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Nuclear rotation in the continuum
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Background: Atomic nuclei often exhibit collective rotational-like behavior in highly excited states, well above
the particle emission threshold. What determines the existence of collective motion in the continuum region is
not fully understood.
Purpose: In this work, by studying the collective rotation of the positive-parity deformed configurations of the
one-neutron halo nucleus 11Be, we assess different mechanisms that stabilize collective behavior beyond the
limits of particle stability.
Method: To solve a particle-plus-core problem, we employ a nonadiabatic coupled-channel formalism and the
Berggren single-particle ensemble, which explicitly contains bound states, narrow resonances, and the scattering
continuum. We study the valence-neutron density in the intrinsic rotor frame to assess the validity of the adiabatic
approach as the excitation energy increases.
Results: We demonstrate that collective rotation of the ground band of 11Be is stabilized by (i) the fact that
the � = 0 one-neutron decay channel is closed, and (ii) the angular momentum alignment, which increases the
parentage of high-� components at high spins; both effects act in concert to decrease decay widths of ground-state
band members. This is not the case for higher-lying states of 11Be, where the � = 0 neutron-decay channel is
open and often dominates.
Conclusion: We demonstrate that long-lived collective states can exist at high excitation energy in weakly bound
neutron drip-line nuclei such as 11Be.
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Introduction. Studies of exotic nuclei far from the valley of
beta-stability reveal novel features, such as the formation of
halo structures [1,2], near-threshold clustering effects [3–6],
and the presence of new types of correlations [7]. In all these
cases, the atomic nucleus exhibits properties characteristic of
an open quantum system, whose properties are dramatically
altered by the coupling to scattering and reaction channels [8].

While the impact of reaction channels on nuclear structure
has been recognized [9], the fact that some highly excited
nuclear excitations can be interpreted in terms of nuclear
clusters and nuclear molecules [3,4] that experience collective
motions such as rotations and vibrations is quite astonishing.
The success of the collective model of atomic molecules
relies on the validity of the adiabatic Born–Oppenheimer
approximation [10] that relies on the vast difference between
timescales for single-electron and ionic motions. However,
when it comes to atomic nuclei, the time separation between
single-nucleon and collective motion is small, and the adiabatic
approximation is expected to be badly violated [11]. How
come, therefore, that a highly excited state, undergoing rapid
particle emission, can be viewed in simple geometric or alge-
braic terms involving rotating or vibrating fields, or potentials,
common for all nucleons? An excellent recent example is
offered by the spectrum of 12C discussed in the geometric
or algebraic language of three α-particle arrangements [12].

Whether a broad feature observed in scattering experiments
can be understood in terms of a nucleus, or a nuclear state,
is a subject to ongoing debate. Consider the single-particle
timescale. The average time it takes a nucleon to go across

a light nucleus (A ≈ 10) and come back can be roughly
estimated to be Ts.p. ≈ 1.3×10−22 s [13], and corresponds
to the timescale needed to create the nuclear mean field. If
one relates the half-life of the unbound nuclear state to its
decay width � through T1/2 = ln(2)�/�, one is tempted to
conclude that broad scattering features with T1/2 < Ts.p. (or
� > 3.5 MeV for A ≈ 10) can hardly be interpreted in terms of
nuclear states [14]. Of course, there is no sharp borderline that
separates bona fide nuclear states from broad features seen in
scattering experiments, and this often results in interpretational
difficulties [15]. To cloud the issue even more, a quantitative
experimental characterization of broad resonances, embedded
in a large nonresonant background, is not always possi-
ble. For instance, the extraction of experimental widths is
usually model based and relies on approximations [16,17].
As discussed in Ref. [15], many theoretical descriptions of
collective states in the continuum [18,19] employ bound-state
techniques that use localized wave functions; those have
limited applicability when it comes to unbound states and
broad resonances in particular.

