for (the logarithms of) all the half-lives ¢ in our table.
Unfortunately, the required 2N, full decay-table computations
are still not possible in a reasonable amount of computer time,
even with the efficiency of the FAM. We therefore attempt
to gauge the uncertainties and their Q dependence in a more
naive way. We construct a simple few-parameter model for the
uncertainties that we can then fit to the observed differences
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between our numerical results and known experimental values.
The resulting approach is agnostic about how the decay is
actually calculated; it treats the nuclear model as a black box
that produces predictions for Q values and f-decay rates.
It does, however, make several assumptions about both the
calculated and the experimental strength distributions that are
only approximately correct.

The first assumption is that the final states that contribute
significantly to a decay rate lie not too far from the ground
state in a relatively small window of excitation energy, so
that we can reasonably approximate them, again either in our
calculation or in the real world, by one effective state with
an effective Q value g (that is not too different from the
ground-state Q value):

G = YuCufilge + 1,Zp) qi
¢ Y Cufilgr +1.Zp) -

Here Cj is the standard integrated shape function for the
transition to the final state k—for an allowed state decay
this is simply the transition strength, and for a nonunique
forbidden decay it encapsulates several terms—and f; is the
usual allowed phase-space integral. The quantity gy is the Q
value of the decay to the state k divided by m.c?, and Z; is
the charge of the daughter nucleus.

With these definitions, we can proceed to define an effective
shape factor Cegr as

10)

K K
TN Cifa+ LZg) T Cef(qer + 1,Z5)

The C; depend on the g; for forbidden transitions, but the
dependence is weak compared to that of the corresponding
phase-space integral, and so we neglect it in our effective
shape factor.

All these definitions can be made independently for the
experimental strength distribution and the theoretical one. The
quantity we wish to understand is the ratio r of the theoretical
and experimental lifetimes,

t

(1)

exp
-1 Iih —1 Ceff
r= Oglo_t =108 Cch
exp eff

+log,of (g + 1.Z5) —logyo f (g8 +1.Zy), (12)

where the meanings of g5y and g% and the corresponding

quantities Cyf and C™. should be clear. We omit the nucleus
index i in them for brevity. Because the phase space grows
quickly with decay energy, the effective Q values will usually
be close to ground-state-to-ground-state Q value. We therefore
expand both logarithms in Eq. (12) of the phase-space factors
about the theoretical ground-state-to-ground-state Q value qg‘&
to first order in ¢:

logof(q +1.Zy) ~ log,, f(qg + 1.Z)

dlo + 1,2,
¢ SBmlUELED) g
dq a=q%,
=logyof(q8s. + 1.Z)
flags, +1.Z7) g — a3 a3

flag, +1,25) 10
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This approximation is best when the Q value is high, because
the curvature of log,, f(g 4+ 1,Z) is small at high g. For O
values lower than about 2-3 MeV the first-order approximation
is poor, so we exclude such data points from our analysis.

Replacing the two logarithms in Eq. (12) with the first-order
expressions, we find that several terms cancel in the difference,
so that

car | fags +1.Z) g — alh
Ca  flaf +1.Z;) nl0

We now make another set of assumptions, this time about
the distribution of the errors in the theoretical values: First, we
assume that the relative error in the effective shape factor is
normally distributed with a slight systematic component. That
is, we assume that for each nucleus, we have

r ~log, (14)

exp

c
log;, Cetg =c +dc, (15)
eff

where ¢ is a constant, independent of the nucleus in which
the decay occurs, that captures the systematic error and the
set of all nucleus-dependent §¢’s is normally distributed with
standard deviation Ac, which is a measure of statistical error
that is independent of decay energy. Similarly, we assume that
the errors in the theoretical effective Q value follow a normal
distribution, so that

dert — Aoy

In 10
where ¢ is now a nucleus-independent systematic error in
the effective Q value and the set of §g’s (again, one for
each nucleus) is normally distributed around zero with the
standard deviation Ag that represents statistical error, again
independent of Q. (Both ¢ and g are expressed in units of
m,c?, and the factor 1/1n10 is absorbed into ¢ and §q for
convenience.) Finally, we assume that the errors §q and éc¢ are
independent.
With these assumptions, we then have

f/ thS +1,Z
r:c—i——(qi" f)q+5r, a7)
f(qg.s. + I’Zf)
where §r is a random error, the set of which must be normally
distributed at each ¢ with width

flag. +1.Zy)
flad, +1.Z¢)

