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Early-time dynamics of gluon fields in high energy nuclear collisions
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Nuclei colliding at very high energy create a strong, quasiclassical gluon field during the initial phase of their
interaction. We present an analytic calculation of the initial space-time evolution of this field in the limit of very
high energies using a formal recursive solution of the Yang-Mills equations. We provide analytic expressions
for the initial chromoelectric and chromomagnetic fields and for their energy-momentum tensor. In particular,
we discuss event-averaged results for energy density and energy flow as well as for longitudinal and transverse
pressure of this system. For example, we find that the ratio of longitudinal to transverse pressure very early in
the system behaves as pL/pT = −[1 − 3

2a
(Qτ )2]/[1 − 1

a
(Qτ )2] + O(Qτ )4, where τ is the longitudinal proper

time, Q is related to the saturation scales Qs of the two nuclei, and a = ln(Q2/m̂2) with m̂ a scale to be defined
later. Our results are generally applicable if τ � 1/Q. As already discussed in a previous paper, the transverse
energy flow Si of the gluon field exhibits hydrodynamiclike contributions that follow transverse gradients of the
energy density ∇ iε. In addition, a rapidity-odd energy flow also emerges from the non-Abelian analog of Gauss’
law and generates nonvanishing angular momentum of the field. We discuss the space-time picture that emerges
from our analysis and its implications for observables in heavy-ion collisions.
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I. INTRODUCTION

Collisions of nuclei at high energy at the Relativistic Heavy
Ion Collider (RHIC) and the Large Hadron Collider (LHC)
have established the existence of a deconfined phase of partons
at high energy densities ε � 1 GeV/fm3 [1–3]. The future
goal of these programs is to make precision measurements of
properties of quark-gluon plasma (QGP) and to study further
details of the phase diagram of quantum chromodynamics
(QCD). This ambitious task requires a detailed understanding
of the bulk dynamics in nuclear collisions. The most promising
candidate theory for understanding the initial phase of these
collisions is color-glass condensate (CGC) [4–7] in which the
initial interaction of nuclei, modeled as a collection of SU(3)
color charges before the collision, leads to a quasiclassical
gluon field after the collision. This field eventually decays into
a thermalized QGP.

Once the system is close to local kinetic equilibrium,
dissipative relativistic fluid dynamics has become the tool
of choice to compute the expansion and cooling of the
QGP fireball. Comparisons of hydrodynamic simulations with
experimental data have been increasingly successful in pinning
down the shear viscosity and the equation of state of high-
temperature nuclear matter [8–12]. The equilibration time τth,
when hydrodynamic concepts can be applied, as well as the
initial values for energy density, energy flow, and all other
currents at τ = τth, are often treated as parameters in the fluid

dynamic simulation. Model calculations of the initial state,
such as the Glauber model [13], often constrain only a small
subset of initial parameters. In particular, initial transverse flow
is still often poorly constrained in many calculations or even
neglected despite very good arguments to the contrary [14,15].
If CGC is found to be the applicable description of the initial
interaction of nuclei at collider energies we will, in principle,
be able to calculate the initial conditions at the time τth. Recent
progress seems to indicate that this is the correct path [16,17].

Here we have a modest goal. We would like to present
analytic results that bridge the gap between known results
for the classical gluon field in single nuclei before the
collision [18] and the glasma fields at a time τ0 ∼ 1/Q after
the collision. The τ0 represents the limit of convergence of
the small-time expansion we employ. However, in terms of
physics it also represents the point at which the longitudinal
pressure pL, initially large and negative, approaches zero
or even becomes positive, a necessary (but not sufficient)
condition for pressure isotropization. Our results then provide
solid and urgently needed input to constrain the energy-
momentum tensor at a later time τth > τ0 which can feed
into fluid dynamic simulations. It might be used in an ad
hoc thermalization approximation, as in Refs. [17,19], or
it might serve as the starting point of further studies of
thermalization itself [20,21]. The phenomenology we find is
surprisingly rich. For example, the system has nonzero angular
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momentum and exhibits directed flow. It resembles aspects
of phenomenological models based on QCD strings or string
ropes suggested previously [22,23]; however, our derivation
here is based strictly on classical QCD.

We should note that while τ0 is rather early in the collision, it
is within this initial time period that important global properties
are set. These include how much energy, momentum, and
angular momentum are transferred from the initial system of
colliding nuclei and deposited in the relevant part of the fireball
around midrapidity. While we focus on analytic results for
event-averaged quantities, it is, in principle, straightforward to
construct a semianalytic event generator based on our results.

Color-glass condensate has been developed from the
idea that nuclear wave functions in the asymptotic limit of
very high energies should exhibit novel properties of QCD
[4–7,18,24–27]. This state is characterized by a slowing
growth of the gluon distribution with increasing energy (or
decreasing Bjorken x). The gluon area density in a hadron or
nucleus saturates and thus defines a saturation scale Qs . We de-
note the proper saturation scale in a nucleus by Qs and assume
it is related to the scale Q used earlier by a numerical factor. We
discuss the ultraviolet scale Q in more detail later. At high en-
ergies Qs becomes large, Qs � �QCD, and the strong coupling
αs becomes small. The Qs is assumed to be on the order of a
few GeV in heavy-ion collider experiments. In addition, gluon
occupation numbers are large and a quasiclassical description
of the gluon field becomes applicable. If two nuclei collide at
high energy, the interaction of the two CGC states create what
is sometimes referred to as glasma [19,24,25,28,29]. Here we
are interested in the early-time evolution of glasma. We use the
classical approximation, known as the McLerran-Venugopalan
(MV) model [4,5,24,25]. However, we need to generalize
the original form of the MV model in this work to allow
for a rigorous description of transverse dynamics. Quantum
corrections have been studied and seem to indicate that the
classical description is adequate to describe the evolution of the
system up to times of order 1/Qs [20]. Initial small fluctuations
can grow exponentially at times beyond 1/Qs and lead to
instabilities. They are probably an important step on the path
to thermalization. Recently, important progress has been made
on this phase in the evolution of gluon fields [20,21].