The purpose of this work is to shed light on the notion
of nuclear collective motion in the continuum. Ideally, to
address this question, one should use a microscopic many-body
approach that allows the cluster degrees of freedom to naturally
emerge from the A-body problem in the open-system formula-
tion [20–22]. The purpose of this work, however, is not to solve
the many-body problem in its full glory with the inclusion of
continuum space, but rather to gain insight into the notion
of collective resonances by inspecting a simple case. To this
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end, we use a schematic particle-plus-core coupled-channel
approach based on the Berggren ensemble [23]. This model ex-
plicitly contains bound states, resonances, and complex-energy
scattering states, i.e., all ingredients needed to describe the
coupling to the one-nucleon continuum, and it also allows for
a simple explanation in terms of familiar geometrical terms. In
a similar context, this approach has been applied successfully
to the description of the resonant spectrum of the dipolar
anion [24], which can be considered as an extreme one-electron
halo. It has been shown that, below the dissociation threshold,
the motion of the valence electron is strongly coupled to the
collective rotation of the molecule, forming rotational states.
Above the ionization threshold, however, a rapid decoupling
of the electron’s motion from the rotational motion of the
molecule takes place, thus leading to a disappearance of a
collective rotational band. This observation begs the question
of whether such a demise of collective rotation could also
be expected in nuclear halo systems. Here, we investigate
qualitatively the existence of nuclear rotational states in the
continuum of the deformed one-neutron halo nucleus 11Be.

Model and parameters. To solve a problem of a particle
coupled to a collective core, we apply the nonadiabatic
coupled-channel method of Refs. [25–28] originally developed
in the context of deformed proton emitters. We assume that the
positive-parity ground-state band of 11Be can be viewed as
a weakly bound or unbound neutron coupled to a deformed
core of 10Be [29,30]. The exact form of the deformed
pseudopotential representing the neutron-core interaction is
not essential for the purpose of our qualitative discussion,
as long as the one-neutron threshold is reproduced. Here we
approximate it by a deformed Woods–Saxon (WS) potential
with a spherical spin-orbit term [26]. The total angular
momentum of the system is Ĵ = ĵ + ĵ r , where ĵ = �̂ + ŝ
is the angular momentum of the valence nucleon and ĵ r is that
of the rotor.

In the coupled-channel (CC) formalism, eigenstates of
the decaying nucleus |�Jπ 〉 are expanded in the basis of
channel wave functions labeled by channel quantum num-
bers c = (�jjr ). Each channel state is given by the cluster
radial wave function uc(r)/r representing the relative radial
motion of the particle and the core, and the orbital-spin part
|j (�,s)jr ; JMJ 〉.

The CC equations for uc(r) are

0 =
[
− �

2

2μ

d2

dr2
+ �

2�(� + 1)

2μr2
+ V J

c,c(r) − Q(Jπ,jr )

]
uJπ

c (r)

+
∑
c′ �=c

V J
c,c′ (r) uJπ

c′ (r), (1)

where V J
c,c is the diagonal part of the neutron-core potential,

Q(Jπ ,jr ) = EJπ − E
jπ
r

d is the energy of the particle decaying

from the state EJπ

of the parent nucleus to the state E
jπ
r

d of
the daughter system, and V J

c,c′ (r) are the off-diagonal coupling
terms.

The CC equations (1) can be solved by using the Berggren
expansion method (BEM) [24,31]. This approach has been
benchmarked in Ref. [31] by using the traditional technique
of direct integration of CC equations (DIM), which is fairly

accurate for well-localized states, but less accurate for unbound
Gamow states or when a large number of channels is consid-
ered. Indeed, the DIM and BEM results are very close for
the bound ground state and low-lying narrow resonances, but
for broader resonant states the BEM predicts smaller energies
and widths; hence, it is favored by the generalized variational
principle. Moreover, the DIM requires a starting point for the
integration that is close to the final eigenenergy, otherwise it
can sometimes exhibit a divergent behavior, and the search for
a good starting point has to be carried out for all individual
eigenstates of interest, while in the BEM the whole spectrum
is obtained in one diagonalization. Finally, BEM calculations
are much faster, especially for a large number of channels. For
instance, for the 7/2+ yrast state of 11Be with �max = 6 (22
channels), the time required by the DIM to solve the CC equa-
tions is over three orders of magnitude longer than in the BEM.

