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Leading three-baryon forces are derived within SU(3) chiral effective field theory. Three classes of irreducible
diagrams contribute: three-baryon contact terms, one-meson exchange, and two-meson exchange diagrams. We
provide the minimal nonrelativistic terms of the chiral Lagrangian that contribute to these diagrams. SU(3)
relations are given for the strangeness S = 0 and −1 sectors. In the strangeness-zero sector we recover the
well-known three-nucleon forces from chiral effective field theory. Explicit expressions for the �NN chiral
potential in isospin space are presented.
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I. INTRODUCTION

Solving nuclear few- and many-body problems based on
microscopic interactions has been a continuous challenge in
nuclear physics. Nowadays the nucleon-nucleon (NN ) inter-
action can be treated to high accuracy using phenomenological
models [1–3] or potentials derived from chiral effective field
theory (χEFT) [4,5]. However, few-body systems such as
the triton cannot be described satisfactorily with two-body
forces only. Substantial improvements result from the con-
sideration of three-nucleon forces (3NFs) [6,7]. These 3NFs
are introduced either phenomenologically, such as the families
of Tuscon-Melbourne [8,9], Brazilian [10], or Urbana-Illinois
[11,12] 3NFs, or deduced from more basic principles using
χEFT [7,13–21]. Effective field theory approaches have the
advantage that 3NFs can be derived consistently with the
underlying NN interaction and that theoretical error estimates
are possible.

The situation in strangeness nuclear physics is less clear.
Owing to the lack of high-precision experimental data, the
hyperon-nucleon (YN ) interaction cannot be sufficiently well
constrained. Different models describe the empirical scattering
data equivalently [22–25], but differ considerably from each
other. Nonetheless, three-baryon forces (3BFs), in particular
a repulsive �NN interaction, appear to be essential for the
description of hypernuclei and hypernuclear matter [26–34].
Empirical facts about dense neutron-star matter favor such
considerations. The recent observation of two-solar-mass
neutron stars [35,36] sets strong stiffness constraints for the
equation of state (EoS) of dense baryonic matter [37–39]. A
naive introduction of � hyperons as an additional baryonic
degree of freedom in neutron-star matter would soften the
EoS [40] such that it is not possible to stabilize two-solar-mass
neutron stars against gravitational collapse. The introduction
of strongly repulsive YNN forces is one possible suggestion
to improve the situation [41–43].

So far, baryonic three-body forces involving hyperons
have been investigated only by employing phenomenological
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interactions, and a more systematic approach is desirable.
Chiral effective field theory is an appropriate tool for such
considerations. It exploits the symmetries of quantum chro-
modynamics together with the appropriate low-energy degrees
of freedom. The description of the low-energy interaction of
hadrons can be improved systematically by going to higher or-
der in the power counting in small momenta. Furthermore, the
hierarchy of baryonic forces, from long-range to intermediate-
and short-range interactions, emerges naturally within this
framework. Two- and three-baryon forces can be described
in a consistent way.

Recently, the YN interaction has been studied up to next-to-
leading order (NLO) in χEFT. The YN scattering data [25], as
well as the self-energies of hyperons in nuclear matter [44,45],
can be well described within this framework. The irreducible
chiral 3BFs appear formally at next-to-next-to-leading order
(NNLO) [4]. However, e.g., the low-energy constants of
the 3NFs at NNLO are unnaturally large and cause effects
comparable to those one would expect at the NLO level. These
large values are connected with the excitation of the low-lying
�(1232) resonance and can be understood in terms of the
so-called resonance saturation. Indeed, the inclusion of the
� isobar as an explicit degree of freedom in EFT promotes
parts of the 3NFs to NLO [4,46]. In systems with strangeness
S = −1, resonances such as the �∗(1385) could play a similar
role as the � in the NNN system. It is therefore likewise
compelling to treat their effects in 3BFs together with the
NLO YN interaction.

In the standard power counting scheme of the baryonic
forces in χEFT (cf. Refs. [4,5]) the chiral dimension ν of a
given Feynman diagram is determined by

ν = − 4 + 2B + 2L +
∑

i

vi�i,

�i = di + 1

2
bi − 2, (1)

where B is the number of external baryons and L the number
of Goldstone boson loops. The number of vertices with vertex
dimension �i � 0 is denoted by vi . The symbol di stands
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FIG. 1. Leading three-baryon interactions: (from left to right)
contact term, one-meson exchange, and two-meson exchange. Solid
circles and solid dots denote vertices with �i = 1 and �i = 0,
respectively.

for the number of derivatives or pseudoscalar-meson mass
insertions at the vertex and bi is the number of internal
baryon lines at the considered vertex. Following Eq. (1),
one obtains at NNLO with ν = 3 the leading three-baryon
diagrams of Fig. 1 in complete analogy to the leading 3NFs.
Note that a two-meson exchange diagram, like in Fig. 1, with
a (leading-order) Weinberg-Tomozawa vertex in the middle,
would formally be a NLO contribution. However, as in the
nucleonic sector, this contribution is kinematically suppressed
to higher order. In SU(3) χEFT nucleons and strange baryons
(�, �, �) are treated on equal footing. Accordingly, reducible
diagrams involving those baryons do not constitute genuine
3BFs. These diagrams must not be included into the chiral
potential, as they will be generated automatically when solving
the Faddeev or Yakubovsky equations consistently within
a coupled-channel approach. This differs from typical phe-
nomenological calculations with �NN 3BFs, where reducible
diagrams like the one with two one-meson exchanges and
an intermediate �NN state are often used. In our approach
such diagrams do not correspond to a 3BF, but to an iterated
two-baryon force.

In this work we construct the potentials for the leading
3BFs relevant for few- and many-body calculations, within the
framework of SU(3) χEFT. The present paper is organized as
follows. In Sec. II we show the minimal effective Lagrangian
for six-baryon contact terms and its construction principles.
We explain how antisymmetrized potentials can be obtained
from the contact Lagrangian. Furthermore, we investigate the
group-theoretical classification of the interactions and provide
SU(3) relations for the strangeness 0 and −1 sectors. In Sec. III
the minimal chiral Lagrangian for the four-baryon contact
vertex involving one pseudoscalar meson is given and applied
to the 3BF with one-meson exchange. Section IV is devoted
to the two-meson exchange potentials. In Sec. V we provide
explicit expressions for the potentials of the �NN interaction
for the contact term and the pion-exchange components. For
comparison the three-body potentials in the nucleonic sector
are reproduced. Conclusions and an outlook are given in
Sec. VI.

II. CONTACT INTERACTION

In the following we consider the three-baryon contact in-
teraction. We construct the minimal Lagrangian, demonstrate

how to derive the antisymmetrized potentials, and investigate
their group-theoretical classification.

A. Overcomplete contact Lagrangian

The terms of the effective Lagrangian have to fulfill the
symmetries of quantum chromodynamics and are constructed
to obey invariance under charge conjugation, parity transfor-
mation, Hermitian conjugation, and the local chiral symmetry
group SU(3)L × SU(3)R. The baryon fields are collected in the
traceless matrix

B =

⎛
⎜⎜⎝

�0√
2

+ �√
6

�+ p

�− − �0√
2

+ �√
6

n

�− �0 − 2�√
6

⎞
⎟⎟⎠ . (2)

To obtain the most general contact Lagrangian in flavor SU(3),
we follow the same procedure as used for the four-baryon
contact terms in Ref. [47]. Generalizing these construction
rules straightforwardly to six-baryon contact terms, we end
up with a (largely) overcomplete set of terms for the leading
covariant Lagrangian,

L =
11∑

f =1

5∑
a=1

tf,aT f,a, (3)

where the index f runs over 11 possible flavor structures.
These are given by

T 1,a = 〈B̄αB̄βB̄γ (�1,aB)α(�2,aB)β(�3,aB)γ 〉
+ (−1)ca 〈B̄γ B̄βB̄α(�3,aB)γ (�2,aB)β(�1,aB)α〉,

T 2,a = 〈B̄αB̄β(�1,aB)αB̄γ (�2,aB)β(�3,aB)γ 〉
+ (−1)ca 〈B̄γ B̄β(�3,aB)γ B̄α(�2,aB)β(�1,aB)α〉,

T 3,a = 〈B̄αB̄β(�1,aB)α(�2,aB)βB̄γ (�3,aB)γ 〉
+ (−1)ca 〈B̄βB̄α(�2,aB)β(�1,aB)αB̄γ (�3,aB)γ 〉,

T 4,a = 〈B̄α(�1,aB)αB̄β(�2,aB)βB̄γ (�3,aB)γ 〉
+ (−1)ca 〈B̄γ (�3,aB)γ B̄β(�2,aB)βB̄α(�1,aB)α〉,

T 5,a = 〈B̄αB̄β(�1,aB)α(�2,aB)β〉 〈B̄γ (�3,aB)γ 〉
+ (−1)ca 〈B̄βB̄α(�2,aB)β(�1,aB)α〉 〈B̄γ (�3,aB)γ 〉,

T 6,a = 〈B̄α(�1,aB)αB̄β(�2,aB)β〉 〈B̄γ (�3,aB)γ 〉
+ (−1)ca 〈B̄α(�1,aB)αB̄β(�2,aB)β〉 〈B̄γ (�3,aB)γ 〉,