The time τ0 has multiple important implications in our
work. It signals the breakdown of the classical approximation
as well as the limit (on purely mathematical grounds) of
our specific solution to the Yang-Mills equations. However,
it also heralds decoherence of the classical fields [30] at
which the net transfer of energy and angular momentum from
the receding nuclei onto the fireball presumably stops, and
it is responsible for most of the reduction of the pressure
asymmetry (neglecting transverse gradients),

pL − pT

(pL + 2pT )/3
= −6

[
1 − 5

4a
(Qτ )2

1 − 1
2a

(Qτ )2

]
+ O(Qτ )4, (1)

where a = ln(Q2/m̂2). This is discussed in Sec. VI.
Our paper is organized as follows. In Sec. II we review

the MV model for single nuclei and colliding nuclei on the
light cone. We discuss a recursive solution of the equations
of motion of the gluon field. We also compare the emerging

space-time picture to existing phenomenological approaches.
In Sec. III we calculate the energy-momentum tensor of the
early gluon field as a function of the initial color electric and
magnetic fields up to fourth order in proper time τ . In Sec. IV
we generalize the assumptions used to calculate expectation
values of observables in the MV model and redo the classical
calculation of the gluon distribution function of a nucleus.
We then proceed to calculate the expectation values, or event
averages, of gluon field correlation functions of higher twist
which will be needed later on. In Sec. V we compute the
expectation value of the glasma energy-momentum tensor up
to fourth order in τ , although at third and fourth order in τ
only leading contributions in Q are computed. In Sec. VI
we explore the phenomenological consequences including
pressure anisotropies and flow. Section VII summarizes our
results.

II. THE GLUON FIELD OF TWO COLOR CHARGES
ON THE LIGHT CONE

In this section we discuss analytic solutions for the Yang-
Mills equations of two nuclei colliding on the light cone
with non-Abelian SU(Nc) charges kept fixed. The setup
is reminiscent of an expanding color capacitor: Infinitely
Lorentz-contracted sheets of SU(Nc) color charge move
towards each other (along the z axis), pass through each other,
and recede. Color capacitorlike systems have been discussed
in the literature in other contexts and we come back to a
comparison later on. The CGC setup is briefly reviewed in
the following.

In the CGC limit nuclei move on the light cone. Their par-
tons can be divided into source partons with large momentum
fraction x and classical gluon fields that effectively describe
small-x gluons in the nuclear wave functions, as first discussed
by McLerran and Venugopalan [4,5]. The source is given by
a SU(Nc) current Jμ = J

μ
a ta . Note that we use underlined

upper or lower indices for SU(Nc). The ta are the Gell-Mann
matrices. We have specified our definitions in Appendix A.
The gluon field strength Fμν and its gauge field Aμ couple to
the current through the Yang-Mills equations

[Dμ,Fμν] = J ν, (2)

and the continuity equation

[Dμ,Jμ] = 0. (3)

The internal dynamics of the source are frozen on time
scales that describe interactions with probes or other nuclei
(the glass in CGC) and are therefore kept fixed on the light
cone. In addition, during a collision large angle scatterings of
source partons are rare (those would be referred to as hard
processes). The slowing down of source partons through the
interaction—in other words, the backreaction of the field on the
sources—can be significant but at sufficiently large collision
energy the source partons are close to the light cone even after
the collision. This has been confirmed experimentally even at
top RHIC energies where nuclei, represented by the net baryon
number carried by the valence quarks, lose about three-quarters
of their kinetic energy during the collision. Therefore, they stay
ultrarelativistic throughout [31]. This justifies the assumption
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that a current along the + light cone is invariant, or independent
of the x+ coordinate. Because of the practically infinite Lorentz
boost the source is also infinitely thin in the x− direction and
can therefore be solely described by an SU(3)-valued area
density ρ(�x⊥), where �x⊥ is the vector of transverse coordinates.
For our definitions of light-cone coordinates we refer the reader
to Appendix A.

We represent two colliding nuclei on the light cone through
two currents J

μ
1,2 along the + and − light cones, respectively,

given by two SU(3) charge densities ρ1(�x⊥) and ρ2(�x⊥). The
components of the currents in light-cone coordinates are

J+
1 (x) = δ(x−)ρ1(�x⊥), J−

1 (x) = 0, (4)

J−
2 (x) = δ(x+)ρ2(�x⊥), J+

2 (x) = 0, (5)

J i
1,2(x) = 0, (6)

with i = 1,2. The total current J
μ
1 + J

μ
2 satisfies the equation

of continuity (3) if we choose an axial gauge with

x+A− + x−A+ = 0. (7)

We keep this choice of gauge throughout this section.
We note that nuclei fixed on the light cone will lead to

a boost-invariant system after the collision. In particular, the
energy-momentum tensor of the gluon field will be boost-
invariant. This will be an important caveat when we discuss the
global space-time structure of the fireball. In our calculation,
global energy, momentum, and angular momentum are not
conserved as the nuclei are reservoirs for those conserved
quantities. In reality, those quantities are finite and conserved.
However, we still expect to gain realistic insights of the rapidity
densities of those quantities as long as we stay far enough
away from the final rapidities of the nuclei. Corrections to the
boost-invariant approximation can, in principle, be taken into
account [32].

