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α-decay width of 212Po from a quartetting wave function approach
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A microscopic calculation of α-cluster preformation probability and α-decay width in the typical α emitter
212Po is presented. Results are obtained by improving a recent approach to describe α preformation in 212Po
[Phys. Rev. C 90, 034304 (2014)] implementing four-nucleon correlations (quartetting). Using the actually
measured density distribution of the 208Pb core, the calculated α-decay width of 212Po agrees fairly well with
the measured one.
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Radioactive α decay is a frequent phenomenon in nuclear
physics, in particular near the doubly magic nuclei 100Sn
and 208Pb and the superheavies where α decay competes
with spontaneous fission (for a recent discussion see [1]
and references given there). Whereas the tunneling of an
α particle across the Coulomb barrier is well described in
quantum physics, the problem in understanding α decay within
a microscopic approach is the preformation of the α cluster in
the decaying nucleus.

The formation of α-like correlations in nuclear systems has
been investigated recently. In particular, in light, low density
states of self-conjugate nuclei, four-nucleon correlations have
been identified within the THSR (Tohsaki-Horiuchi-Schuck-
Röpke) approach [2], but also with other theories such as the
resonating group method [3], the generator coordinate method
[4], fermion molecular dynamics [5], and antisymmetrized
molecular dynamics approaches [6] going beyond the mean-
field approximation. The main message is that well-defined
clusters are formed only in regions where the density of nuclear
matter is low. Therefore, it is of interest to investigate α-like
correlations also in the outer tails of the density of a nucleus,
and α preformation is discussed as a surface effect confined
to the region where the nucleon density is comparable to or
below 1/5 of saturation density nsat = 0.16 fm−3.

A typical example is 212Po, which is an α emitter with
half-life 0.299 μs and decay energy Qα = 8954.13 keV. It is
spherical, doubly magic, and has only one decay channel.
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Several approaches have been made to calculate the α
decay width of 212Po within a microscopic approach; see
Ref. [7] and references therein. Furthermore a quartetting
wave function approach has been worked out recently [8].
Here, we are interested in the α decay width of 212Po. The
transition probability for the α decay W = PανT is given
as product of the preformation probability Pα , the frequency
(pre-exponential factor) ν, and the exponential factor T . In
the present work, we improve the exploratory calculation
performed in [8], replacing simple expressions for the density
of the 208Pb core by recently measured density profiles [9].
Furthermore, we improve the mean-field potential using a
double-folding potential [10] instead of the Woods-Saxon
potential. To evaluate the α-decay width, we use the approach
of Gurvitz [11] to estimate the pre-exponential factor. In
addition to the preformation factor and the binding energy,
results for the half-life will be given.

Preformation probability. An effective α-particle equation
has been derived recently [8] for cases where an α particle
is bound to a doubly magic core, 208Pb. Neglecting recoil
effects, we assume that the core nucleus is fixed at r = 0. The
core nucleons are distributed with baryon density nB(r) and
produce a mean field V mf

τ (r) acting on the two neutrons (τ = n)
and two protons (τ = p) moving on top of the lead core. In
the present work, we will consider both nB(r) and V mf

τ (r) as
phenomenological inputs. Of interest is the wave function of
the four nucleons on top of the core nucleus, which can form
an α-like cluster.

The four-nucleon wave function (quartetting state)
�(R,sj ) = ϕintr(sj ,R) �(R) is subdivided in a unique way in
the (normalized) center-of-mass (c.m.) part �(R) depending
only on the c.m. coordinate R, and the intrinsic part ϕintr(sj ,R)
which depends, in addition, on the relative coordinates sj (for
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instance, Jacobi-Moshinsky coordinates) [8]. The respective
c.m. and intrinsic Schrödinger equations are coupled by
contributions containing the expression ∇Rϕintr(sj ,R) which
will be neglected in the present work.