In the present case, a Berggren basis is built for each partial
wave (�,j ), from the discrete solutions of the diagonal part of
Eq. (1) with outgoing boundary conditions. The off-diagonal
matrix elements V J

c,c′ are calculated by using the exterior
complex-scaling technique [32,33].

The rotational structure of nuclear states can be interpreted
in terms of the internal density of the valence particle in
the core reference frame. Here we assume that the core is
associated with the rigid rotor axially deformed around the z
axis. When expressed in the deformed reference frame, the
eigenstates |�Jπ 〉 can be expanded in the basis |�Jπ

K 〉, where
K is the projection of the total angular momentum J on the
symmetry axis in the core frame. The density ρJK (r,θ ) is
calculated as an average over all orientations of the density
operator [24]. The total density is then obtained by summing
up all K components. If only one K component is nonzero,
K becomes a good quantum number and the strong coupling
(adiabatic) limit is strictly obeyed [25,26,28,34]; the resulting
density is referred to as the intrinsic density.

Coupled-channel equations were solved up to a maximal
radius of Rmax = 30 fm and the rotation radius for the exterior
complex scaling Rrot = 15 fm. Complex-energy scattering
states entering in the Berggren basis are selected along a
contour in the complex momentum plane defined by three
segments connecting the points (0,0), (0.2,−0.2), (0.5,0), and
(2,0); all in fm−1. The contour has been discretized with
60 points by using a Gauss–Legendre quadrature. Since the
rotational bands in question have positive parity, we took
partial waves with � = 0,2,4,6 in the Berggren ensemble, and
the maximum angular momentum of the core that was large
enough to guarantee that the number of included states in the
ground-state band of the daughter nucleus would not impact
the calculated widths [24,26]. In order to partly satisfy the Pauli
principle between core and valence particles, the core neutron
0s1/2 shell has been excluded in the construction of the CC
basis [35]. We checked that with this choice of parameters, the
solutions of CC equations are perfectly stable.

For the energies of the core nucleus E
jπ
r

d , we took the known
experimental jπ

r = 0+,2+, and 4+ members of the ground-
state band of 10Be [36]. The higher-lying band members are
approximated by means of the rigid rotor expression with the
moment of inertia corresponding to the 4+ level. In the follow-
ing discussion, we ignore the particle width of the core states
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FIG. 1. Calculated yrast bands of 11Be with J � 13/2 with
signature r = −i (squares) and r = +i (triangles) compared to the
experimental ground-state band of 10Be core (horizontal dashed
lines). Some excited (yrare) states of 11Be are marked by stars.

with jr � 4. (Experimentally the 2+
1 state in 10Be is particle

bound, and the 4+
1 level has a fairly small width of 121 keV.)

The parameters of the deformed pseudopotential have been
fit to the 1/2+ and 5/2+ members of the yrast band of
11Be [36]. We checked that these states collapse to the same
band-head energy in the adiabatic limit (I → ∞), i.e., they are
members of the same rotational band. It is worth noting that
the location of higher-lying band members is very uncertain,
although candidates for the 3/2+

1 , 7/2+
1 , and 9/2+

1 states
have been suggested [37,38]. The optimized parameters of
the WS pseudopotential are radius R0 = 2.08 fm; diffuseness
a = 1.1 fm; strength V0 = −59.36 MeV; spin-orbit strength
Vso = 15.09 MeV; and quadrupole deformation β2 = 0.53. We
checked that the general conclusions of our study are inde-
pendent of the precise values of these parameters, as long as
the one-neutron threshold is reproduced. For instance, similar
results were obtained by using a = 0.77 fm, R0 = 2.55 fm,
and β2 = 0.52.