A. General shape of the field

Kovner, McLerran, and Weigert were the first to discuss
the general space-time structure of the gluon field in the CGC
formalism in the collision of two nuclei [24]. One can write
the following ansatz for the x+−x− plane,

A+(x) = 	(x+)	(x−)x+A(τ,�x⊥),

A−(x) = −	(x+)	(x−)x−A(τ,�x⊥),

Ai(x) = 	(x−)	(−x+)Ai
1(�x⊥) + 	(x+)	(−x−)Ai

2(�x⊥)

+	(x+)	(x−)Ai
⊥(τ,�x⊥), (8)

where again i = 1,2. The Ai
1(�x⊥) and Ai

2(�x⊥) are the gluon
fields of the single nuclei before the collision, which are purely
transverse in this gauge. Here τ = √

t2 − z2 is the longitudinal
proper time. The A(τ,�x⊥) and Ai

⊥(τ,�x⊥) are smooth functions
in the forward light cone and describe the field after the
collision. They are the glasma fields we are interested in.
There is no explicit dependence on the space-time rapidity
η = 1

2 ln (x+/x−) in A and Ai
⊥, reflecting the boost invariance

of the system. Figure 1 shows the different regions of the light
cone including the region of applicability of this work.

In each sector of the light cone the Yang-Mills equations
have to be satisfied separately. In the forward light cone they

FIG. 1. (Color online) The z−t plane with the two currents J1

and J2 given on the x+ and x− axes and the four regions given by the
solution (8). The theoretical limit of the classical approximation in
the forward light cone at τ = τ0 and the approximate thermalization
time τth are shown schematically.

can be written in the convenient form [24]

1

τ

∂

∂τ

1

τ

∂

∂τ
τ 2A − [Di,[Di,A]] = 0, (9)

igτ

[
A,

∂

∂τ
A

]
− 1

τ

[
Di,

∂

∂τ
Ai

⊥

]
= 0, (10)

1

τ

∂

∂τ
τ

∂

∂τ
Ai

⊥ − igτ 2[A,[Di,A]] − [Dj,F ji] = 0. (11)

The field strength tensor in the forward light cone can be
expressed in terms of the gauge potentials A and Ai

⊥ in this
gauge as

F+− = − 1

τ

∂

∂τ
τ 2A,

F i± = −x±
(

1

τ

∂

∂τ
Ai

⊥ ∓ [Di,A]

)
, (12)

F ij = ∂iA
j
⊥ − ∂jAi

⊥ − ig[Ai
⊥,A

j
⊥].

Boundary conditions connect different light-cone sectors. The
ones for the forward light cone read [24]

Ai
⊥(τ = 0,�x⊥) = Ai

1(�x⊥) + Ai
2(�x⊥), (13)

A(τ = 0,�x⊥) = − ig

2

[
Ai

1(�x⊥),Ai
2(�x⊥)

]
. (14)

We interpret them as initial conditions for the fields at τ = 0
for the fields in the forward light cone τ > 0.

Equations (9) through (11) together with the conditions (13)
and (14) pose the boundary value problem to be solved. An
analytic solution in closed form is not known for the most
general case. The weak field or Abelian limit was first treated
in Ref. [24] and is reproduced below. Several groups have
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discussed numerical solutions [16,33–35], usually focusing
on the plane η = 0.

A different approach to solve the problem was first
advocated by some of us in Refs. [19,29]. The basic idea
is as follows. Because the classical approach to CGC loses
its applicability very soon after the collision, it is sufficient to
focus on the near field, or small proper times τ . In that case one
can utilize a systematic expansion of the Yang-Mills equation
in a power series in τ [30,36]. We can expect to find the leading
terms in such an expansion analytically. The natural scale for
the convergence of such series should be given by the only
time scale in the problem, namely, 1/Qs . We will see that this
is indeed the case.

B. τ expansion and recursive solution

Let us define the power series

A(τ,�x⊥) =
∞∑

n=0

τnA(n)(�x⊥), (15)

Ai
⊥(τ,�x⊥) =

∞∑
n=0

τnAi
⊥(n)(�x⊥), (16)

for the fields parameterizing the gauge potential in the
forward light cone. We devise equivalent power series for the
field strength tensor, covariant derivatives, and the energy-
momentum tensor. We do not include any divergent (1/τn)
or logarithmic (ln τ ) terms in τ . While the field equations
themselves can have divergent solutions, they have to be
discarded because of the boundary conditions (13) and (14).

We can discuss this point in more detail for the Abelianized
version of the equations. In the case of weak fields the nonlin-
ear terms in the Yang-Mills equations are usually neglected,
leading to a greatly simplified Abelian version of the boundary
value problem. The analytic solution in closed form can be
readily found [24]. After applying a Fourier transformation of
the transverse coordinate, ∂i → −iki

⊥, Eqs. (9) and (11) take
the form of Bessel equations

1

z

d2

dz2
zA + 1

z2

d

dz
zA + 1

z
zA − 1

z3
zA = 0, (17)

z2 d2

dz2
Ai

⊥ + z
d

dz
Ai

⊥ + z2Ai
⊥ = 0, (18)

where z = k⊥τ . A physical polarization ∇ iAi
⊥ = 0 has been

chosen for the transverse field. There are two independent
sets of solutions, Bessel functions of the first kind A ∼
J1(z)/z, Ai

⊥ ∼ J0(z), which are regular at τ = 0, and Neumann
functions A ∼ N1(z)/z, Ai

⊥ ∼ N0(z), which lead to singular
solutions A ∼ z−2, Ai

⊥ ∼ ln τ for τ → 0. The solution with
Neumann functions is not compatible with Eq. (10), which
imposes ∂/∂τAi

⊥ = 0. The singular solution therefore has to
be excluded.

Let us now return to the solution of the general non-Abelian
problem. The power series turns the set of three differential
equations (9), (10), and (11) in x⊥ and τ into an infinite system
of differential equations in x⊥. Amusingly, we can solve this
system recursively. The boundary conditions (13) and (14)

provide the starting point of the recursion

Ai
⊥(0) = Ai

1 + Ai
2, (19)

A(0) = − ig

2

[
Ai

1,A
i
2

]
. (20)

It can be shown that all coefficients of odd powers vanish,
A(2k+1) = 0 and Ai

⊥(2k+1) = 0. Finally, one finds the recursion
relations for even n, n > 1, to be

A(n) = 1

n(n + 2)

∑
k+l+m=n−2

[
Di

(k),
[
Di

(l),A(m)
]]

,

Ai
⊥(n) = 1

n2

( ∑
k+l=n−2

[
D

j
(k),F

ji
(l)

]

+ ig
∑

k+l+m=n−4

[
A(k),

[
Di

(l),A(m)
]])

. (21)

One can readily see that these expressions solve (9) and (11).
It is less straightforward to show that the recursion relation
solves Eq. (10). One can go order by order in τ , and we have
explicitly checked that our recursive solution solves Eq. (10)
up to fourth order in τ .