We can now use Eqgs. (17) and (18) to determine the values
of ¢, g, Ac, and Ag. We obtain the first two through a fit to
Eq. (17), which expresses r; as a function of f’/f (and thus
of 61;'.‘3,), with the set of ratios r; given by our calculations (and
experiment) and &r; set to zero. Finally, we insert the fit values
of ¢ and ¢ into the square of Eq. (17), which then expresses
(Srl.z as a function of (f'/f)?, and determine the values of Ac

and Ag by requiring that the line for Ar(gy", )* as a function

of (f'/f)? that expresses Eq. (18) goes through the middle
of the data, with as many points below Ar? as above it. A
second least-squares fit of Ac and Agq in the right-hand side of
Eq. (18) to the set of 6ri2’s accomplishes the task nicely. The

=q +4dq, (16)

2
Ar(q;h,s,)2 = A+ [ ] Ag®.  (18)
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explicitly O-dependent Ar can then be extrapolated to large
O values where there are no data.

For both fits, in practice, we only include data points with
0 > 3 MeV and exclude any data points with |r;| > 4 as
obvious outliers. We also adopt the Primakoff-Rosen approx-
imation [29] for the phase-space integral in the uncertainty
model, making the expression f’/f a simple ratio of two
polynomials, independent of Z ¢:

rezp
f(xvzf)

Once the four parameters of the uncertainty model have been
determined, the uncertainties of the theoretical predictions are
obtained the inverse relation of (4)

texp = Ih X lor’ (20)

5x* —20x + 15
x5 —10x2+15x — 6~

19

with
r=r(qg.) = Ar(qgy)- Q1)

III. SKYRME FUNCTIONAL AND
COMPUTATIONAL METHOD

The first step in our computational procedure is the
construction of ground states in the doubly even mother
nucleus with HFBTHO, a well-established HFB solver working
in a (transformed) harmonic-oscillator basis [30]. We cut off
the single-particle space at 60 MeV to avoid divergences from
our zero-range pairing. For each nucleus, we search for a
prolate, an oblate, and a spherical solution and take the most
bound of these to be the ground state.

Because the §-decay rates are very sensitive to the Q value
of the decay, we look for a modern Skyrme functional that
reproduces Q values well. Because we do not explicitly treat
odd nuclei, we use the prescription of Ref. [31] to approximate
the Q value; we have checked the prescription against odd-A
calculations in the equal filling approximation, and the two
procedures generally agree to within about 0.5 MeV. Of
the several functionals we examine, SKO’ [32] (with the
strengths of proton-proton and neutron-neutron pairing fit to
the experimental pairing gaps of ten isotopes picked in a wide
mass range 50 < A < 230) does the best job with Q values,
producing errors for ground-state-to-ground-state Q values
that are normally distributed, with an average systematic error
of 0.154 MeV and statistical error of 0.576 MeV. Figure 1
compares the Q values produced by SkO’ with those of the
next best functional, SV-min.

To compute S-decay rates and resonance energies, we use
the code PNFAM, an implementation of the charge-changing
FAM presented in Ref. [18]. Built to work together with
HFBTHO, PNFAM allows us to compute properties of axially-
deformed nuclei, including both allowed and first-forbidden g
decay.