T 7,a = 〈B̄αB̄βB̄γ (�1,aB)α〉 〈(�2,aB)β(�3,aB)γ 〉
+ (−1)ca 〈B̄γ B̄β〉 〈B̄α(�3,aB)γ (�2,aB)β(�1,aB)α〉,

T 8,a = 〈B̄αB̄βB̄γ 〉 〈(�1,aB)α(�2,aB)β(�3,aB)γ 〉
+ (−1)ca 〈B̄γ B̄βB̄α〉 〈(�3,aB)γ (�2,aB)β(�1,aB)α〉,

T 9,a = 〈B̄αB̄β(�1,aB)α〉 〈(�2,aB)βB̄γ (�3,aB)γ 〉
+ (−1)ca 〈B̄βB̄γ (�3,aB)γ 〉 〈B̄α(�2,aB)β(�1,aB)α〉,

T 10,a = 〈B̄α(�1,aB)α〉 〈B̄β(�2,aB)β〉 〈B̄γ (�3,aB)γ 〉
+ (−1)ca 〈B̄α(�1,aB)α〉〈B̄β(�2,aB)β〉〈B̄γ (�3,aB)γ 〉,
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TABLE I. Dirac structures �1,�2,�3. Only structures with inde-
pendent potential contributions are considered.

a ca �1,a �2,a �3,a V a
ijk =

(ū�1,au)i(ū�2,au)j (ū�3,au)k

1 0 1 1 1 1
2 0 −1 γ5γ

μ γ5γμ �σj · �σk

3 0 γ5γ
μ −1 γ5γμ �σi · �σk

4 0 γ5γ
μ γ5γμ −1 �σi · �σj

5 1 γ5γμ −iσμν γ5γν i �σi · (�σj × �σk)

T 11,a = 〈B̄αB̄β〉 〈B̄γ (�1,aB)α〉 〈(�2,aB)β(�3,aB)γ 〉
+ (−1)ca 〈B̄γ B̄β〉〈B̄α(�3,aB)γ 〉〈(�2,aB)β(�1,aB)α〉,

(4)

where the indices α,β,γ are Dirac indices. The index a =
1, . . . ,5 in Eq. (3) labels the three combined Dirac structures
�1,a,�2,a,�3,a that have to be inserted into each flavor structure
f = 1, . . . ,11. The allowed Dirac structures are given in
Table I. Note that we start with a covariant Lagrangian, but
in the end are only interested in the minimal nonrelativistic
Lagrangian. Therefore, only Dirac structures that lead to
independent (nonrelativistic) spin operators are considered
in Table I. The corresponding spin-dependent potentials V a

ijk

(shown in the last column of Table I) are defined by the Dirac
structures sandwiched between Dirac spinors in spin spaces
i, j , and k. The overcomplete set of terms in the Lagrangian
Eq. (3) contains 55 low-energy constants tf,a . One observes
that some combinations of Dirac and flavor structures do not
even contribute at the leading order. Nevertheless, this set is
a good starting point to obtain the minimal nonrelativistic
contact Lagrangian.

It is advantageous to rewrite the Lagrangian in the particle
basis, which gives

L =
11∑

f =1

5∑
a=1

t̃ f,a
∑

i,j,k,l,m,n

× N
f,a

ikm
jln

(B̄i�
1,aBj )(B̄k�

2,aBl)(B̄m�3,aBn). (5)

where Bi are the baryon fields in the particle basis and
the indices i,j,k,l,m,n label the six occurring baryon fields,
Bi ∈ {n,p,�,�+,�0,�−,�0,�−}. The SU(3) factors N can
be obtained easily by employing Eq. (2), multiplying the
respective flavor matrices, and taking traces. Note that the
constants t̃ f,a are equal to tf,a , but with an additional minus
sign for f = 1,3,5,7,8,9,11, coming from the interchange of
anticommuting baryon fields.

B. Derivation of the contact potential

Let us now consider the process B1B2B3 → B4B5B6,
where the Bi are again baryons in the particle basis. The aim
is to derive a potential operator V in the (multiple) spin space
for this process. We define the operators in spin space 1 to
act between the two-component Pauli spinors of B1 and B4.
Similarly, spin space 2 belongs to B2 and B5 and spin space

3 to B3 and B6. The potential for a fixed spin configuration is
then obtained as

χ
(1)
B4

†
χ

(2)
B5

†
χ

(3)
B6

†
V χ

(1)
B1

χ
(2)
B2

χ
(3)
B3

, (6)

where the superscript of a spinor denotes the spin space and
the subscript denotes the baryon to which the spinor belongs.

The potential is given by V =−〈B4B5B6| L |B1B2B3〉,
where the appropriate terms of L in Eq. (5) have to be inserted,
and the 36 Wick contractions have to be performed. First, each
of the 55 terms in the Lagrangian (labeled by f,a) provides
six so-called direct terms,

t̃ f,aN
f,a

456
123

(B̄4�
1,aB1)(B̄5�

2,aB2)(B̄6�
3,aB3)

+ t̃ f,aN
f,a

564
231

(B̄5�
1,aB2)(B̄6�

2,aB3)(B̄4�
3,aB1)

+ t̃ f,aN
f,a

645
312

(B̄6�
1,aB3)(B̄4�

2,aB1)(B̄5�
3,aB2)

+ t̃ f,aN
f,a

465
132

(B̄4�
1,aB1)(B̄6�

2,aB3)(B̄5�
3,aB2)

+ t̃ f,aN
f,a

654
321

(B̄6�
1,aB3)(B̄5�

2,aB2)(B̄4�
3,aB1)

+ t̃ f,aN
f,a

546
213

(B̄5�
1,aB2)(B̄4�

2,aB1)(B̄6�
3,aB3), (7)

where the baryon bilinears combine the baryon pairs 1-4, 2-5,
and 3-6 in the form as set up in Eq. (6). Keeping in mind that
baryons B1, B2, B3 are in spin spaces 1, 2, 3, respectively, one
obtains by performing the (six direct) Wick contractions the
direct potential1

V D = −
11∑

f =1

5∑
a=1

t̃ f,a

(
N

f,a

456
123

V a
123 + N

f,a

564
231

V a
231 + N

f,a

645
312

V a
312

+ N
f,a

465
132

V a
132 + N

f,a

654
321

V a
321 + N

f,a

546
213

V a
213

)
. (8)

The spin operators V a
ijk arise from the Dirac structures �1,a ⊗

�2,a ⊗ �3,a and can be found in Table I. The indices i,j,k of
V a

ijk denote the spin spaces of the three baryon bilinears.
One has not only these six direct Wick contractions, but in

total 36 Wick contractions that contribute to the potential. This
number corresponds to the 3! × 3! possibilities to arrange the
three initial and three final baryons into Dirac bilinears. For
example, a term

t̃ f,aN
f,a

546
312

(B̄5�
1,aB3)(B̄4�

2,aB1)(B̄6�
3,aB2) (9)

gives rise to a potential contribution

t̃ f,aN
f,a

546
312

V a
312, (10)

1One observes that Eq. (8) holds independently of whether some of
the baryons are identical or not.
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where the sign, reverted in comparison to Eq. (8), originates
from the exchange of baryon fields. However, this potential is
not in accordance with the form of Eq. (6), as baryon pairs 1-4,
2-6, 3-5 are each connected in a separate spin space. Hence, an
exchange of the spin-wave functions χ

(2)
B5

and χ
(3)
B6

in the final
state has to be performed and this is achieved by multiplying
the potential with P

(σ )
23 ,

t̃ f,aN
f,a

546
312

P
(σ )
23 V a

312, (11)

where P
(σ )
ij = 1

2 (1 + �σi · �σj ) is the well-known spin-exchange
operator.

Employing the above considerations to all Wick con-
tractions, the full potential including 36 contributions is
derived. For a shorter notation we express the remaining 30
contributions in terms of the six direct contributions in Eq. (8),
with the declared replacement of the labels. The full potential
is thus given by

V = V D + P
(σ )
23 P

(σ )
13 (V D)4 → 5

5 → 6
6 → 4

+ P
(σ )
23 P

(σ )
12 (V D)4 → 6

5 → 4
6 → 5

− P
(σ )
23 (V D)4 → 4

5 → 6
6 → 5

− P
(σ )
13 (V D)4 → 6

5 → 5
6 → 4

− P
(σ )
12 (V D)4 → 5

5 → 4
6 → 6

.

(12)

The procedure described above automatically incorporates the
generalized Pauli principle and leads to an antisymmetrized
potential.