One can use the Abelianized case for a cross-check.
After dropping nonlinear terms, and after applying a Fourier
transformation to the transverse coordinates, the recursive
solutions can be easily cast in the form

ALO
(n) = 2

n!!2(n + 2)
(−k2

⊥)n/2ALO
(0) , (n > 1), (22)

ALOi
⊥(n) = 1

n!!2
(−k2

⊥)n/2ALOi
⊥(0), (23)

where the double factorial is n!! = n(n − 2)(n − 4) · · · and
the index LO signals the Abelian case. These terms are just the
coefficients of the Bessel functions already discussed above,

ALO(τ,�k⊥) = 2ALO
(0) (k⊥)

k⊥τ
J1(k⊥τ ), (24)

ALOi
⊥ (τ,�k⊥) = ALOi

⊥(0)(k⊥)J0(k⊥τ ). (25)

Thus, the small-τ expansion immediately recovers the full
Abelian solution.

The recursive solution (21) and its consequences are the
basis for the remainder of this paper. A brief discussion on
the convergence of the series expansion is in order. From the
Abelian case above we infer that the radius of convergence is
∞, independent of the charge distributions ρ1,2, as long as we
are in the weak field limit. In the opposite limit of extremely
strong fields, one can make the following estimate. Keeping
only the maximally non-Abelian terms, we expect from the
recursion relations that

|A(n)| ∼ |gA|n+1|A| and |Ai
⊥(n)| ∼ |gA|n|A|, (26)

where

|A| =
√

Ai
1A

i
1 (27)

is written in terms of the fields in the initial nuclei before
collision. Here we assume head-on collisions of equal nuclei
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(ρ1 = ρ2) for simplicity of argument. We anticipate from our
results later on that |gA|2 ∼ g4μ/4π , where μ is the color
charge density of the two incoming nuclei. From the geometric
interpretation of the saturation scale Qs we further have Q2

s ∼
g4μ [37]. Hence, we find that, parametrically,

|A(n)| ∼ Q(n+1)
s |A|, (28)

|Ai
⊥(n)| ∼ Qn

s |A|. (29)

This suggests that the convergence radius of the series in this
extreme case is indeed parametrically set by the saturation
scale, τconv ∼ 1/Qs . We can find further phenomenological
validation in Sec. VI A when we compare to numerical
solutions of the Yang-Mills equations.

C. The near field

A resummation similar to the Abelian case seems elusive
for the general solution. However, we can analyze the few
lowest-order terms explicitly. This amounts to a description of
the near field close to the light cone. The series expansions for
the gauge potential are

A(τ,x⊥) = A(0) + τ 2

8
[Dj,[Dj,A(0)]]

+ τ 4

192
[Dk,[Dk,[Dj,[Dj,A(0)]]]]

+ igτ 4

48
εij [DiA(0),D

jB0] + O(τ 6), (30)

Ai
⊥(τ,x⊥) = Ai

⊥(0) + τ 2

4
εij [Dj,B0] + τ 4

64
εijDjDkDkB0

− igτ 4

64
[B0,D

iB0] + igτ 4

16
[A(0),[D

i,A(0)]]

+O(τ 6), (31)

where we have used the shorthand notation Di ≡ Di
(0) = ∂i −

igAi
⊥(0). In the remainder of this work Di denotes the covariant

derivative with respect to the initial gauge field and we mention
explicitly if we refer to covariant derivatives at other times.
The B0 is the longitudinal chromomagnetic field, which is
discussed below.

Let us carry out an order-by-order analysis for the field
strength tensor,

E = E(0) + τE(1) + τ 2E(2) + · · · , (32)

B = B(0) + τB(1) + τ 2B(2) + · · · , (33)

of chromoelectric and chromomagnetic fields. From here
on electric and magnetic always refer to chromoelectric
and chromomagnetic, respectively. The components of the
field strength tensor can be readily computed from
the gauge potential using Eqs. (12). We observe that only the
longitudinal components of the electric and magnetic fields
have nonvanishing values at τ = 0 [19]:

E0 ≡ E3
(0) = F+−

(0) = ig
[
Ai

1,A
i
2

]
, (34)

B0 ≡ B3
(0) = F 21

(0) = igεij
[
Ai

1,A
j
2

]
. (35)

FIG. 2. (Color online) (Left) After the collision, Lorentz-
contracted nuclei with color charges and transverse fields develop
longitudinal fields E0 and B0 between them. (Right) Transverse fields
between the nuclei are induced by the decrease of longitudinal fields
after a short time. Only fields from Faraday’s and Ampère’s law are
indicated.

They can be seen as the seed fields for the glasma developing
in the forward light cone. The transverse fields vanish at τ = 0:
F i±

(0) = 0.
The dominance of longitudinal fields, both electric and

magnetic, at early times has been discussed in Refs. [28,29].
These fields can lead to the emergence of color flux tubes
which are similar but not directly comparable to QCD strings.
QCD strings are a reaction of the QCD vacuum to color
charges. Here we consider fields close to the center of a
collision of large nuclei which are far removed from the QCD
vacuum. Nontrivial QCD vacuum effects are not included in
the classical Yang-Mills picture considered here. QCD strings
have been successfully used to describe collisions of nucleons
at large energies [38]. It would be desirable to find a natural
transition between glasma fields in the center of collisions
and QCD strings describing the dynamics at the boundary of
the collision zone, but that is beyond the scope of this work.
The initial longitudinal magnetic and electric fields can be of
similar strength in the glasma. Figure 2 shows a sketch with
nuclei consisting of Lorentz-contracted sources and transverse
gluon fields and longitudinal fields stretching between them
after the collision.