Results. The calculated lowest states of 11Be are shown
in Fig. 1. The large splitting between the favorite-signature
band [r = exp(−iπJ ) = −i] and unfavored band (r = +i)
is consistent with the results of a microscopic multicluster
model [30,39] and large-scale shell model [19,40]. It is
interesting to note that Q(J,jr ) < 0 for |J − jr | = 1/2 for the
yrast states in 11Be. For instance, the 3/2+

1 and 5/2+
1 levels of

11Be are predicted to lie below the yrast 2+ state of 10Be. This
means that the � = 0 neutron emission channel is blocked for
both r = −i and r = +i bands.

The rotational structure of the ground-state band of 11Be is
revealed by looking at the weights of individual K components
of valence neutron density. It turns out that the K = 1/2
component is dominant in most cases; in particular for the
favored band. For the 7/2+, 11/2+, and 15/2+ states, the
K = 5/2 and 3/2 components dominate. In most cases, an
appreciable degree of K mixing is predicted. This suggests
that a “K = 1/2” label often attached to this band should be
taken with a grain of salt.

To get further insight into the structure of the yrast line
of 11Be, the density ρJK (r) of the valence neutron in the core
frame is plotted in Fig. 2 for selected states and K components.
In the adiabatic limit, we checked that all band members
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FIG. 2. Partial densities ρJK (r) (in 10−2 fm−3) with K = 1/2 for
the three first ground-state band members of 11Be in panels (b)–(d),
and for selected states of the unfavored r = i band (in 10−3 fm−3)
in panels (e) J = 7/2, K = 5/2 and (f) J = 15/2,K = 3/2. The
adiabatic limit (I → ∞) is shown in panel (a).

have indeed the same K = 1/2 intrinsic density shown in
Fig. 2(a), whereas all K > 1/2 components vanish. For the
favored band, for which the K = 1/2 component dominates,
the densities ρJK=1/2 for J = 9/2, 13/2, and 17/2 are similar
to that for the 5/2+ state shown in Fig. 2(d). This is not the case
for the 7/2+, 11/2+, and 15/2+ band members, which show
an appreciable K mixing. Indeed, as illustrated in Figs. 2(e)
and 2(f), the dominant neutron distributions for the 7/2+ and
15/2+ states are very different. Figure 2 also shows that the
calculated valence neutron states in 11Be are all fairly well
localized within the range of the neutron-core potential. We
checked that this holds for the yrare states as well.

Figure 3(a) shows the (real part) of the norms n�j =∑
jr

n�jjr
from various partial waves (�j ) to the yrast band

of 11Be. It is seen that the alignment pattern of the valence
neutron is governed by a transition from the s1/2 wave, which
dominates at low spins, to d5/2, which governs the rotation at
higher angular momenta. In the high-spin region, J � 7/2,
the yrast line of 11Be can be associated with the weak
coupling of neutron’s angular momentum, j = 5/2, to the
angular momentum jr of the core resulting in the full rotational
alignment of j with j r . Indeed, as seen in Fig. 1, the computed
energies EJ of the r = −i band appear close to the energies
of 10Be with jr = J − 5/2. The higher partial waves, such as
g9/2, appear for J > 15/2. The structure of yrare states shown
in Fig. 3(c) is dominated by d5/2 at low spins, and by s1/2 at
higher angular momenta.

To estimate one-neutron decay rates, we compute decay
widths. An accurate way to compute the total decay width is
to use the so-called current expression [26,27,41], that gives
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FIG. 3. Contribution from different partial waves (�j ) to the
norms (top) and widths ��j = ∑

jr
��jjr (bottom) of different states

of the ground-state band of 11Be (left) and yrare states (right). The
total widths are marked by stars.

� = ∑
c �c(r) in terms of partial widths from the channel wave

functions. We checked that in every case considered the value
of � obtained from the current expression agrees with the
eigenvalue estimate −2Im(EJπ

) and that the values of �c(r)
are stable at r = Rmax.