We obtain our most robust fits by fixing all but two of the
time-odd coupling constants of the functional at values implied
by its interpretation as an interaction. (The mapping of the
Skyrme coupling constants to the EDF coupling constants is
explicitly discussed in Refs. [25,26].) The exceptions are C;}
and C IAS. We set the latter to zero to avoid known finite-size
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FIG. 1. The differences between computed and experimental Q
values, with SV-min (a) and SkO’ (b). The insets show the distribution
of differences. The errors in our computed Q values follow a normal
distribution with an average of 0.154 MeV and a standard deviation
of 0.576 MeV, with no noticeable bias when moving to higher Q
values.

instabilities [33] which, in the case of HFBTHO and PNFAM,
manifest themselves as divergences in the iterative solution.
That leaves Cy, which, along with the isoscalar pairing strength
Vo, we fit to a set of GT resonance energies, spin-dipole
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resonance energies, and B-decay rates selected from a wide
mass range with no particular region favored. We use the
code POUNDERS, based on a derivative-free algorithm [34]
designed for optimizing computer-time-consuming penalty
functions, to efficiently minimize the weighted sum of the least
squares, simultaneously fitting both parameters. We take Cj
to be independent of the density and Vj to have the same
density dependence as the proton and neutron pairing. The
axial-vector coupling constant g is known to be quenched in
nuclei, but the source and magnitude of the quenching is an
open problem; a variety of very different values for an effective
ga have been used. For lack of a better prescription, we use
the commonly adopted quenched value gao = 1.0 in the GT
channel, while applying no quenching in in the first-forbidden
channels (we also might have tried a similarly quenched value
for the first-forbidden channels). We weight the three types
of observables—two kinds of energies and a rate—in the
least-squares fit so as to approximately normalize the total
penalty function x? to the number of degrees of freedom,
following the recommendation in Ref. [28]. We assume that
the theoretical error dominates the experimental error and
thus assign equal weight to an observable of the same type.
We select these weights based on how well the different
observables are reproduced in an initial test fit, so that each
type of observable is approximately equally weighted in the
actual fit. Typical fits then take 10 000-20 000 CPU hours, and
we use XSEDE supercomputers [35] to carry them out.

Following the fit, we proceed to compute the S-decay rates
of all even-even neutron-rich nuclei with28 < Z < 110, A >
50, all the way to the neutron drip line, omitting just a few very
stable isotopes for which the Q value is negative in our HFB
calculations.

IV. RESULTS AND DISCUSSION
A. Fit results

To assess how sensitive our fit is to the set of target S-decay
rates and resonance energies, we repeat the process with four
sets of rates, summarized in Table I. Each of these sets spans
a large range of masses. Set A contains S-decay isotopes with
relatively short half-lives only, set B relatively long half-lives
only, and set C a wide range of half-lives. (Short half-lives
should be less sensitive to details in nuclear structure, whereas
long half-lives, despite being less reasonable, allow us to see

TABLE 1. The sets of fitting targets used in this work. The 8-decay half-lives in set A range from 0.069 s ( 1028r) to 1.84 s (°*Kr), in set B
from 95.6 s (7*Zn) to 45360 s (**Pt), in set C from 0.54 s (''*Ru) to 9399.6 s (°>Sr), and in set E from 0.046 s ( **Kr) to 444 s (**Rn). The
nuclei selected for fitting the B-decay half-lives in sets D and E all exhibit an excitation spectrum clearly associated with either a spherical or a
well-deformed shape; set E only consists of open-shell nuclei. The experimental GT resonance energies are from Refs. [36—40], the spin-dipole
resonance energies are from Refs. [41,42], and the half-lives are from Ref. [43].

Set GT resonances SD resonances B-decay half-lives

A 208Pb nzsn 76Ge 13()Te ‘)OZr 48Ca NOI]C 48Ar 60Cr 72Ni SZZn 92Kr IOZSr 114Ru 126Cd 134Sn 148Ba
B Same as A None 3274, ™Zn, *2Sr, 14Pd, **Te, 13°Sm, '*°Yb, 2%Ppt, 2°Rn, >**U
C Same as A None 214, Ni, *2Sr, "*Ru, **Te, "°Nd, '*°Yb, 2*Pt, >°Rn, 2*U
D Those of A and "°Nd None BTy, 7n, %Kr, 12°Cd, 2Ce, '%Gd, **Pt