It is useful to briefly mention a reinterpretation of the initial
longitudinal fields pointed out in Ref. [28]. This can help
to make connections with some existing phenomenological
models in which an exchange of color charge between the
nuclei is envisioned at the time of their overlap [22,23].
Those effective color-anticolor charges on opposite nuclei then
lead, in a quasi-Abelian picture, to longitudinal electric fields
between the nuclei after they have separated and recede from
each other. This appears similar to the early glasma picture.
Note, however, that here the charges ρ1 and ρ2 are strictly
kept constant throughout the collision and the longitudinal
field arises from non-Abelian interactions between the fields
of the two nuclei. However, to aid our intuition, we can rewrite
the covariant derivatives in Gauss’ laws for chromoelectric and
chromomagnetic fields as ordinary derivatives and commutator
terms which can be interpreted as effective chromoelec-
tric and chromomagnetic charges ig[Ai

1,E
i
2], ig[Ai

2,E
i
1] and

ig[Ai
1,B

i
2], ig[Ai

2,B
i
1], respectively, where Ei

k and Bi
k are

the transverse fields in nucleus k [28]. The commutators are
nonzero when the gauge potential from nucleus 1 can interact
with the field of nucleus 2 and vice versa. Then for t > 0 the
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FIG. 3. (Color online) Transverse fields in the x−y plane for simple Abelian analog to Eqs. (37) and (38) for randomly simulated initial
fields Ai

1 and Ai
2. [Top panels (a),(b),(c)] Electric field Ei (arrows) on background of the longitudinal magnetic field B0 (shading). [Bottom

panels (d),(e),(f)] Magnetic field Bi on background of E0. [Left panels (a),(d)] Rapidity-even terms from Faraday’s and Ampère’s laws,
respectively (corresponding to η = 0). [Middle panels (b),(e)] Rapidity-odd terms from Gauss’ Law. [Right panels (c),(f)] Full transverse fields
for η = 1. Length scales of arrows and of x and y axes are arbitrary. Lighter regions correspond to higher densities. More details can be found
in Ref. [39].

induced charges on opposite nuclei are indeed the negative of
each other. Hence, we can also interpret the longitudinal fields
as the Abelian fields generated by additional color charges
induced in the collision at t = 0.

Going forward in time, we note that the first order in τ brings
no further contribution to the longitudinal fields, F+−

(1) = 0 =
F 21

(1), but it is the leading order for the transverse fields,

F i±
(1) = − e±η

2
√

2

([
D

j
(0),F

ji
(0)

] ± [
Di

(0),F
+−
(0)

])
. (36)

Therefore, the transverse electric and magnetic fields grow
linearly from their zero value at τ = 0. We can express them
in terms of the initial longitudinal fields as [39]

Ei
(1) = − 1

2 (sinh η[Di,E0] + cosh η εij [Dj,B0]), (37)

Bi
(1) = 1

2 (cosh η εij [Dj,E0] − sinh η[Di,B0]). (38)

Recall that we have agreed to the notation Di = ∂i − igAi
⊥(0).

In Ref. [39] we have discussed extensively how these trans-
verse fields can be understood from the QCD analogs of Fara-
day’s and Ampère’s laws for the rapidity-even parts and from
Gauss’ law for the rapidity-odd components. In particular, it is
very natural to expect rapidity-odd transverse fields even in a
boost-invariant situation. In Fig. 3 we show a typical example
for the rapidity-even and rapidity-odd initial transverse fields
in an Abelian example [covariant derivatives are replaced with
ordinary derivatives in Eqs. (37) and (38)]. Notice how at
midrapidity field lines are closing around existing longitudinal

field lines (dark or light colored regions) owing to Ampère’s
and Faraday’s laws, while away from midrapidity Gauss’ law
allows for transverse flux between longitudinal field lines.

The first correction to the initial value of the longitudinal
fields appears at order τ 2 and in our short notation is

E3
(2) = 1

4 [Di,[Di,E0]], (39)

B3
(2) = 1

4 [Di,[Di,B0]]. (40)

There is no correction to the transverse fields at this order,
F i±

(2) = 0.
From order τ 3 on the results become somewhat unwieldy.

For this reason we present the expressions for orders τ 3 and
τ 4 in Appendix B. However, there is no particular reason why
one could not, in principle, go to higher orders in powers of τ .
Generally, the longitudinal fields have only contributions for
even powers of τ and the transverse fields have contributions
only for odd powers of τ .

To summarize this section, we have provided explicit
formulas for the initial gluon field to an accuracy

E3 = E3
trunc + O(τ 6), (41)

Ei = Ei
trunc + O(τ 5), (42)

for the electric field and similarly for the magnetic field.

064912-6



EARLY-TIME DYNAMICS OF GLUON FIELDS IN HIGH . . . PHYSICAL REVIEW C 92, 064912 (2015)

III. THE ENERGY-MOMENTUM TENSOR OF THE FIELD

From the field strength tensor we can easily calculate the
energy-momentum tensor of the field

T μν = FμλF ν
λ + 1

4gμνF κλFκλ. (43)

For brevity we often employ a notation where SU(Nc) indices
are summed over implicitly unless said otherwise: AB =
AaBa = 2 Tr(AB), a = 1, . . . ,N2

c − 1. We now provide the
first few orders in τ for all components of the energy-
momentum tensor

T μν = T
μν

(0) + τT
μν

(1) + τ 2T
μν

(2) + · · · (44)

as functions of the initial longitudinal fields E0 and B0.