C. Minimal contact Lagrangian

Now we are in the position to determine a minimal and
complete contact Lagrangian for the leading three-baryon
contact interaction. We have derived the potential according
to Eq. (12) and decomposed it with respect to the following
operators in the three-body spin space,

1, �σ1 · �σ2, �σ1 · �σ3, �σ2 · �σ3, i �σ1 · (�σ2 × �σ3). (13)

A minimal set of Lagrangian terms in the nonrelativistic
limit is obtained by leaving out terms until the rank of the
final potential matrix matches the number of terms in the
Lagrangian. Redundant terms have been deleted in such a
way that one obtains a maximal number of Lagrangian terms
with a single flavor trace. The minimal six-baryon contact
Lagrangian in the nonrelativistic limit is then given by

L = − C1〈B̄aB̄bB̄cBaBbBc〉 + C2〈B̄aB̄bBaB̄cBbBc〉
− C3〈B̄aB̄bBaBbB̄cBc〉 + C4〈B̄aBaB̄bBbB̄cBc〉
− C5〈B̄aB̄bBaBb〉 〈B̄cBc〉
− C6[〈B̄aB̄bB̄cBa(σ iB)b(σ iB)c〉

+ 〈B̄cB̄bB̄a(σ iB)c(σ iB)bBa〉]
+ C7[〈B̄aB̄bBaB̄c(σ iB)b(σ iB)c〉

+ 〈B̄cB̄b(σ iB)cB̄a(σ iB)bBa〉]

− C8[〈B̄aB̄bBa(σ iB)bB̄c(σ iB)c〉
+ 〈B̄bB̄a(σ iB)bBaB̄c(σ iB)c〉]

+ C9〈B̄aBaB̄b(σ iB)bB̄c(σ iB)c〉
− C10[〈B̄aB̄bBa(σ iB)b〉 〈B̄c(σ iB)c〉

+ 〈B̄bB̄a(σ iB)bBa〉 〈B̄c(σ iB)c〉]
− C11〈B̄aB̄bB̄c(σ iB)aBb(σ iB)c〉
+ C12〈B̄aB̄b(σ iB)aB̄cBb(σ iB)c〉
− C13〈B̄aB̄b(σ iB)a(σ iB)bB̄cBc〉
− C14〈B̄aB̄b(σ iB)a(σ iB)b〉 〈B̄cBc〉
− iεijkC15〈B̄aB̄bB̄c(σ iB)a(σ jB)b(σ kB)c〉
+ iεijkC16〈B̄aB̄b(σ iB)aB̄c(σ jB)b(σ kB)c〉
− iεijkC17〈B̄aB̄b(σ iB)a(σ jB)bB̄c(σ kB)c〉
+ iεijkC18〈B̄a(σ iB)aB̄b(σ jB)bB̄c(σ kB)c〉. (14)

The indices a,b,c are two-component spinor indices and the
indices i,j,k are vector indices. One ends up with 18 low-
energy constants C1, . . . ,C18. The minus signs in front of some
terms have been included to compensate minus signs from
fermion exchange, arising from reordering baryon bilinears
into the form of Eq. (5).

Various checks have been performed. In particular, we
verified conservation of strangeness S, isospin I , and isospin
projection I3 and the independence of the resulting potentials
from I3. The Lagrangian has been constructed to fulfill C
and P symmetry. Time-reversal symmetry follows via the
CPT theorem, and we explicitly confirmed T invariance for
all potentials.

D. Group-theoretical considerations

Let us now consider the three-baryon contact terms from a
group-theoretical point of view. In flavor space the three octet
baryons form the tensor product 8 ⊗ 8 ⊗ 8, which decomposes
into the irreducible SU(3) representations

8 ⊗ 8 ⊗ 8 = 64 ⊕ (35 ⊕ 35)2 ⊕ 276

⊕ (10 ⊕ 10)4 ⊕ 88 ⊕ 12, (15)

where the subscripts denote the multiplicity of a represen-
tation. In spin space the tensor product of three doublets
decomposes as

2 ⊗ 2 ⊗ 2 = 22 ⊕ 4. (16)

Transitions are only allowed between irreducible represen-
tations of the same type. In analogy to Ref. [48] for the
two-baryon sector, we determine which of the irreducible
representations in Eq. (15) can contribute to a particular three-
baryon multiplet, characterized by hypercharge Y = S + 3
(with strangeness S) and isospin I . Table II gives for the
relevant SU(3) representations the (Y,I ) multiplets that they
contain. From this table one can read off which representations
are involved in the various three-baryon states, presented
in Table III. At leading order the potentials are momentum
independent and therefore only S waves are present. Owing to

014001-4



LEADING THREE-BARYON FORCES FROM SU(3) CHIRAL . . . PHYSICAL REVIEW C 93, 014001 (2016)

TABLE II. Hypercharge Y and isospin I for irreducible SU(3)
representations of dimension D.

D Allowed (Y, I)

1 (0,0)
8 (1, 1

2 ),(0,0),(0,1),(−1, 1
2 )

10 (1, 3
2 ),(0,1),(−1, 1

2 ),(−2,0)
10 (2,0),(1, 1

2 ),(0,1),(−1, 3
2 )

27 (2,1),(1, 1
2 ),(1, 3

2 ),(0,0),(0,1),
(0,2),(−1, 1

2 ),(−1, 3
2 ),(−2,1)

35 (2,2),(1, 3
2 ),(1, 5

2 ),(0,1),(0,2),(−1, 1
2 ),

(−1, 3
2 ),(−2,0),(−2,1),(−3, 1

2 )
35 (3, 1

2 ),(2,0),(2,1),(1, 1
2 ),(1, 3

2 ),(0,1),
(0,2),(−1, 3

2 ),(−1, 5
2 ),(−2,2)

64 (3, 3
2 ),(2,1),(2,2),(1, 1

2 ),(1, 3
2 ),(1, 5

2 ),
(0,0),(0,1),(0,2),(0,3),(−1, 1

2 ),
(−1, 3

2 ),(−1, 5
2 ),(−2,1),(−2,2),(−3, 3

2 )

the Pauli principle the totally symmetric spin quartet 4 must
combine with the totally antisymmetric part of 8 ⊗ 8 ⊗ 8 in
flavor space,

Alt3(8) = 56a = 27a + 10a + 10a + 8a + 1a. (17)

Therefore, these totally antisymmetric representations are
present only in partial waves with total spin 3/2. Furthermore,
the totally symmetric part of 8 ⊗ 8 ⊗ 8 decomposes as

Sym3(8) = 120s = 64s + 27s + 10s + 10s + 8s + 1s . (18)

Because it has no totally antisymmetric counterpart in spin
space, it cannot contribute. This is especially true for the
highest dimensional 64 representation, which appears only
once in the decomposition 8 ⊗ 8 ⊗ 8. In Table III we have

already included these exclusion criteria that follow from the
generalized Pauli principle.

In the next step, we can derive the potentials for transitions
between the three-baryon states and redefine the 18 constants
such that they belong to transitions between irreducible repre-
sentations. It is a highly nontrivial check of our results that this
redefinition meets the restrictions of Table III. For example,
in the NNN interaction and the ��� (−2,2) interaction the
same constant associated with the 35 representation has to be
present.

To obtain a representation of the potentials in the isospin
basis, we use the relation2

〈(i4i5)iout(iouti6)IoutMout|Ô|(i1i2)iin(iini3)IinMin〉
=

∑
m1,m2,m3,min,
m4,m5,m6,mout

δmout,m4+m5δMout,mout+m6

× δmin,m1+m2δMin,min+m3

× Ci4i5iout
m4m5mout

C
iouti6Iout
moutm6Mout

Ci1i2iin
m1m2min

C
iini3Iin
minm3Min

× 〈i4m4; i5m5; i6m6|Ô|i1m1; i2m2; i3m3〉, (19)

where i stands for the isospin and C are the Clebsch-Gordan
coefficients. To be consistent with the Condon-Shortley
convention for the Clebsch-Gordan coefficients, we use the
baryon matrix as defined in Eq. (2) and make the following
sign changes in the identification of the particle states |i,m〉:
�+ = −|1, + 1〉, �− = −|1/2, − 1/2〉. In Eq. (19) we have

2To obtain Table IV, we strictly employ Eq. (19); i.e., no further
combinatorial factors, such as 1/

√
2 for a �NN state, are included.

They can be included by just multiplying the corresponding row in
Table IV with that factor.

TABLE III. Irreducible representations for three-baryon states with hypercharge Y and isospin I in partial waves.

States (Y,I ) 2S1/2
4S3/2

NNN (3, 1
2 ) 35

�NN,�NN (2,0) 10,35 10a

�NN,�NN (2,1) 27,35 27a

�NN (2,2) 35

��N,��N,��N,�NN (1, 1
2 ) 8,10,27,35 8a,10a,27a

��N,��N,�NN (1, 3
2 ) 10,27,35,35 10a,27a

��N (1, 5
2 ) 35

���,���,���,��N,��N (0,0) 8,27 1a,8a,27a

���,���,���,��N,��N (0,1) 8,10,10,27,35,35 8a,10a,10a,27a

���,���,��N (0,2) 27,35,35 27a

���,���,���,��N (−1, 1
2 ) 8,10,27,35 8a,10a,27a

���,���,��N (−1, 3
2 ) 10,27,35,35 10a,27a

��� (−1, 5
2 ) 35

���,��� (−2,0) 10,35 10a

���,��� (−2,1) 27,35 27a

��� (−2,2) 35

��� (−3, 1
2 ) 35
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chosen to couple the isospin of the first two particles in the
initial state i1, i2 to iin and then to couple iin with the isospin
i3 of the third particle to total isospin Iin. The same procedure
is applied to the final state. Other coupling schemes can be
obtained by recoupling with the help of Racah W coefficients
or equivalently with Wigner’s 6-j symbols.