E Same as D N7r, 2%pp 3T, 7n, BKr, 2°Cd, Ce, 'Gd, ?*°Rn
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GT resonances SD resonances half-lives
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FIG. 2. Reproduction of target data in those of our fits that use the target set E. The four-parameter fits 3A and 3B yield almost the same
results as the two-parameter fits 1D and 1E, with only a small decrease in the penalty function.

how sensitive our fits are to the selection of fitting targets).
Set D contains only nuclei that are known to be rather rigid,
with an excitation spectrum characteristic of a spherical or
a well-deformed nucleus. (The QRPA, which is based on
a single mean field, should work best in rigid nuclei). In
set E, we include only open-shell rigid nuclei (for which
isoscalar pairing should be most effective), swapping out
204pt for 22°Rn, and including two spin-dipole resonances.
Figure 2 shows the quality of the fits for set E both with
computed (1D) and experimental (1E) Q values (see Table II
for definitions of the number-letter combinations). The two
procedures yield very similar results. The comparison in Fig. 3,
which shows the results of the two-parameter fits (along
with those of more-parameter fits discussed shortly) when the
resulting functionals are applied to the set of all measured even-
even B~ -decay half-lives, shows that all these two-parameter
fits (1A through 1E) yield the same level of predictive
accuracy.

Can we do better by including some of the other time-odd
coupling constants in our fit? To find out, we refit the four-
parameter set {Vy,C$,CT,CF}, which determines the Landau
parameters {g;,g1,/,} and thus allows us to incorporate
infinite-nuclear-matter stability conditions [27] as constraints.
The parameter C{ introduces a time-odd tensor term that is
not present in the two-parameter fits. The result, however,
improves the description of the fitting targets only marginally,
as the points labeled 3A and 3B in Fig. 2 show, and actually
worsens the agreement with half-life measurements overall (as
Fig. 3 shows). The situation gets even worse when we use the
results of this fit as a starting point to fit three more time-odd
coupling constants, {C?,CV/,CV*} (fit 4). Then the B-decay
rates to which we fit are reproduced better, but the agreement
with all measured rates deteriorates.

Improvement in the fitting targets accompanying a dete-
rioration in overall agreement with data is a symptom of
overfitting. To better understand why this happens, we evaluate

the Jacobian matrix (9) at the parameter values produced by the
two-parameter fit 1E. The Jacobian appears in Table III, with
the values of the coupling constants in natural units following
the prescription of Ref. [44] and the natural scale of isoscalar
pairing taken to be the strength of isovector pairing. A clear
column structure appears in both the resonance energies and
the half-lives, signaling that the members of each individual set
move largely in unison when the parameters are varied. Thus,
there are essentially just two meaningful degrees of freedom
that we can expect to fix with this experimental data: V; and
Ci.

To see this in more detail, we carry out a singular value
decomposition of the Jacobian. The largest singular value,
122.53, corresponds to a vector pointing nearly in the direction
of C{ in parameter space, and the second largest, 10.85, to
a vector pointing nearly in the direction of Vj. The third-
largest value, 1.648, is almost two orders of magnitude smaller
than the largest, and corresponds mostly to C7, with many
other directions mixed in. The charge-changing data we have
available—GT and spin-dipole resonances and half-lives—are
not enough to reasonably constrain more than the parameters
Vo and C7 in our initial fit.

Figure 3, besides containing the results of our fits, contains
results from other work: Refs. [3,6,11] and [9]. Of all the
these computations, the one by Homma et al. [3] seems
to best reproduce the known B~ half-lives, even though it
neglects nonunique first-forbidden decay and uses simple
separable interactions. As Fig. 4 shows, in our computation the
nonunique 1~ contribution is quite important (even dominant)
in many experimentally inaccessible nuclei, so it is far from
clear how the various calculations will fare with data in the
future. In any event, the most striking fact is that all the
computations manage to reproduce existing data at roughly
the same level of precision. It may not be possible to do much
better without moving beyond Skyrme QRPA, at least while
using a global parameter set, as we have done here.
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TABLE II. Summary of the various fits in this work. The functional listed for each fit dictates the values of the coupling constants that are
not fit, except for that of C2*, which is set to zero everywhere to avoid finite-size instabilities. The units of V;, and C | are MeV fm?, and the

units of the other coupling constants are MeV fm’.