The intrinsic wave equation describes in the zero-density
limit the formation of an α particle with binding energy
Bα = 28.3 MeV. For homogeneous matter, the binding energy
will be reduced because of Pauli blocking. In the zero-
temperature case considered here, the shift of the binding
energy is determined by the baryon density nB = nn + np,
i.e., the sum of the neutron density nn and the proton density
np. Furthermore, Pauli blocking depends on the asymmetry
given by the proton fraction np/nB and the c.m. momentum
P of the α particle. Neglecting the weak dependence on
the asymmetry, for P = 0 the density dependence of the
Pauli blocking term W Pauli(nB) = 4515.9 nB − 100935 n2

B +
1202538 n3

B was found in [8], Eq. (45), as a formula with
fitted parameters valid in the density region nB � 0.03 fm−3

with relative error below 1%. In particular, the bound state is
dissolved and merges with the continuum of scattering states
at the Mott density nMott

B = 0.02917 fm−3.
The intrinsic wave function remains nearly α-particle-like

up to the Mott density, but becomes a product of free nucleon
wave functions (more precisely the product of scattering states)
above the Mott density. This behavior of the intrinsic wave
function will be used below when the preformation probability
for the α particle is calculated. Below the Mott density the
intrinsic part of the quartetting wave function has a large
overlap with the intrinsic wave function of the free α particle.
In the region where the α-like cluster penetrates the core
nucleus, the intrinsic bound state wave function transforms
at the critical density nMott

B into an unbound four-nucleon shell
model state. In the case of 212Po considered here, an α particle
is moving on top of the doubly magic 208Pb core. The tail of
the density distribution of the Pb core where the baryon density
is below the Mott density nMott

B is relevant for the formation
of α-like four-nucleon correlations [12]. Simply stated, the α
particle can exist only at the surface of the heavy nucleus.
This peculiarity has been considered for a long time for the
qualitative discussion of the preformation of α particles in
heavy nuclei [1,13,14].

Improving simple estimations for the baryon density
considered in [8], we use the empirical results obtained
recently [9] which are parametrized by Fermi functions.
With the neutron density nn(r) = 0.093776/{1 + exp[(r −
6.7 fm)/0.55 fm]} fm−3 and the proton density np(r) =
0.062895/{1 + exp[(r − 6.68 fm)/0.447 fm]} fm−3, the Mott
density nMott

B = 0.02917 fm−3 occurs at rcluster = 7.4383 fm,
nB(rcluster) = nMott

B . This means that α-like clusters can exist
only at distances r > rcluster; for smaller values of r the intrinsic
wave function is characterized by the uncorrelated motion.

Our main attention is focused on the c.m. motion �(R)
of the four-nucleon wave function (quartetting state of four
nucleons n↑,n↓,p↑,p↓). We replace the c.m. coordinate R
by the distance r from the center of the heavy 208Pb core.
The corresponding Schrödinger equation contains the kinetic
part −�

2∇2/8m as well as the potential part W (r,r′), which
is in general nonlocal but can be approximated by a local
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FIG. 1. Intrinsic part W intr(r) of the effective c.m. potential W (r).
The empirical density distribution [9] for the 208Pb core has been
used. The critical radius rcluster = 7.4383 fm where the bound state are
dissolved is indicated (dotted line). The four-nucleon Fermi energy
E4,cont(r) for r < rcluster is taken in Thomas–Fermi approximation
(free fermion gas).

effective c.m. potential W (r) = W intr(r) + W ext(r). The effec-
tive c.m. potential consists of two contributions: the intrinsic
part W intr(r) = E(0)

α + W Pauli(r) and the external part W ext(r)
which is determined by the mean-field interaction V mf

τ (r) [8].
The intrinsic part W intr(r) approaches for large r the bound

state energy E(0)
α = −Bα = −28.3 MeV of the α particle. In

addition, it contains the Pauli blocking effects W Pauli[nB(r)]
given above [8], which leads for r > rcluster to a shift of the
binding energy of the α-like cluster. For r < rcluster, the density
of the core nucleus is larger than the Mott density so that no
bound state is formed. As lowest energy state, the four nucleons
of the quartetting state are added at the edge of the continuum
states E4,cont. In the case of the Thomas-Fermi model, not
accounting for an external potential, the edge of the four-
nucleon continuum coincides with the sum of the Fermi en-
ergies of the four nucleons, E4,cont = 2EF,n(nn) + 2EF,p(np)
with EF,τ (nτ ) = (�2/2mτ )(3π2nτ )2/3. Because the nucleon
densities nτ (r) depend on position r , also the continuum
edge of unoccupied states E4,cont(r) will depend on r . For
illustration, the intrinsic part W intr(r), based on the empirical
density distribution [9] for the 208Pb core, is shown in Fig. 1.