It is advantageous to present the three-body potentials not
only in terms of the spin operators in Eq. (13), but to project
them also onto partial-wave contributions. For a general
operator

Ô = a1 1 + a2 �σ1 · �σ2 + a3 �σ1 · �σ3

+ a4 �σ2 · �σ3 + a5 i �σ1 × �σ2 · �σ3, (20)

with coefficients ai , the partial-wave decomposition leads to
the nonvanishing transitions (between S-waves)

〈0 2S1/2|Ô|0 2S1/2〉 = a1 − 3a2,

〈1 2S1/2|Ô|0 2S1/2〉 =
√

3(−a3 + a4 − 2a5),

〈0 2S1/2|Ô|1 2S1/2〉 =
√

3(−a3 + a4 + 2a5),

〈1 2S1/2|Ô|1 2S1/2〉 = a1 + a2 − 2a3 − 2a4,

〈1 4S3/2|Ô|1 4S3/2〉 = a1 + a2 + a3 + a4, (21)

where a state |s 2S+1LJ 〉 is characterized by the total spin
S = 1

2 , 3
2 , the angular momentum L = 0, and the total angular

momentum J = 1
2 , 3

2 . Here we have chosen to couple the
spins of the first two baryons to s = 0,1 and to couple
this with the spin 1

2 of the third baryon to S [in complete
analogy to the isospin coupling in Eq. (19)]. After this partial-
wave decomposition it is trivial to identify the combinations
of constants belonging to the totally antisymmetric flavor
representations, because these act only in the 1 4S3/2 states
owing to the generalized Pauli principle.

Finally, we give the SU(3) relations for the strangeness 0
and −1 sectors in Table IV. The constants associated with the
irreducible SU(3) representations are related to the low-energy
constants of the minimal Lagrangian by

c35 = 6(−C4 + C9),

c35 = 3(C4 − C9 + 6C18),

c10 = 3
4 (2C2 + C3 − C4 + C5 − 6C8 + C9 − 6C10 − 6C12 + 3C13 + 3C14 + 6C17 − 6C18),

c271 = − 37
294C2 + 769

588C3 − 473
392C4 + 769

588C5 − 74
49C7 − 429

98 C8 + 473
392C9

− 429
98 C10 + 185

98 C12 + 89
196C13 + 89

196C14 + 244
49 C16 − 207

98 C17 + 57
14C18,

c272 = 1
24 (−4C2 − 22C3 + 57C4 − 22C5 − 48C7 − 12C8 − 57C9 − 12C10 (22)

+ 60C12 + 78C13 + 78C14 − 96C16 + 60C17 − 252C18),

c273 = 1
8 (20C2 − 2C3 − 21C4 − 2C5 − 16C7 + 28C8 + 21C9 + 28C10 − 44C12

− 22C13 − 22C14 + 32C16 − 76C17 + 12C18),

c10a = 6(−C2 + C3 − C4 + C5 − 2C7 + 2C8 − C9 + 2C10 − C12 + C13 + C14),

c27a = 2
3 (C2 + C3 + 3C4 + C5 + 2C7 + 2C8 + 3C9 + 2C10 + C12 + C13 + C14).

The SU(3) relations have not been obtained by group-theory
considerations directly, but by rewriting our results such that
they fulfill the group-theoretical constraints of Table III.
The three constants C271 , C272 , C273 are associated to the
irreducible representations of dimension 27. We have chosen
a particular definition for them in Eq. (22). Note that other
linear combinations of C271 , C272 , C273 would work equally
well. The SU(3) relations in Table IV have been derived from
the most general SU(3) symmetric Lagrangian. Therefore,
any three-baryon potential that fulfills flavor SU(3) symmetry
has to fulfill these relations. These relations provide also a
valuable check for the SU(3) decomposition of the S-wave
contributions from three-baryon interactions generated by one-
or two-meson exchange (with all meson masses set equal).

III. ONE-MESON EXCHANGE

For the one-meson exchange diagram in Fig. 1 we employ
the standard chiral effective Lagrangian for meson-baryon

couplings [49]

L = D

2
〈B̄γ μγ5{uμ,B}〉 + F

2
〈B̄γ μγ5

[
uμ,B

]〉, (23)

with the axial vector coupling constants D ≈ 0.8 and F ≈ 0.5
and uμ = − 1

f0
∂μφ + O(φ3), where the pseudoscalar-meson

fields are collected in the traceless Hermitian matrix

φ =

⎛
⎜⎝

π0 + η√
3

√
2π+ √

2K+
√

2π− −π0 + η√
3

√
2K0

√
2K− √

2K̄0 − 2η√
3

⎞
⎟⎠. (24)

Here f0 is the pion decay constant (in the chiral limit). As done
in Eq. (5) it is advantageous to express this Lagrangian in the
particle basis,

L = −
∑
i,j,k

1

2f0
NBiBj φk

(B̄iγ
μγ5Bj )(∂μφk), (25)
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with the baryon fields as defined before Bi ∈ {n,p,�,�+,
�0,�−,�0,�−} and the pseudoscalar-meson fields φi ∈
{π0,π+,π−,K+,K−,K0,K̄0,η}.

The second vertex, necessary for the one-meson-exchange
three-body interaction, involves four baryon fields and one
pseudoscalar-meson field. An overcomplete set of terms for
the corresponding relativistic Lagrangian can be found in our
earlier work, Ref. [47]. To obtain a complete minimal set
of terms in the nonrelativistic limit, we consider the matrix
elements of the process B1B2 → B3B4φ1 and proceed as in
Sec. II. The transition matrix element is expressed in terms of

the spin operators

�σ1 · �q, �σ2 · �q, i(�σ1 × �σ2) · �q, (26)

where �q denotes the momentum of the emitted meson. The
minimal Lagrangian is obtained by eliminating redundant
terms until the rank of the matrix formed by all transitions
matches the number of terms in the Lagrangian. As before,
redundant terms are deleted in such a way that one obtains
a maximal number of terms with a single flavor trace. The
minimal nonrelativistic chiral Lagrangian for the four-baryon
vertex including one meson is given by

L = D1/f0〈B̄a(∇ iφ)BaB̄b(σ iB)b〉 + D2/f0[〈B̄aBa(∇ iφ)B̄b(σ iB)b〉 + 〈B̄aBaB̄b(σ iB)b(∇ iφ)〉] + D3/f0〈B̄b(∇ iφ)(σ iB)bB̄aBa〉
− D4/f0[〈B̄a(∇ iφ)B̄bBa(σ iB)b〉 + 〈B̄bB̄a(σ iB)b(∇ iφ)Ba〉] − D5/f0[〈B̄aB̄b(∇ iφ)Ba(σ iB)b〉 + 〈B̄bB̄a(∇ iφ)(σ iB)bBa〉]
− D6/f0[〈B̄b(∇ iφ)B̄a(σ iB)bBa〉 + 〈B̄aB̄bBa(∇ iφ)(σ iB)b〉] − D7/f0[〈B̄aB̄bBa(σ iB)b(∇ iφ)〉 + 〈B̄bB̄a(σ iB)bBa(∇ iφ)〉]
+ D8/f0〈B̄a(∇ iφ)Ba〉〈B̄b(σ iB)b〉 + D9/f0〈B̄aBa(∇ iφ)〉〈B̄b(σ iB)b〉 + D10/f0〈B̄b(∇ iφ)(σ iB)b〉〈B̄aBa〉
+ iεijkD11/f0〈B̄a(σ iB)a(∇kφ)B̄b(σ jB)b〉 − iεijkD12/f0[〈B̄a(∇kφ)B̄b(σ iB)a(σ jB)b〉 − 〈B̄bB̄a(σ jB)b(∇kφ)(σ iB)a〉]
− iεijkD13/f0〈B̄aB̄b(∇kφ)(σ iB)a(σ jB)b〉 − iεijkD14/f0〈B̄aB̄b(σ iB)a(σ jB)b(∇kφ)〉. (27)

Here the indices a and b are two-component spinor indices
and the indices i, j , and k are vector indices. There are
in total 14 low-energy constants D1, . . . ,D14 for all five
strangeness sectors S = −4, . . . ,0. As before, the minus signs
in front of some terms have been included to compensate
minus signs from fermion exchange, arising from reordering
baryon bilinears [see Eq. (28) below]. Let us note that the
conservation of strangeness S, isospin I and isospin projection
I3, independence of I3, and time-reversal symmetry have
been checked for the BB → BBφ transition matrix elements
resulting from Eq. (27). Moreover, several tests employing
group-theoretical methods have been performed.

As done in Sec. II A, we write the Lagrangian in the particle
basis

L =
10∑

f =1

Df

f0

8∑
i,j,k,l,m=1

N
f

ik
jl

φm

(B̄iBj )(B̄k �σBl) · �∇φm

+
14∑

f =11

Df

f0

8∑
i,j,k,l,m=1

N
f

ik
jl

φm

i[(B̄i �σBj ) × (B̄k �σBl)] · �∇φm,

(28)

where in each term the first bilinear comes from the summation
over spin index a and the second bilinear from the summation
over spin index b in Eq. (27). The indices i,j,k,l label octet
baryons.