A. Initial energy density and pressure

Only the diagonal elements of T μν have finite values at
τ = 0. We define ε0 to be the initial value for the energy
density,

ε0 = T 00
(0) = 1

2

(
E2

0 + B2
0

)
= −g2

2
(δij δkl + εij εkl)

([
Ai

1,A
j
2

][
Ak

1,A
l
2

])
. (45)

The other diagonal elements of the energy-momentum tensor
are

T 11
(0) = T 22

(0) = ε0 = −T 33
(0) . (46)

Hence, the structure of the energy-momentum tensor for
τ → 0 is the same as that for a longitudinal field in classical
electrodynamics. There is a maximum pressure anisotropy
between the transverse and the longitudinal directions. Despite
being far from equilibrium we take the liberty to use the
notations of longitudinal pressure pL = T 33 and transverse
pressures (px,py) = (T 11,T 22). We denote the average trans-
verse pressure as pT = (px + py)/2.

The initial transverse pressure pT = ε0 is large compared to
an equilibrated system. A free, relativistic gas with the same
energy density would have a transverse pressure ε0/3. We
expect a comparably large flow of energy owing to gradients
in the transverse pressure. The longitudinal pressure pL =
−pT = −ε0 is equally large and negative. The negative sign
is not surprising. Keeping in mind the Abelian reinterpretation
of the longitudinal field, we expect the opposite sign induced
color charges on the nuclei to be attractive. Hence, the initial
longitudinal fields would like to decelerate the sources. In
fact, this is the mechanism that removes kinetic energy from
the nuclei and deposits it as field strength in the space-time
region between them. Here we do not take into account this
backreaction of the field on the sources because the nuclei,
even at top RHIC energies, seem to stay ultrarelativistic all the
time, as discussed before.

The qualitative global behavior of the system then is
seemingly easy to predict from the simple form of T μν at

τ → 0,

T
μν

(0) =

⎛
⎜⎝

ε0 0 0 0
0 ε0 0 0
0 0 ε0 0
0 0 0 −ε0

⎞
⎟⎠. (47)

While the negative longitudinal pressure leads to the de-
celeration of the colliding nuclei, the transverse pressure
forces the system to expand in the transverse direction. This
transverse expansion, driven by the pressure of the classical
field, is expected to be larger than in an equilibrated relativistic
gas [15,19]. We see that this intuitive picture, while mostly
correct, has to have additional features added to it because the
energy-momentum tensor above does not have the full infor-
mation about the classical fields which drive the dynamics.

B. Onset of transverse flow

At the next order, linear in τ , the components T 0i and
T 3i , with i = 1,2, are the only ones to pick up contributions.
They describe the flow of energy and longitudinal momentum
into the transverse direction. Note that T 0i is the transverse
component of the Poynting vector S = E × B. Therefore, the
transverse expansion expected from the qualitative arguments
given above sets in linearly in τ . We have

T 0i
(1) = εij

(
B0E

j
(1) − E0B

j
(1)

)
= 1

2αi cosh η + 1
2βi sinh η, (48)

T 3i
(1) = −E0E

i
(1) − B0B

i
(1)

= 1
2αi sinh η + 1

2βi cosh η. (49)

We note that we have two contributions to transverse flow. The
first term is the flow driven by the gradient of the transverse
pressure as we would expect from a hydrodynamic picture [39]

αi = −∇ iε0. (50)

The second term involves the 2-vector

βi = εij ([Dj,B0]E0 − [Dj,E0]B0). (51)

The derivation of these and the following expressions is
made easier by using a set of SU(3) identities assembled in
Appendix A. These flow terms have first been discussed by
some of us in Ref. [39].

The βi defies the naive expectations from our earlier
analysis of the initial diagonal energy-momentum tensor.
It is profoundly related to the electric and magnetic fields
underlying the energy-momentum tensor. More precisely, it
emerges from the rapidity-odd transverse fields mandated by
Gauss’ law. The βi enhances flow from larger to smaller energy
densities in some regions and quenches it in other regions. This
can be seen in the example of random Abelian fields in Fig. 4.
This Abelian analog is particularly interesting here because the
non-Abelian terms in Eq. (48) vanish in the event average as
discussed in Ref. [39]. However, they will be important when
the field is sampled event by event.
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FIG. 4. (Color online) Energy flow in the x−y plane in an Abelian analog for the same random distribution of seed fields Ai
1, Ai

2 chosen in
Fig. 3. The transverse Poynting vector T 0i (arrows) is drawn with the energy density ε0 (shading) in the background. Lighter regions correspond
to higher densities. The panels show rapidity-even (a), rapidity-odd (b), and full flow at η = 1 (c). Length scales of arrows and of x and y axes
are arbitrary.

The contribution of βi to the energy flow is odd in
space-time rapidity η. We want to stress that its existence
does not violate boost invariance. Obviously, βi will have a
role to play when angular momentum and directed flow in the
system are studied.

C. Order τ 2: Corrections to energy density and pressure;
longitudinal flow

At order τ 2 the diagonal elements of T μν receive their
first corrections and all the previously vanishing components
acquire their leading contributions. However, the transverse
flow of energy and longitudinal momentum are not affected,

T 0i
(2) = 0 = T 3i

(2). (52)

The expressions for the energy density, the longitudinal flow
of energy, and the flow of longitudinal momentum are

T 00
(2) = E0E

3
(2) + B0B

3
(2) + 1

2Ei
(1)E

i
(1) + 1

2Bi
(1)B

i
(1)

= − 1
4 (∇ iαi + δ) − 1

8 ∇ iβi sinh 2η + 1
8 δ cosh 2η, (53)

T 03
(2) = εijEi

(1)B
j
(1)

= − 1
8 ∇ iβi cosh 2η + 1

8δ sinh 2η, (54)

T 33
(2) = −E0E

3
(2) − B0B

3
(2) + 1

2Ei
(1)E

i
(1) + 1

2Bi
(1)B

i
(1)

= 1
4 (∇ iαi + δ) − 1

8 ∇ iβi sinh 2η + 1
8δ cosh 2η. (55)

We have used Eqs. (A19) and (A20) to simplify these
expressions. Besides the divergence of the transverse fields,
αi and βi , we find a new field that appears in the expressions
above, namely

δ =[Di,E0][Di,E0] + [Di,B0][Di,B0]. (56)

The divergence of the transverse flow is the expected reaction
of the energy density to the initial flow, leading to depletion
at the source and accumulation at the sink of the flow field.