Fit Starting point Target set Q values fitted parameters

1A SkO’ A Comp. Vo = —173.176, C} = 128.279

1B SkO’ B Comp. Vo = —176.614, C} = 133.038

1C SkO’ C Comp. Vo = —176.097, C} = 126.966

1D SkO’ E Comp. Vo = —209.384, C} = 129.297

1E SkO’ E Exp. Vo = —159.397, C} = 99.8479

2 SV-min D Comp. Vo = —165.567, C} = 132.271

3A SkO’ E Comp. Vo = —195.174, Cj = 144.833, CT = —20.1618, C{ = —10.3125

3B SkO’ E Exp. Vo = —165.158, C3 = 120.27, CT = —17.7435, Cf = —17.9902
Fit 3A E Comp. Cl =545,C)7 = —78.7965,CY* = —87.5

5 SkO’ E Comp. Vo = —191.875, C3 = 146.182, C] = —86.4276

B. Extrapolation to neutron-rich isotopes

Figure 4 displays the relative contribution to the decay
rate from each multipole. Except in the immediate vicinity
of the valley of stability, the changes appear quite gradual as
a function of Z and N. In nuclei with large Q values, the
details of single-particle structure are less important than in
isotopes for which transitions to only a few low-energy states
are possible.

Figure 4 also demonstrates the importance of going be-
yond the allowed approximation. In many heavy nuclei, the
computed rates are dominated by the first-forbidden channel.
Towards the drip line, both allowed and forbidden channels
are important for all masses. The figure also shows that
the nonunique 1~ channel is usually the most important
of the forbidden multipoles. Thus, any quenching of the
(unique) 2~ channel and antiquenching of the (nonunique) 0~
channel from meson-exchange currents [45] would not have a
significant impact on our overall results. In the 1~ channel the

contributions of several different operators makes the effects
of quenching hard to estimate.

In Fig. 5 we compare our half-lives to those of Moller et al.
[5] in all medium and heavy even-even isotopes. Our half-lives
tend to be longer than those of Ref. [5] close to the valley of
stability in light nuclei and somewhat shorter in heavy nuclei
(with significant forbidden contributions). Approaching the
neutron drip line, the two computations yield similar results
up to a constant offset in those of Ref. [5] in even-even nuclei.
All models can expect to do better near the drip line, where a
significant fraction of the total §-decay strength can be below
threshold.

Because our naive model for uncertainties is based on
several assumptions that are only approximately correct or
cannot easily be verified, we check its predictions where there
are enough data to do so. Figure 6 shows the ratios of our
half-lives to those of experiment together with the uncertainty
model’s mean value and one- and two-standard-deviation

TABLE III. The Jacobian matrix, evaluated at the result of the two-parameter fit 1E. All parameters except for the strength of isoscalar
pairing are expressed in natural units. The strength of isoscalar pairing has been scaled by the strength of isovector pairing. The derivatives of
the log,,¢ values are hence dimensionless and those of the resonance energies are in the units of MeV.