The calculated one-neutron widths corresponding to dif-
ferent partial waves are shown in Figs. 3(b) and 3(d). As
discussed earlier, the s-wave neutron decay is blocked in the
ground band of 11Be. Consequently, the neutron widths of
yrast states are primarily governed by � = 2 waves. Moreover,
because of the weak coupling of the valence neutron to the
core states, the Q values for the neutron decay of the favorite
band are small in the d5/2 channel. As a result, the states in the
favorite yrast band of 11Be are predicted to have small neutron
widths of the order of 200 keV. In the case of the unfavored
band, the neutron widths are larger, around � = 0.7 MeV. This
result demonstrates that angular momentum alignment can
stabilize collective behavior in highly excited yrast states of a
neutron drip-line system. The underlying mechanism is similar
to that discussed in Ref. [42] in the context of the cranking
description of rotational properties of neutron drip-line nuclei.
Due to the Coriolis force, high-� orbits responsible for angular
momentum alignment become occupied at high spins at the
expense of low-� states. The latter govern halo properties and
particle decay; the former are well localized within the nuclear
volume because of their large centrifugal barrier.

The nonresonant continuum does impact the predicted
widths of broader resonances. This is illustrated in Fig. 4,
which displays the partial wave contributions to the total
width for the 7/2+

1 state. The calculations were performed
for �max = 6 by using the flux formula in BEM in both the full
space and the pole space in which the nonresonant contour is
ignored and the basis completeness is broken. It is seen that
removing the nonresonant part from the Berggren ensemble
yields a width that is about 17% larger than the value obtained
in the full basis. Similar shifts can be observed for other states.

The above discussion does not hold for excited (yrare)
states of 11Be with J = 1/2 and 3/2, for which the � = 0
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FIG. 4. Partial wave contribution to the width of the 7/2+ yrast
state of 11Be. Continuous and dashed lines correspond to the full-
and pole-space calculations, respectively. The total width is indicated
with dotted line in both cases.

channel is not blocked. As seen in Fig. 3(d), the total widths of
those states is predicted to be around 0.4 MeV, and it is even
totally dominated by s1/2 for J = 1/2. For the J = 5/2 yrare
state, the � = 0 channel is blocked again; hence, its width is
small.

Conclusion. We investigated the existence of rotational
bands embedded in the particle continuum by using a nona-
diabatic particle-plus-core model. As a case in point, we
considered the yrast band of the one-neutron halo nucleus 11Be
built upon the Jπ = 1/2+ ground state. We show that strong
Coriolis effects result in a rotational alignment of the valence
neutron. Owing to their large � content and the fact that low-�
channels are blocked, the levels forming the yrast line of 11Be
are expected to have small one-neutron widths: the neutron
decay is predicted to proceed primarily via the unfavored
sequence. While our conclusions have been obtained by means
of a schematic model, they nicely complement large-scale
no-core shell-model calculations [19,40] in which a decoupled
Kπ = 1/2+ band appears in 11Be viewed as an 11-body
closed quantum system. Our results suggest that the coupling
to the one-neutron continuum will play a minor role in the
microscopic description of the yrast sequence. This is not
the case for the yrare states of 11Be, for which s-wave
decay is allowed. Here, the neutron widths can be large and
continuum coupling effects appreciable. Unlike in the case of
dipolar anions, where the valence electron density in unbound
states can be extremely diffused due to the shallowness of
the electron-molecule pseudopotential, the calculated valence
neutron states in 11Be are fairly well localized within the range
of the neutron-core potential.

In summary, we demonstrated that collective states can exist
at high excitation energy in weakly bound neutron drip-line
nuclei such as 11Be. The calculated decay widths of those
states can be narrow, and the resulting half-lives can be long
compared to the single-particle timescale. This justifies the
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use of a geometric picture in such cases. However, whether
the notion of collective nuclear states applies to very broad
resonances with T1/2 < Ts.p. is still under discussion. This
matter will be a subject of forthcoming investigations.
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