Let us now consider the generic one-meson exchange
diagram in Fig. 2. It involves the baryons i,j,k in the initial
state, the baryons l,m,n in the final state, and an exchanged
meson φ. The four-baryon contact vertex is separated into
two parts to indicate which baryons are in the same bilinear.
The indices A,B,C label the spin spaces related to the baryon
bilinears.

Using standard Feynman rules for the vertices and the
meson propagator one obtains the three-body potential

V = 1

2f 2
0

�σA · �qli

�q 2
li + m2

φ

[N1 �σC · �qli + N2i(�σB × �σC) · �qli], (29)

with the momentum transfer �qli = �pl − �pi carried by the
exchanged meson and the constants

N1 = NBlBiφ

10∑
f =1

Df N
f

mn
jk

φ̄
,

(30)

N2 = NBlBiφ

14∑
f =11

Df N
f

mn
jk

φ̄
,

where φ̄ denotes the charge-conjugated meson of meson φ, in
particle basis (e.g., π+ ↔ π−).

The full one-meson exchange three-body potential for the
process B1B2B3 → B4B5B6 is obtained easily by summing
up for a fixed meson the 36 permutations of initial and

l m n

i j k
A B C

φ

FIG. 2. Generic one-meson exchange diagram. The wiggly line
symbolized the four-baryon contact vertex, to illustrate the baryon
bilinears.
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FIG. 3. Feynman diagrams contributing
to the one-meson exchange three-body po-
tential for B1B2B3 → B4B5B6.

final baryons, shown diagrammatically in Fig. 3, and sum-
ming over all mesons φ ∈ {π0,π+,π−,K+,K−,K0,K̄0,η}.
Of course, many of these contributions will vanish for a
particular process. The Feynman diagrams fall into nine
classes, where in each class the same momentum transfer
�qli is present. In Fig. 3 each row corresponds to such a
class and the corresponding momentum transfer is written

on the left of the row. Furthermore, additional minus signs
from interchanging fermions have to be included and some
diagrams need to be multiplied from the left by spin-exchange
operators (as indicated in Fig. 3) to be in accordance
with the form set up in Eq. (6). As before, the baryons
B1, B2, and B3 belong to the spin spaces 1, 2, and 3,
respectively.
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l m n

i j k
A B C

φ1 φ2

FIG. 4. Generic two-meson exchange diagram.

IV. TWO-MESON EXCHANGE

For the two-meson exchange diagram of Fig. 1 we need in
addition to the Lagrangian in Eq. (23) the well-known O(q2)
meson-baryon Lagrangian [50]. We use the version given in
Ref. [51] and display here only the terms relevant for our
purpose,

L = bD〈B̄{χ+,B}〉 + bF 〈B̄[χ+,B]〉 + b0〈B̄B〉 〈χ+〉
+ b1〈B̄[uμ,[uμ,B]]〉 + b2〈B̄{uμ,{uμ,B}}〉
+ b3〈B̄{uμ,[uμ,B]}〉 + b4〈B̄B〉 〈uμuμ〉
+ id1〈B̄{[uμ,uν],σμνB}〉 + id2〈B̄[[uμ,uν],σμνB]〉
+ id3〈B̄uμ〉〈uνσμνB〉, (31)

with uμ = − 1
f0

∂μφ + O(φ3) and χ+ = 2χ − 1
4f 2

0
{φ,{φ,χ}} +

O(φ4), where

χ =

⎛
⎜⎝

m2
π 0 0

0 m2
π 0

0 0 2m2
K − m2

π

⎞
⎟⎠. (32)

Note that the terms proportional to bD,bF ,b0 break explicitly
SU(3) flavor symmetry, through different meson masses mK �=
mπ . Rewriting the Lagrangian in the particle basis as in the
previous sections, one obtains

L = −
∑

cf =bD,bF ,b0

cf

4f 2
0

8∑
i,j,k,l=1

N
f

φk
i
j
φl

(B̄iBj )φkφl

+
∑

cf =b1,b2,b3,b4

cf

f 2
0

8∑
i,j,k,l=1

N
f

φk
i
j
φl

(B̄iBj )∂μφk∂
μφl

+
∑

cf =d1,d2,d3

icf

f 2
0

8∑
i,j,k,l=1

N
f

φk
i
j
φl

(B̄iσμνBj )∂μφk∂
νφl.

(33)

Let us now consider the generic two-meson exchange
diagram depicted in Fig. 4. It includes the baryons i,j,k in
the initial state, the baryons l,m,n in the final state, and
two virtual mesons φ1 and φ2 are exchanged. The indices
A,B,C label the spin spaces related to the baryon bilinears and
they are defined by the three initial baryons. The momentum
transfers carried by the virtual mesons are �qli = �pl − �pi and
�qnk = �pn − �pk . One obtains the following transition amplitude

from the generic two-meson exchange diagram

V = − 1

4f 4
0

�σA · �qli �σC · �qnk(�q 2
li + m2

φ1

)(�q 2
nk + m2

φ2

)
× [N ′

1 + N ′
2 �qli · �qnk + N ′

3 i(�qli × �qnk) · �σB], (34)

with the combinations of parameters

N ′
1 =NBlBi φ̄1

NBnBkφ2

∑
cf =bD,bF ,b0

cf

4

(
N

f

φ1
m
j
φ̄2

+ N
f

φ̄2
m
j
φ1

)
,

N ′
2 = − NBlBi φ̄1

NBnBkφ2

∑
cf =b1,b2,b3,b4

cf
(
N

f

φ1
m
j
φ̄2

+ N
f

φ̄2
m
j
φ1

)
,

N ′
3 =NBlBi φ̄1

NBnBkφ2

∑
cf =d1,d2,d3

cf
(
N

f

φ1
m
j
φ̄2

− N
f

φ̄2
m
j
φ1

)
. (35)

The complete three-body potential for a transition
B1B2B3 → B4B5B6 is finally obtained by summing up the
contributions of the 18 Feynman diagrams in Fig. 5 and by
summing over all possible exchanged mesons. Obviously,
additional (negative) spin-exchange operators need to be
applied if the baryon lines are not in the configuration 1-4,
2-5, and 3-6, as illustrated in Fig. 5.

V. N N N AND �N N THREE-BARYON POTENTIALS

To give a concrete example, we present in this section the
explicit expressions for the �NN three-body interaction in
spin, isospin, and momentum space. Moreover, the leading-
order chiral NNN interaction is rederived, and consistency
with the conventional expression is shown. The potentials are
calculated in particle basis (as shown in the previous sections)
and afterwards reexpressed with isospin operators.

By adding up all 36 contributions [coming from Eqs. (8)
and (12)], one obtains the form of the NNN contact potential

V NNN
ct = − 3

8E[( 3 1 − �σ1 · �σ2 − �σ1 · �σ3 − �σ2 · �σ3) 1

+ (−1 − �σ1 · �σ2 + �σ1 · �σ3 + �σ2 · �σ3) �τ1 · �τ2

+ (−1 + �σ1 · �σ2 − �σ1 · �σ3 + �σ2 · �σ3) �τ1 · �τ3

+ (−1 + �σ1 · �σ2 + �σ1 · �σ3 − �σ2 · �σ3) �τ2 · �τ3

− �σ1 × �σ2 · �σ3 �τ1 × �τ2 · �τ3], (36)

with the low-energy constant E = 2(C4 − C9) = −c35/3 and
where �σ , �τ denote the usual Pauli matrices in spin and isospin
space. This is exactly the NNN contact potential of Ref. [7]
in its antisymmetrized form,

V NNN
ct = 1

2
E A

∑
j �=k

�τj · �τk, (37)

where A denotes the three-body antisymmetrization operator,
A = (1 − P12)(1 − P13 − P23). Each two-particle exchange
operator Pij = P

(σ )
ij P

(τ )
ij P

(p)
ij is the product of an exchange

operator in spin space P
(σ )
ij = 1

2 (1 + �σi · �σj ), in isospin space

P
(τ )
ij = 1

2 (1 + �τi · �τj ), and in momentum space P
(p)
ij . Note

that the leading-order NNN contact potential is momentum
independent, and therefore P

(p)
ij has no effect. We remind
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FIG. 5. Feynman diagrams contributing to the two-meson ex-
change three-body potential for B1B2B3 → B4B5B6.

the reader that in our calculation the generalized Pauli
principle is automatically built in by performing all Wick
contractions.

For the �NN contact interaction we obtain the expression

V �NN
ct = C ′

1 (1 − �σ2 · �σ3)(3 + �τ2 · �τ3)

+ C ′
2 �σ1 · (�σ2 + �σ3) (1 − �τ2 · �τ3)

+ C ′
3 (3 + �σ2 · �σ3)(1 − �τ2 · �τ3), (38)

where the primed constants are given by

C ′
1 = − 1

48 (2C2 − 13C3 + 21C4 − 13C5 + 24C7

+ 54C8 − 21C9 + 54C10 − 30C12 − 15C13

− 15C14 − 48C16 + 18C17 − 18C18),

C ′
2 = − 1

24 (8C2 − 5C3 − 3C4 − 5C5 + 12C7 − 18C8

+ 15C9 − 18C10 − 3C13 − 3C14 + 6C17 − 6C18),

C ′
3 = − 1

48 (10C2 − 13C3 + 21C4 − 13C5 + 24C7

− 18C8 + 3C9 − 18C10 + 18C12 − 15C13

− 15C14 − 6C17 + 6C18). (39)

The constants C1, . . . ,C18 originate from the minimal contact
Lagrangian in Eq. (14). Note that the constant C ′

1 belongs
exclusively to the transition with total isospin I = 1, whereas
the constants C ′

2 and C ′
3 appear for total isospin I = 0.