1) d0/dcC; dO/dV, dojdcr dojdct dO/dcys dO/dchs dO/dc doydcy’
28pb Egrr 57.261 —0.000 2.434 5.869 0.429 —1.002 0.000 0.143
280 Egmr 29.498 —1.032 1.432 2.863 0.286 —0.573 0.000 0.000
°Ge Egrr 45.115 —7.225 2.004 4295 0.429 —1.145 0.000 0.000
3Te Egrr 53.790 —3.096 2.434 5.297 0.429 —1.002 0.143 0.000
N7r Egmr 29.498 —1.032 1.288 2.720 0.429 —1.002 —0.143 0.143
®Ca Egm 32.968 —0.000 1.432 3.149 0.573 —1.288 0.000 0.000
208ph Egpr 52.055 —0.000 2.291 4.008 0.286 —1.575 —0.143 —0.143
N7r Espr 29.498 —0.000 1.575 2.004 0.286 —1.432 —0.286 —0.143
3Ti log, ot 4,749 —4318 0.203 0.445 0.045 —0.109 —0.011 —0.002
87n log, ot 6.889 —2.922 0.256 0.589 0.164 —0.382 0.253 —0.025
BKr log,,t 5.410 —3.252 0.265 0.559 0.050 —0.116 —0.012 —0.003
126Cd log, ot 5.583 —4.641 0.252 0.496 0.017 —0.050 0.001 0.007
152Ce log,ot 5.409 —2.474 0.293 0.540 0.051 —0.120 0.003 —0.009
1%6Gd log,ot 5.081 —2.924 0.250 0.497 0.035 —0.132 —0.007 —0.010
24Pt Jog, ot 3.755 —3.340 —0.015 0.160 —0.018 —0.316 —0.076 0.026
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Only even-even isotopes are considered.
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FIG. 4. The contributions of different allowed and first-forbidden
multipoles to the total computed S-decay rates. Only even-even nuclei
are considered.
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FIG. 5. Comparison of our computed half-lives in neutron-rich
nuclei with those of Ref. [5].

bands, all as a function of ground-state Q value. We can
discount the model at very low Q but it appears to work well
above Q ~ 4 MeV. Of the 72 nuclei, 48 (66.7%) fall within
one standard deviation of the mean and 71 (98.6%) within
two. These numbers are consistent with what one would expect
from a normal distribution. The model quantifies our statement
above that calculations are more accurate close to the drip line,
where Q is generally large.

A recent radioactive isotope beam factory measurement
[46] of 110 neutron-rich isotopes, 40 of them previously
unknown, allows us to test the reliability of our predictions
and especially our model for theoretical uncertainties. Because
the data are so recent, we did not include them in any of our
fits, and hence we are effectively using older data to predict
the results of these new measurements. We have 28 even-even
nuclei with which to compare rates; for half of these there are
earlier data in the ENSDF set (Fig. 7). Our predictions agree
with experiment to within our theoretical uncertainty (though
our error bars may be a bit too large here). Our uncertainty
model thus appears to be reasonable.

V. CONCLUSIONS

We have explored the ability of the axially-deformed
Skyrme QRPA to provide a global description of S-decay
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FIG. 6. The fit 3A with the mean (green line) and one- and two-
standard-deviation bands from our uncertainty model.
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FIG. 7. Our predictions for the 14 half-lives of neutron-rich even-
even nuclei measured only recently [46] and not included in the
ENSDF data set. All the measured half-lives fall within our 1o error
bars, suggesting that our uncertainty estimates are too pessimistic in
this particular region.

rates in even-even neutron-rich nuclei. With experimental
rates and charge-exchange resonance energies as fitting targets
we have found that among time-odd couplings, only those
multiplying the isoscalar-pairing and the spin-density parts of
the functional are well constrained; attempts to fit more than
these two constants lead to overfitting. The tensor contributions
to the EDF are, in particular, not well constrained by this
data. To get more accurate Skyrme-QRPA predictions, one
can resort to local fits, i.e., A-dependent couplings. The
recent work of Ref. [9], for example, attaches a sensible A
dependence to the strength of isoscalar pairing. In addition,
including neutron separation energies as additional fitting
targets could help constrain the couplings somewhat better.
Furthermore, including quenching of the FF operators might
make a difference for heavier nuclei.

The level of agreement between our calculations and data
throughout the isotopic chart is similar to that produced by
other recent computations, in spite of our consistent inclusion
of deformation, tensor terms in the functional, etc. It could be
difficult to do much better without an account of multiphonon
effects, which have been found to noticeably affect the GT
strength distribution (e.g., in Ref. [47]) and consequently the
B-decay rates in Ref. [48].

The most glaring shortcoming of our work here is the
restriction to even-even nuclei. An extension of the FAM to
odd-mass nuclei will be the subject of a future publication [49].
For the moment, we make our results for the 1387 even-even
neutron-rich nuclei, with crudely estimated theoretical uncer-
tainties, available as Supplemental Material to this article [50].
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