The external part W ext(r) is given by the mean field V mf
τ (r)

of the surrounding matter acting on the four-nucleon system. It
includes the strong nucleon-nucleon interaction as well as the
Coulomb interaction. For r > rcluster the simple Woods-Saxon
potential used in [8] can be improved by using the double-
folding potential [15], which contains the direct nucleon-
nucleon interaction and the exchange terms. The Coulomb
interaction is calculated as a double-folding potential using the
proton density np(r) of the 208Pb core given above and a Gaus-
sian density distribution for the α cluster, with a charge r.m.s.
radius of 1.67 fm. The direct nucleon-nucleon interaction is
obtained by folding the measured nucleon density distribution
of the 208Pb core nB(r) and the Gaussian density distribution
for the α cluster (point r.m.s. radius 1.44 fm) with a pa-
rameterized M3Y-type nucleon-nucleon effective interaction
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v(s) = c exp(−4s)/(4s) − d exp(−2.5s)/(2.5s) describing a
short-range repulsion (c) and a long-range attraction (d); s
denotes the nucleon-nucleon distance. For comparison, two
sets of c.m. potentials from the double-folding procedure are
discussed here: potential A and potential B. For r > rcluster,
the corresponding parameter values for c,d of the direct term
VN (r) are given in Table I. For the exchange terms we use the
Pauli blocking W Pauli[nB(r)] obtained from the microscopic
approach. Potential A is considered to explain the physics
underlying our approach. The core nucleus is treated in the
Thomas-Fermi approximation. Potential B takes into account
a discrete level structure in the core nucleus.

Potential A: Thomas-Fermi model for the core region.
The Thomas-Fermi model of the core nucleus considers
a (self-consistent) mean-field potential V mf

τ (r). The baryon
density nτ (r) yields the Fermi energy EF,τ (r) (ideal Fermi gas
approximation) as given above. We can introduce the chemical
potential μτ (r) = V mf

τ (r) + EF,τ (r) with the property that an
additional baryon, introduced at position r , must have at least
the energy μτ (r). The well-known variational principle leads
to a uniform μτ for the entire nucleon system, not depending
on position r and determined only by the total baryon number.

The same argumentation can also applied to four nucleons
in different spin-isospin states as long as they are moving in
free, uncorrelated states. This is the case for the core region r <
rcluster where no bound state can be formed by the four nucleons
added to the 208Pb core. Here, the intrinsic wave function
ϕintr(sj ,R) is approximated by the antisymmetrized product
of free single-nucleon states. Within a local-density (Thomas-
Fermi) approach these four nucleons are added at the respective
Fermi energies EF,τ (r), i.e., at the chemical potential μ4

which is the sum of the mean-field potential and the Fermi
energy of the four nucleons, μ4 = W ext(r) + E4,cont(r) =
2V mf

n (r) + 2V mf
p (r) + 2EF,n(nn(r)) + 2EF,p(np(r)). In the re-

gion r < rcluster where the Thomas-Fermi approach can be
applied (independent single-nucleon motion), according to the
variational principle the energy value μ4 is a constant, not
depending on position r . (Note that this argumentation cannot
applied to the region r > rcluster where a bound state can be
formed. Here, correlations are essential, and the use of the
Thomas-Fermi approach is not possible.)

The Schrödinger equation for the c.m. motion [8], governed
by the effective c.m. potential W (R), determines the wave
function �(R) as well as the energy eigenvalue E. This energy
eigenvalue of the four-nucleon system on top of the 208Pb
core nucleus coincides, on the one hand, with the bound state
energy Etunnel of the four-nucleon cluster; see the discussion
of the tunneling process given below. On the other hand, in the
region r < rcluster where the Thomas-Fermi approach can be
applied, the ground state energy E for the four-nucleon system
on top of the 208Pb core was found to be μ4 as discussed
above. In conclusion, in the Thomas–Fermi approach for the
core region r < rcluster, the chemical potential μ4 coincides
with the bound state energy Etunnel of the four-nucleon cluster,
Etunnel = μ4. In this region, the effective c.m. potential W (r)
describes the edge of the four-nucleon continuum where the
nucleons can penetrate into the core nucleus.