Interestingly, none of these three constants can be substituted
by the constant E of the purely nucleonic sector. Thus, the
strength of the �NN three-body contact interaction is not
related to the one for NNN via SU(3) symmetry.

The one-pion exchange NNN potential reads (in antisym-
metrized form)

V NNN
OPE = (

X456
123 + X564

231 + X645
312

)

+ P
(σ )
23 P

(τ )
23 P

(σ )
13 P

(τ )
13

(
X564

123 + X645
231 + X456

312

)

+ P
(σ )
23 P

(τ )
23 P

(σ )
12 P

(τ )
12

(
X645

123 + X456
231 + X564

312

)
, (40)

where we have defined the abbreviation3

Xlmn
ijk = − gA

16f 2
0

d ′ �σi · �qli

�q 2
li + m2

π

[(�τj − �τk) · �τi (�σj − �σk) · �qli

+ (�τj × �τk) · �τi (�σj × �σk) · �qli], (41)

with gA = D + F and d ′ = 4(D1 − D3 + D8 − D10). Each
term in Eq. (40) corresponds to a complete row in Fig. 3. We
have verified that this result is equal to the antisymmetrization
of the expression given in Ref. [7]

V NNN
OPE = − gA

8f 2
π

d ′A
∑

i �=j �=k

�σj · �qj

�q 2
j + m2

π

�τi · �τj �σi · �qj , (42)

inserting the momentum transfers �q1 = �q41 = �p4 − �p1, �q2 =
�q52 = �p5 − �p2, �q3 = �q63 = �p6 − �p3. In this case the momen-
tum part of each two-body exchange operator, P (p)

ij , exchanges
also the momenta in the final state.4

Let us continue with the �NN one-pion exchange three-
body potentials. Many diagrams are absent owing to the
vanishing of the ��π vertex (by isospin symmetry). We
find the following result for the �NN three-body interaction

3We have used the symbol d ′ instead of the conventional D to avoid
confusion with the axial vector constant in Eq. (23).

4For example, P
(p)
23 leads to the replacements q41,q52,q63 →

q41,q62,q53 and P
(p)
12 P

(p)
13 to q41,q52,q63 → q61,q42,q53.
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mediated by one-pion exchange,

V �NN
OPE = − gA

2f 2
0

{ �σ2 · �q52

�q 2
52 + m2

π

�τ2 · �τ3[(D′
1 �σ1 + D′

2 �σ3) · �q52]

+ �σ3 · �q63

�q 2
63 + m2

π

�τ2 · �τ3[(D′
1 �σ1 + D′

2 �σ2) · �q63]

+ P
(σ )
23 P

(τ )
23 P

(σ )
13

�σ2 · �q62

�q 2
62 + m2

π

�τ2 · �τ3

[
− D′

1 + D′
2

2
(�σ1 + �σ3) · �q62 + D′

1 − D′
2

2
i(�σ3 × �σ1) · �q62

]

+ P
(σ )
23 P

(τ )
23 P

(σ )
12

�σ3 · �q53

�q 2
53 + m2

π

�τ2 · �τ3

[
− D′

1 + D′
2

2
(�σ1 + �σ2) · �q53 − D′

1 − D′
2

2
i(�σ1 × �σ2) · �q53

]}
, (43)

where we have defined the two linear combinations of constants

D′
1 = 1

6 (−3D1 + D2 + D3 + 5D4 + 9D5 + D6 − 6D8 + D11 + 2D12 − 3D13),
(44)

D′
2 = 1

6 (D1 + D2 − 3D3 + D4 + 9D5 + 5D6 − 6D10 − D11 − 2D12 + 3D13).

The four lines in Eq. (43) correspond to the four rows in Fig. 3 that have no � hyperon at the baryon-baryon-meson vertex, i.e.,
the diagrams involving the momentum transfers �q52, �q63, �q62, �q53.

Finally, we obtain for the NNN interaction mediated by two-pion exchange

V NNN
TPE =(

Y 456
123 + Y 564

231 + Y 645
312

) + P
(σ )
23 P

(τ )
23 P

(σ )
13 P

(τ )
13

(
Y 564

123 + Y 645
231 + Y 456

312

) + P
(σ )
23 P

(τ )
23 P

(σ )
12 P

(τ )
12

(
Y 645

123 + Y 456
231 + Y 564

312

)

− P
(σ )
23 P

(τ )
23

(
Y 465

123 + Y 654
231 + Y 546

312

) − P
(σ )
13 P

(τ )
13

(
Y 654

123 + Y 546
231 + Y 465

312

) − P
(σ )
12 P

(τ )
12

(
Y 546

123 + Y 465
231 + Y 654

312

)
, (45)

where the 18 terms follow the ordering displayed in Fig. 5 and we have introduced the abbreviation

Y lmn
ijk = g2

A

4f 4
π

�σi · �qli �σk · �qnk(�q 2
li + m2

π

)(�q 2
nk + m2

π

) [�τi · �τk

(−4c1m
2
π + 2c3 �qli · �qnk

) + c4 �τj · (�τi × �τk) �σj · (�qli × �qnk)
]
, (46)

with the constants (see also Refs. [52,53])

c1 = 1
2 (2b0 + bD + bF ), c3 = b1 + b2 + b3 + 2b4, c4 = 4(d1 + d2). (47)

Again, the result in Eq. (45) is equal to the antisymmetrization of the expression given in Ref. [7],

V NNN
TPE = g2

A

8f 2
π

A
∑

i �=j �=k

�σi · �qi �σj · �qj(�q 2
i + m2

π

)(�q 2
j + m2

π

)F
αβ
ijk τ

α
i τ

β
j , (48)

with

F
αβ
ijk =δαβ

f 2
π

(−4c1m
2
π + 2c3 �qi · �qj

) +
∑

γ

c4

f 2
π

εαβγ τ
γ
k �σk · (�qi × �qj ). (49)

The �NN three-body interaction generated by two-pion exchange takes the form

V �NN
TPE = g2

A

3f 4
0

�σ3 · �q63 �σ2 · �q52(�q 2
63 + m2

π

)(�q 2
52 + m2

π

) �τ2 · �τ3
[−(3b0 + bD)m2

π + (2b2 + 3b4) �q63 · �q52
]

− P
(σ )
23 P

(τ )
23

g2
A

3f 4
0

�σ3 · �q53 �σ2 · �q62(�q 2
53 + m2

π

)(�q 2
62 + m2

π

) �τ2 · �τ3
[−(3b0 + bD)m2

π + (2b2 + 3b4) �q53 · �q62
]
. (50)

Note that only those two diagrams in Fig. 5 contribute, where the (final and initial) � hyperon are associated to the central baryon
line. All other diagrams are simply zero owing to the vanishing of the ��π vertex.

VI. SUMMARY AND OUTLOOK

In this work we have derived the leading contributions to
the three-baryon interaction from SU(3) χEFT. First, we have
established the minimal nonrelativistic Lagrangian for contact
terms of six octet-baryons, leading to 18 constants. Using this
foundation, general SU(3) relations among the three-baryon

channels with strangeness 0 and −1 have been derived.
Furthermore, the four-baryon contact Lagrangian with one
Goldstone boson has been given in its minimal form, in which
it involves 14 constants. The irreducible three-body potentials
have been constructed at NNLO in the chiral power counting
based on the effective chiral Lagrangians. Contributions arise
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from contact terms, from one-meson exchange and from two-
meson exchange diagrams. The three-body potential for the
�NN interaction has been presented as an explicit example.

The large number of unknown low-energy constants
is related to the variety of three-baryon multiplets, with
strangeness ranging from 0 to −6. For selected processes
only a small subset of these constants contributes as has been
exemplified for the �NN three-body interaction. Estimates
of the predominant low-energy constants can be made by
using decuplet-baryon saturation. An example for that is the
�∗(1385) excitation in case of the �NN two-pion exchange
three-body interaction. Owing to the small decuplet-octet mass
splitting, such effects are promoted to NLO in the chiral power
counting, in analogy to the role played by the � resonance
in the nucleonic sector [4]. Work along this direction is in

progress [54]. We anticipate that the chiral potentials derived
in this work will shed light on the role of 3BFs in hypernuclei.
In particular, their application in studies of light hypernuclei
will be very instructive because such systems can be treated
within reliable few-body techniques [55,56]. Furthermore,
one expects that the present investigations can help pave the
way for more systematic studies on the role of three-baryon
interactions in hyperonic neutron-star matter.
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Ulf-G. Meißner, and H. Witala, Phys. Rev. C 66, 064001
(2002).