The remaining new contributions to this order give correc-
tions to the transverse pressures

T ii
(2) = (−1)i

2

(
E1

(1)E
1
(1) + B1

(1)B
1
(1) − E2

(1)E
2
(1) − B2

(1)B
2
(1)

)
+E0E

3
(2) + B0B

3
(2)

= −1

4
[−�ε0 + δ + (−1)iω], (57)

T 12
(2) = −E1

(1)E
2
(1) − B1

(1)B
2
(1) = 1

4
γ. (58)

Here � is the two-dimensional Laplace operator. There is no
implicit summation over the double index i = 1,2 in the first
equation. The new quantities are

ω = 1
2 ([D1,E0]2 − [D2,E0]2 + [D1,B0]2 − [D2,B0]2), (59)

γ = [D1,E0][D2,E0] + [D1,B0][D2,B0]. (60)

The ω describes the anisotropy of the pressure in the x and y
directions and is therefore responsible for a phenomenon akin
to elliptic flow in the transverse plane.

D. Higher orders

At order τ 3 the only contributions are the first corrections
to the transverse flow T 0i and T 3i . They are

T 0i
(3) = εij

(
B0E

j
(3) + B3

(2)E
j
(1) − E0B

j
(3) − E3

(2)B
j
(1)

)
= 1

16 (ξ i cosh η + ζ i sinh η), (61)

T 3i
(3) = −E0E

i
(3) − E3

(2)E
i
(1) − B0B

i
(3) − B3

(2)B
i
(1)

= 1
16 (ξ i sinh η + ζ i cosh η). (62)

We give the explicit expressions for the flow vectors ξ i and ζ i

in Appendix B.
At order τ 4 we have

T 00
(4) = E0E

3
(4) + B0B

3
(4) + Ei

(1)E
i
(3) + Bi

(1)B
i
(3)

+ 1
2E3

(2)E
3
(2) + 1

2B3
(2)B

3
(2)

= ρ + 1
32κ cosh 2η + 1

32σ sinh 2η, (63)
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T 03
(4) = εij

(
Ei

(1)B
j
(3) + Ei

(3)B
j
(1)

)
= 1

32σ cosh 2η + 1
32κ sinh 2η, (64)

T 33
(4) = −E0E

3
(4) − B0B

3
(4) + Ei

(1)E
i
(3) + Bi

(1)B
i
(3)

− 1
2E3

(2)E
3
(2) − 1

2B3
(2)B

3
(2)

= −ρ + 1
32κ cosh 2η + 1

32σ sinh 2η, (65)

T ii
(4) = (−1)i

(
E1

(1)E
1
(3) + B1

(1)B
1
(3) − E2

(1)E
2
(3) − B2

(1)B
2
(3)

)
+E0E

3
(4) + B0B

3
(4) + 1

2E3
(2)E

3
(2) + 1

2B3
(2)B

3
(2)

= ρ + (−1)iλ, (66)

T 12
(4) = −E1

(1)E
2
(3) − B1

(1)B
2
(3) − E1

(3)E
2
(1) − B1

(3)B
2
(1)

= ν, (67)

where the new coefficients ρ, κ , σ , λ, and ν are explicitly given
in Appendix B. The expressions for the energy-momentum
tensor discussed here are accurate up to corrections of order
τ 5 for the T 0i and T 3i components and up to order τ 6 for all
other components.

E. Checking energy and momentum conservation

The solutions of the Yang-Mills equations automatically
satisfy energy and momentum conservation ∂μT μν = 0. This
can be checked explicitly order by order. The ∂μT μ0 and ∂μT μ3

receive contributions only for odd powers of τ , whereas ∂μT μi

consists only of even powers. At order τ we find, for ν = 0,

∂μT μ0|τ =
(

cosh η
∂

∂τ
− 1

τ
sinh η

∂

∂η

)
T 00

(2)

+
(

− sinh η
∂

∂τ
+ 1

τ
cosh η

∂

∂η

)
T 30

(2) + ∇ iT i0
(1)

= −1

2
(∇ iαi + δ) cosh η

+ 1

2
cosh η[−∇ iβi sinh 2η + δ cosh 2η]

− 1

2
sinh η[−∇ iβi cosh 2η + δ sinh 2η]

+ 1

2
∇ iαi cosh η + 1

2
∇ iβi sinh η

= 0, (68)

and similarly for ν = 3.
Transverse momentum conservation, ν = 1,2, is obvious at

zeroth order in τ . From the corresponding equation,

∂μT μi |τ 0 =
(

cosh η−sinh η
∂

∂η

)
T 0i

(1)

−
(

sinh η − cosh η
∂

∂η

)
T 3i

(1) + ∇ iT ii
(0)

= αi + ∇ iε0, (69)

all terms containing the anomalous flow βi drop out and the
remaining expression obviously vanishes using the known

result for the hydrodynamic flow αi . Note that the index i
is not summed in the term containing T ii .

At order τ 2 we have a very similar picture

∂μT μi |τ 2 =
(

3 cosh η − sinh η
∂

∂η

)
T 0i

(3)

−
(

3 sinh η − cosh η
∂

∂η

)
T 3i

(3) + ∇ iT ii
(2) + ∇j T

ji
(2)

= 1

4
{ξ i − ∇ i[−�ε0 + δ + (−1)iω] + ∇j γ }, (70)

with the third-order flow contribution ζ i dropping out. Again,
the index i = 1,2 is not summed upon multiple appearance
and, in addition, we define j to be the transverse index with
j = i. Momentum conservation holds if the equation

ξ i = ∇ i[−�ε0 + δ + (−1)iω] − ∇j γ (71)

is true. It is proven explicitly in Appendix C. Similarly, the
momentum conservation equations at order τ 3 are

64ρ + 3κ + ∇ iξ i = 0,
(72)

3σ + ∇ iζ i = 0.