Potential A is designed according to this simple local-
density approach. The two parameter values cA,dA are de-
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FIG. 2. Effective c.m. potential W (r), potential A. The empirical
baryon density distribution nB (r) [9] for the 208Pb core is also shown.
The chemical potential μ4 coincides with the binding energy Etunnel.

termined by the conditions μ4 = Etunnel = −19.346 MeV; see
Fig. 2. The tunneling energy is identical to the energy at which
the four nucleons are added to the core nucleus. The total
c.m. potential is continuous at r = rcluster and is constant for
r < rcluster, where the effective c.m. potential is W (r) = μ4.
The corresponding values for the preformation factor and the
decay half-life are given in Table I.

Potential B: Discrete energy level structure of the core
nucleus. In a better approximation, the simple local-density
(Thomas-Fermi) approach for the 208Pb core nucleus has to be
replaced by a shell model calculation. Then, the single-particle
states are occupied up to the Fermi energy, and additional
nucleons are introduced at higher energy levels according to
the discrete structure of the single energy level spectrum. The
continuous energy spectrum of the Thomas-Fermi approach
which prescribes that, if all states below the chemical potential
μτ are occupied, an additional nucleon introduced in the
nuclear system has the minimum energy μτ , is no longer valid,
and the condition Etunnel = μ4 is withdrawn. If the shell model
is appropriate for the core nucleus, with the Fermi energy
at μ4, additional nucleons have a somewhat higher energy,
Etunnel > μ4. (Note that in the opposite case a shell model
approach becomes unstable against the formation of clusters.)

Potential B is designed without the condition μ4 = Etunnel.
The two parameter values cB,dB are determined by the two em-
pirical values: the bound state energy Etunnel = −19.346 MeV
and the half-life T1/2 = 2.99 × 10−7 s for 212Po. The cor-
responding values are given in Table I. As expected, the
bound state energy is above the value W (r) = μ4 for the c.m.
potential at r < rcluster. A plot of the c.m. potential as well
as the different contributions are shown in Fig. 3. As clearly
seen in Fig. 3, both the potentials A and B are dominated
by the Coulomb repulsion for finite distances r � 15 fm,
and at large distances only the bound state energy of the
free α particle remains: limr→∞ W (r) = −28.3 MeV. Below
r ≈ 15 fm, both the attractive nuclear potential and repulsive
Pauli blocking between the α particle and the lead core become
relevant. At a critical distance rcluster = 7.4383 fm (where
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TABLE I. The calculated preformation probability and decay half-life of 212Po using different sets of effective c.m. potentials.

Potential c d Etunnel Fermi energy Etunnel − μ4 Preform. factor Decay half-life
(MeV fm) (MeV fm) (MeV) μ4 (MeV) (MeV) Pα T1/2 (s)

A 13866.30 4090.51 −19.346 −19.346 0 0.367 2.91 × 10−8

B 11032.08 3415.56 −19.346 −19.771 0.425 0.142 2.99 × 10−7

nB = 0.02917 fm−3), the α cluster is suddenly dissolved and
the four nucleons added to the core are assumed to occupy
single-nucleon states above the Fermi energy μ4.

Frequency (pre-exponential factor) ν and exponential
factor T . Using the two-potential approach of Gurvitz [11],
the effective c.m. potential W (r) is separated into two parts
at rsep = 15 fm (the precise choice of the separating point
will almost not affect the final results). By solving the
corresponding c.m. Schrödinger equations, both the bound
state wave function �(r) and the scattering state wave function
χ (r) are calculated. We show both �(r) and χ (r) obtained
from potential B in Fig. 4. The c.m. wave function �(r)
exhibits an approximately linear increase up to the critical
distance rcluster = 7.4383 fm (where nB = nMott

B ) and then
decreases. As shown in [8], the four-nucleon intrinsic wave
function ϕintr(sj ,r) is nearly identical with the free α-particle
wave function in the region r > rcluster, whereas for r < rcluster

the intrinsic wave function behaves like a product of free
nucleon wave functions so that the overlap with the free
α-particle wave function is nearly zero. The preformation
probability of the α cluster is obtained by integrating the �(r)
from this critical point to infinity [8]:

Pα =
∫ ∞

0
d3r|�(r)|2
[

nMott
B − nB(r)

]
. (1)

The scattering state wave function χ (r) exhibits a strong
oscillating feature as a combination of regular and irregular
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FIG. 3. Effective c.m. potential W (r) for the α decay of 212Po.
Both versions A and B lead to the empirical bound state energy
Etunnel = −19.346 MeV; see Table I. The repulsive potential is given
by the Pauli blocking term. The total c.m. potential W (r) contains,
in addition, the Coulomb part and the bound state energy E(0)

α =
−28.3 MeV. The chemical potential μ4 for potential B is slightly
deeper than the bound state energy Etunnel = −19.346 MeV; see
Table I.