[8] B. H. J. McKellar and R. Rajaraman, Phys. Rev. Lett. 21, 450
(1968).

[9] S. A. Coon, M. D. Scadron, and B. R. Barrett, Nucl. Phys. A
242, 467 (1975).

[10] H. T. Coelho, T. K. Das, and M. R. Robilotta, Phys. Rev. C 28,
1812 (1983).

[11] B. S. Pudliner, V. R. Pandharipande, J. Carlson, S. C. Pieper,
and R. B. Wiringa, Phys. Rev. C 56, 1720 (1997).

[12] S. C. Pieper, V. R. Pandharipande, R. B. Wiringa, and J. Carlson,
Phys. Rev. C 64, 014001 (2001).

[13] S. Weinberg, Phys. Lett. B 251, 288 (1990).
[14] S. Weinberg, Nucl. Phys. B 363, 3 (1991).
[15] S. Weinberg, Phys. Lett. B 295, 114 (1992).
[16] U. van Kolck, Phys. Rev. C 49, 2932 (1994).
[17] S. Ishikawa and M. R. Robilotta, Phys. Rev. C 76, 014006

(2007).
[18] V. Bernard, E. Epelbaum, H. Krebs, and Ulf-G. Meißner, Phys.

Rev. C 77, 064004 (2008).
[19] V. Bernard, E. Epelbaum, H. Krebs, and Ulf-G. Meißner, Phys.

Rev. C 84, 054001 (2011).
[20] H. Krebs, A. Gasparyan, and E. Epelbaum, Phys. Rev. C 85,

054006 (2012).
[21] H. Krebs, A. Gasparyan, and E. Epelbaum, Phys. Rev. C 87,

054007 (2013).
[22] M. Kohno, Y. Fujiwara, T. Fujita, C. Nakamoto, and Y. Suzuki,

Nucl. Phys. A 674, 229 (2000).
[23] J. Haidenbauer and Ulf-G. Meißner, Phys. Rev. C 72, 044005

(2005).

[24] T. A. Rijken, M. M. Nagels, and Y. Yamamoto, Prog. Theor.
Phys. Suppl. 185, 14 (2010).

[25] J. Haidenbauer, S. Petschauer, N. Kaiser, U.-G. Meißner, A.
Nogga, and W. Weise, Nucl. Phys. A 915, 24 (2013).

[26] R. Bhaduri, B. Loiseau, and Y. Nogami, Nucl. Phys. B 3, 380
(1967).

[27] R. Bhaduri, B. Loiseau, and Y. Nogami, Ann. Phys. 44, 57
(1967).

[28] A. Gal, J. Soper, and R. Dalitz, Ann. Phys. 63, 53 (1971).
[29] A. Gal, J. Soper, and R. Dalitz, Ann. Phys. 72, 445 (1972).
[30] A. Gal, J. Soper, and R. Dalitz, Ann. Phys. 113, 79 (1978).
[31] A. Bodmer and Q. Usmani, Nucl. Phys. A 477, 621 (1988).
[32] A. A. Usmani, Phys. Rev. C 52, 1773 (1995).
[33] D. Lonardoni, S. Gandolfi, and F. Pederiva, Phys. Rev. C 87,

041303 (2013).
[34] D. Lonardoni, F. Pederiva, and S. Gandolfi, Phys. Rev. C 89,

014314 (2014).
[35] P. B. Demorest, T. T. Pennucci, S. M. Ransom, M. S. E. Roberts,

and J. W. T. Hessels, Nature (London) 467, 1081 (2010).
[36] J. Antoniadis et al., Science 340, 1233232 (2013).
[37] K. Hebeler, J. M. Lattimer, C. J. Pethick, and A. Schwenk, Phys.

Rev. Lett. 105, 161102 (2010).
[38] T. Hell and W. Weise, Phys. Rev. C 90, 045801 (2014).
[39] A. W. Steiner, J. M. Lattimer, and E. F. Brown,

arXiv:1510.07515, and references therein.
[40] H. Đapo, B.-J. Schaefer, and J. Wambach, Phys. Rev. C 81,

035803 (2010).
[41] T. Takatsuka, S. Nishizaki, and R. Tamagaki, Prog. Theor. Phys.

Suppl. 174, 80 (2008).
[42] I. Vidaña, D. Logoteta, C. Providência, A. Polls, and I. Bombaci,

Europhys. Lett. 94, 11002 (2011).
[43] D. Lonardoni, A. Lovato, S. Gandolfi, and F. Pederiva, Phys.

Rev. Lett. 114, 092301 (2015).
[44] J. Haidenbauer and U.-G. Meißner, Nucl. Phys. A 936, 29

(2015).
[45] S. Petschauer, J. Haidenbauer, N. Kaiser, U.-G. Meißner, and

W. Weise, Eur. Phys. J. A (to be published) [arXiv:1507.08808].
[46] E. Epelbaum, H. Krebs, and U.-G. Meißner, Nucl. Phys. A 806,

65 (2008).
[47] S. Petschauer and N. Kaiser, Nucl. Phys. A 916, 1 (2013).
[48] C. B. Dover and H. Feshbach, Ann. Phys. 198, 321 (1990).

014001-13

http://dx.doi.org/10.1103/PhysRevC.49.2950
http://dx.doi.org/10.1103/PhysRevC.49.2950
http://dx.doi.org/10.1103/PhysRevC.49.2950
http://dx.doi.org/10.1103/PhysRevC.49.2950
http://dx.doi.org/10.1103/PhysRevC.51.38
http://dx.doi.org/10.1103/PhysRevC.51.38
http://dx.doi.org/10.1103/PhysRevC.51.38
http://dx.doi.org/10.1103/PhysRevC.51.38
http://dx.doi.org/10.1103/PhysRevC.63.024001
http://dx.doi.org/10.1103/PhysRevC.63.024001
http://dx.doi.org/10.1103/PhysRevC.63.024001
http://dx.doi.org/10.1103/PhysRevC.63.024001
http://dx.doi.org/10.1103/RevModPhys.81.1773
http://dx.doi.org/10.1103/RevModPhys.81.1773
http://dx.doi.org/10.1103/RevModPhys.81.1773
http://dx.doi.org/10.1103/RevModPhys.81.1773
http://dx.doi.org/10.1016/j.physrep.2011.02.001
http://dx.doi.org/10.1016/j.physrep.2011.02.001
http://dx.doi.org/10.1016/j.physrep.2011.02.001
http://dx.doi.org/10.1016/j.physrep.2011.02.001
http://dx.doi.org/10.1146/annurev.nucl.51.101701.132506
http://dx.doi.org/10.1146/annurev.nucl.51.101701.132506
http://dx.doi.org/10.1146/annurev.nucl.51.101701.132506
http://dx.doi.org/10.1146/annurev.nucl.51.101701.132506
http://dx.doi.org/10.1103/PhysRevC.66.064001
http://dx.doi.org/10.1103/PhysRevC.66.064001
http://dx.doi.org/10.1103/PhysRevC.66.064001
http://dx.doi.org/10.1103/PhysRevC.66.064001
http://dx.doi.org/10.1103/PhysRevLett.21.450
http://dx.doi.org/10.1103/PhysRevLett.21.450
http://dx.doi.org/10.1103/PhysRevLett.21.450
http://dx.doi.org/10.1103/PhysRevLett.21.450
http://dx.doi.org/10.1016/0375-9474(75)90109-8
http://dx.doi.org/10.1016/0375-9474(75)90109-8
http://dx.doi.org/10.1016/0375-9474(75)90109-8
http://dx.doi.org/10.1016/0375-9474(75)90109-8
http://dx.doi.org/10.1103/PhysRevC.28.1812
http://dx.doi.org/10.1103/PhysRevC.28.1812
http://dx.doi.org/10.1103/PhysRevC.28.1812
http://dx.doi.org/10.1103/PhysRevC.28.1812
http://dx.doi.org/10.1103/PhysRevC.56.1720
http://dx.doi.org/10.1103/PhysRevC.56.1720
http://dx.doi.org/10.1103/PhysRevC.56.1720
http://dx.doi.org/10.1103/PhysRevC.56.1720
http://dx.doi.org/10.1103/PhysRevC.64.014001
http://dx.doi.org/10.1103/PhysRevC.64.014001
http://dx.doi.org/10.1103/PhysRevC.64.014001
http://dx.doi.org/10.1103/PhysRevC.64.014001
http://dx.doi.org/10.1016/0370-2693(90)90938-3
http://dx.doi.org/10.1016/0370-2693(90)90938-3
http://dx.doi.org/10.1016/0370-2693(90)90938-3
http://dx.doi.org/10.1016/0370-2693(90)90938-3
http://dx.doi.org/10.1016/0550-3213(91)90231-L
http://dx.doi.org/10.1016/0550-3213(91)90231-L
http://dx.doi.org/10.1016/0550-3213(91)90231-L
http://dx.doi.org/10.1016/0550-3213(91)90231-L
http://dx.doi.org/10.1016/0370-2693(92)90099-P
http://dx.doi.org/10.1016/0370-2693(92)90099-P
http://dx.doi.org/10.1016/0370-2693(92)90099-P
http://dx.doi.org/10.1016/0370-2693(92)90099-P
http://dx.doi.org/10.1103/PhysRevC.49.2932
http://dx.doi.org/10.1103/PhysRevC.49.2932
http://dx.doi.org/10.1103/PhysRevC.49.2932
http://dx.doi.org/10.1103/PhysRevC.49.2932
http://dx.doi.org/10.1103/PhysRevC.76.014006
http://dx.doi.org/10.1103/PhysRevC.76.014006
http://dx.doi.org/10.1103/PhysRevC.76.014006
http://dx.doi.org/10.1103/PhysRevC.76.014006
http://dx.doi.org/10.1103/PhysRevC.77.064004
http://dx.doi.org/10.1103/PhysRevC.77.064004
http://dx.doi.org/10.1103/PhysRevC.77.064004
http://dx.doi.org/10.1103/PhysRevC.77.064004
http://dx.doi.org/10.1103/PhysRevC.84.054001
http://dx.doi.org/10.1103/PhysRevC.84.054001
http://dx.doi.org/10.1103/PhysRevC.84.054001
http://dx.doi.org/10.1103/PhysRevC.84.054001
http://dx.doi.org/10.1103/PhysRevC.85.054006
http://dx.doi.org/10.1103/PhysRevC.85.054006
http://dx.doi.org/10.1103/PhysRevC.85.054006
http://dx.doi.org/10.1103/PhysRevC.85.054006
http://dx.doi.org/10.1103/PhysRevC.87.054007
http://dx.doi.org/10.1103/PhysRevC.87.054007
http://dx.doi.org/10.1103/PhysRevC.87.054007
http://dx.doi.org/10.1103/PhysRevC.87.054007
http://dx.doi.org/10.1016/S0375-9474(00)00164-0
http://dx.doi.org/10.1016/S0375-9474(00)00164-0
http://dx.doi.org/10.1016/S0375-9474(00)00164-0
http://dx.doi.org/10.1016/S0375-9474(00)00164-0
http://dx.doi.org/10.1103/PhysRevC.72.044005
http://dx.doi.org/10.1103/PhysRevC.72.044005
http://dx.doi.org/10.1103/PhysRevC.72.044005
http://dx.doi.org/10.1103/PhysRevC.72.044005
http://dx.doi.org/10.1143/PTPS.185.14
http://dx.doi.org/10.1143/PTPS.185.14
http://dx.doi.org/10.1143/PTPS.185.14
http://dx.doi.org/10.1143/PTPS.185.14
http://dx.doi.org/10.1016/j.nuclphysa.2013.06.008
http://dx.doi.org/10.1016/j.nuclphysa.2013.06.008
http://dx.doi.org/10.1016/j.nuclphysa.2013.06.008
http://dx.doi.org/10.1016/j.nuclphysa.2013.06.008
http://dx.doi.org/10.1016/0550-3213(67)90007-7
http://dx.doi.org/10.1016/0550-3213(67)90007-7
http://dx.doi.org/10.1016/0550-3213(67)90007-7
http://dx.doi.org/10.1016/0550-3213(67)90007-7
http://dx.doi.org/10.1016/0003-4916(67)90264-3
http://dx.doi.org/10.1016/0003-4916(67)90264-3
http://dx.doi.org/10.1016/0003-4916(67)90264-3
http://dx.doi.org/10.1016/0003-4916(67)90264-3
http://dx.doi.org/10.1016/0003-4916(71)90297-1
http://dx.doi.org/10.1016/0003-4916(71)90297-1
http://dx.doi.org/10.1016/0003-4916(71)90297-1
http://dx.doi.org/10.1016/0003-4916(71)90297-1
http://dx.doi.org/10.1016/0003-4916(72)90222-9
http://dx.doi.org/10.1016/0003-4916(72)90222-9
http://dx.doi.org/10.1016/0003-4916(72)90222-9
http://dx.doi.org/10.1016/0003-4916(72)90222-9
http://dx.doi.org/10.1016/0003-4916(78)90250-6
http://dx.doi.org/10.1016/0003-4916(78)90250-6
http://dx.doi.org/10.1016/0003-4916(78)90250-6
http://dx.doi.org/10.1016/0003-4916(78)90250-6
http://dx.doi.org/10.1016/0375-9474(88)90410-1
http://dx.doi.org/10.1016/0375-9474(88)90410-1
http://dx.doi.org/10.1016/0375-9474(88)90410-1
http://dx.doi.org/10.1016/0375-9474(88)90410-1
http://dx.doi.org/10.1103/PhysRevC.52.1773
http://dx.doi.org/10.1103/PhysRevC.52.1773
http://dx.doi.org/10.1103/PhysRevC.52.1773
http://dx.doi.org/10.1103/PhysRevC.52.1773
http://dx.doi.org/10.1103/PhysRevC.87.041303
http://dx.doi.org/10.1103/PhysRevC.87.041303
http://dx.doi.org/10.1103/PhysRevC.87.041303
http://dx.doi.org/10.1103/PhysRevC.87.041303
http://dx.doi.org/10.1103/PhysRevC.89.014314
http://dx.doi.org/10.1103/PhysRevC.89.014314
http://dx.doi.org/10.1103/PhysRevC.89.014314
http://dx.doi.org/10.1103/PhysRevC.89.014314
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1038/nature09466
http://dx.doi.org/10.1126/science.1233232
http://dx.doi.org/10.1126/science.1233232
http://dx.doi.org/10.1126/science.1233232
http://dx.doi.org/10.1126/science.1233232
http://dx.doi.org/10.1103/PhysRevLett.105.161102
http://dx.doi.org/10.1103/PhysRevLett.105.161102
http://dx.doi.org/10.1103/PhysRevLett.105.161102
http://dx.doi.org/10.1103/PhysRevLett.105.161102
http://dx.doi.org/10.1103/PhysRevC.90.045801
http://dx.doi.org/10.1103/PhysRevC.90.045801
http://dx.doi.org/10.1103/PhysRevC.90.045801
http://dx.doi.org/10.1103/PhysRevC.90.045801
http://arxiv.org/abs/arXiv:1510.07515
http://dx.doi.org/10.1103/PhysRevC.81.035803
http://dx.doi.org/10.1103/PhysRevC.81.035803
http://dx.doi.org/10.1103/PhysRevC.81.035803
http://dx.doi.org/10.1103/PhysRevC.81.035803
http://dx.doi.org/10.1143/PTPS.174.80
http://dx.doi.org/10.1143/PTPS.174.80
http://dx.doi.org/10.1143/PTPS.174.80
http://dx.doi.org/10.1143/PTPS.174.80
http://dx.doi.org/10.1209/0295-5075/94/11002
http://dx.doi.org/10.1209/0295-5075/94/11002
http://dx.doi.org/10.1209/0295-5075/94/11002
http://dx.doi.org/10.1209/0295-5075/94/11002
http://dx.doi.org/10.1103/PhysRevLett.114.092301
http://dx.doi.org/10.1103/PhysRevLett.114.092301
http://dx.doi.org/10.1103/PhysRevLett.114.092301
http://dx.doi.org/10.1103/PhysRevLett.114.092301
http://dx.doi.org/10.1016/j.nuclphysa.2015.01.005
http://dx.doi.org/10.1016/j.nuclphysa.2015.01.005
http://dx.doi.org/10.1016/j.nuclphysa.2015.01.005
http://dx.doi.org/10.1016/j.nuclphysa.2015.01.005
http://arxiv.org/abs/arXiv:1507.08808
http://dx.doi.org/10.1016/j.nuclphysa.2008.02.305
http://dx.doi.org/10.1016/j.nuclphysa.2008.02.305
http://dx.doi.org/10.1016/j.nuclphysa.2008.02.305
http://dx.doi.org/10.1016/j.nuclphysa.2008.02.305
http://dx.doi.org/10.1016/j.nuclphysa.2013.07.010
http://dx.doi.org/10.1016/j.nuclphysa.2013.07.010
http://dx.doi.org/10.1016/j.nuclphysa.2013.07.010
http://dx.doi.org/10.1016/j.nuclphysa.2013.07.010
http://dx.doi.org/10.1016/0003-4916(90)90254-L
http://dx.doi.org/10.1016/0003-4916(90)90254-L
http://dx.doi.org/10.1016/0003-4916(90)90254-L
http://dx.doi.org/10.1016/0003-4916(90)90254-L


STEFAN PETSCHAUER et al. PHYSICAL REVIEW C 93, 014001 (2016)

[49] V. Bernard, N. Kaiser, and U.-G. Meißner, Int. J. Mod. Phys. E
4, 193 (1995).

[50] A. Krause, Helv. Phys. Acta 63, 3 (1990).
[51] J. A. Oller, M. Verbeni, and J. Prades, J. High Energy Phys. 09

(2006) 079.
[52] M. Frink and U.-G. Meißner, J. High Energy Phys. 07 (2004)

028.

[53] M. Mai, P. C. Bruns, B. Kubis, and Ulf-G. Meißner, Phys. Rev.
D 80, 094006 (2009).

[54] S. Petschauer et al. (unpublished).
[55] A. Nogga, Few-Body Syst. 55, 757 (2014).
[56] R. Wirth, D. Gazda, P. Navrátil, A. Calci, J.
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