Coulomb functions. The decay width is then calculated by
using the values of �(r) and χk(r) at the separation point. We
choose rsep = 15 fm [11]:

� = ν × T = 4�
2α2

μk
|�(rsep)χk(rsep)|2, (2)

where μ = AαAd/(Aα + Ad ), α =√
2μ(V (rsep) − Etunnel)/�, k = √

2μEtunnel/�, Ad is the
mass number of the lead core, and the decay half-life is
related to the preformation probability and decay width by
T1/2 = � ln 2/(Pα�).

Results. In Table I, the details of the calculated preformation
probability and decay half-life of 212Po are presented. Both
potentials A and B are designed (parameter values c,d for
A, B) so that the experimental bound state energy Etunnel =
−19.346 MeV is reproduced. If the Thomas-Fermi condition
Etunnel = μ4 is fixed (potential A), the calculated half-life T1/2

is too short. The measured decay half-life T1/2 = 2.99 × 10−7

s is used to design potential B. The corresponding Fermi
energy of potential B is μα = −19.771 MeV and the α-cluster
preformation factor is Pα = 0.142. It is emphasized that the
preformation factor and decay half-life of 212Po are consis-
tently computed in a microscopic way, but the parameter values
c and d of potential B were chosen to fit these empirical data.

By varying the parameters c,d of the nucleon-nucleon ef-
fective interaction v(s) so that the energy eigenvalue Etunnel =
−19.346 MeV (or decay energy) remains fixed, the difference
Etunnel − μ4 changes. At the same time, the preformation
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FIG. 4. The bound state wave function �(r) and the scattering
state wave function χ (r) calculated by separating potential B into
two parts based on the two-potential approach. The separation point
is chosen to be rsep = 15 fm.
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half-life with the preformation factor.

factor Pα and the decay half-life T1/2 are also changing; see
also Table I for two special values. To show this behavior
more clearly, the correlation between the energy difference
Etunnel − μ4 and the decay half-life T1/2 is given in the left
panel of Fig. 5 for various parameter values c,d of the direct
term v(s). Comparing potentials A and B, it is also observed
that the α cluster preformation factor Pα is also correlated
with the difference between the the energy eigenvalue Etunnel

and the Fermi energy μ4. A systematic dependence of the
preformation factor on Etunnel − μ4 as well as the resulting
correlation between T1/2 and Pα at fixed decay energy is also
shown in Fig. 5.

Discussion. We neglected gradient terms so that our
approach is close to the local-density approximation. We have

to remember that within a rigorous approach the c.m. potential
W (r,r′) is nonlocal. A full treatment of the inhomogeneous
case relevant for finite nuclei, which includes the gradient
terms and the nonlocal potentials, is a future goal, presently not
in reach. In addition, an improved approach for the intrinsic
wave function ϕintr(sj ; R), with a smooth behavior at rcluster

to replace the step function 
[nMott
B − nB(r)], will improve

the result for Pα . The core is described by an uncorrelated
quasiparticle model, the Thomas-Fermi model, or the nuclear
shell model with a Fermi energy. Also pairing correlations can
be introduced. It is an important task to improve the description
of the core, allowing also for correlations. This would affect
our understanding of the potential and the wave function for
r < rcluster where a constant Fermi energy or chemical potential
μ4 is considered. Instead, the c.m. potential W (r) and conse-
quently the wave function �(r) will depend on r in a more
complex way also for r < rcluster. Presently, there are different
attempts to include few-nucleon correlations to calculate light
nuclei. The treatment of heavier nuclei is not feasible with
present computer capabilities. The approach is inspired by
the THSR wave function concept that has been successfully
applied to light nuclei. Shell model calculations are improved
by including four-particle (α-like) correlations that are of rele-
vance when the matter density becomes low. A closer relation
of the calculation presented here to the THSR calculations is
of great interest; see the calculations for 20Ne [16,17]. Related
calculations are performed in Ref. [18]. A comparison with
THSR calculations would lead to a better understanding of the
microscopic calculations, in particular the c.m. potential, the
c.m. wave function, and the preformation factor.
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