We are now confident that we have the correct analytic
expressions for the initial gluon field.

IV. AVERAGING OVER COLOR SOURCES WITH
TRANSVERSE DYNAMICS

So far we have held the charge distributions ρk in the
two nuclei fixed. We have expressed the gluon fields and
energy-momentum tensor after the collision in terms of the
initial longitudinal gluon fields E0 and B0 and the initial
transverse gauge potential Ai

⊥(0). Those, in turn, are determined
by the gauge fields Ai

1[ρ1] and Ai
2[ρ2] in the two nuclei before

the collision. In a given nuclear collision the color charge
densities ρk are not known to us. However, if we know the
statistical distribution of the densities we could use the results
of the last two sections for an event-by-event analysis in
which color charges ρk are statistically sampled according
to their distributions. Averages over event samples can then be
compared to event averages of experimental data taken. A CGC
event generator of this kind, albeit in 2 + 1D, has recently been
presented in the IP-glasma framework [16]. In that work the
time evolution of the gluon fields in the forward light cone was
solved numerically. An event generator based on our results
would be able to sample fields or the energy-momentum tensor
at early times directly without solving differential equations.
However, in this work we rather focus on obtaining analytic
results for the event averaged energy-momentum tensor. We
use the assumptions of the MV model that postulates a simple
Gaussian distribution of color charges [4,5]. We have to
generalize the MV model by allowing slowly varying average
charge densities in the transverse plane. This allows us to treat
transverse gradients in pressure and their consequences.

We start by observing that the expectation value of the
color charge of any nucleus at any given point has to vanish,
〈ρ(�x⊥)〉 = 0. However, we expect local fluctuations to occur on
typical nonperturbative time scales which are much larger than
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the nuclear collision time. Hence, the fluctuations are frozen
at the moment of the collision. The size of the fluctuations are
given by the expectation value μ ∼ 〈ρ2(�x⊥)〉 of the squared
charge density. In the MV model it is assumed that fluctuations
are Gaussian, uncorrelated in space, and isotropic in SU(3). We
will see later that it is necessary to introduce a finite resolution
in space to regularize the UV divergence that would emerge
from an infinite spatial resolution. Whenever taking averages
〈· · · 〉 we thus keep in mind that they have to be taken at a finite
resolution. For an observable O measured after the collision
of two nuclei the expectation value is given by

〈O〉ρ1,ρ2 =
∫

d[ρ1]d[ρ2]O(ρ1,ρ2)w(ρ1)w(ρ2), (73)

where the weight functions w are Gaussians with widths given
by the average local charge densities squared, μ1 and μ2.

A. The MV model with transverse gradients

We start with a brief review of the MV model. We
implement the averaging over color sources in a given nucleus
by fixing the expectation values

〈ρa(x∓,�x⊥)ρb(y∓,�y⊥)〉

= g2

N2
c − 1

δabλ(x∓,�x⊥)δ(x∓ − y∓)δ2(�x⊥ − �y⊥), (74)

as a precise definition of a (light cone) volume density
λ(x∓,�x⊥) of sources for a nucleus moving along the + or −
light cone. In addition, expectation values of any odd number
of ρ fields in this nucleus vanish. We have dropped the index
k labeling a particular nucleus here for ease of notation, and a
and b are explicit SU(3) indices. We have also made explicit
the coupling constant g that was contained in ρ as defined
in Eqs. (2) and (4). The λ (and μ) are then volume (and
area) number densities of color charge, summed over color
degrees of freedom. Note that the normalization of λ and μ
differ by a factor N2

c − 1 from many other occurrences in the
literature, such as Ref. [37]. We allow for a dependence of the
expectation value λ on both the longitudinal coordinate x∓ and
the transverse coordinate �x⊥.

The longitudinal smearing in x∓ is necessary to compute
expectation values correctly, as first realized in Ref. [18]. A
nucleus must be given a small, but finite, thickness across the
light cone, which we do by introducing

λ(x∓,�x⊥) = μ(�x⊥)h(x∓). (75)

Here h is a non-negative function with finite width around
x± = 0 and normalized such that∫

dx∓λ(x∓,�x⊥) = μ(�x⊥). (76)

It is not necessary to specify the shape of h further.
We have introduced the dependence of the charge densities

λ and μ on �x⊥ as a generalization of the original MV
model, where the nuclei are assumed to be infinitely large
in the transverse direction and, on average, invariant under
rotations and translations. Real nuclei break these symmetries;
to generate a nontrivial transverse dynamics we need to
investigate how the results in the MV model generalize when

small deviations from these symmetries are allowed. Our
guiding principle is that, on transverse length scales that are
equal to or smaller than the scale of color glass, 1/Qs , the gluon
field is described by the well-defined color-glass formalism.
On larger length scales other dynamical effects, for example
from the nucleonic structure of the nucleus, appear and can
be parameterized by the dependence of μ on x⊥. Here we
introduce an infrared length scale 1/m. We must require that
μ varies by a negligible amount on length scales smaller than
1/m. Explicitly, we require that

|μ(�x⊥)| � m−1|∇ iμ(�x⊥)| � m−2|∇ i∇jμ(�x⊥)| � · · · .

(77)

Then m is an infrared energy scale which separates color-glass
physics from long-wavelength dynamics. It is necessary to
have the hierarchy

1/Qs � 1/m � RA, (78)

where RA is the nuclear radius.
We have two main goals in this extended MV model. (i)

Observables must be well behaved under small deviations
from translational and rotational invariance; otherwise, the
original MV model would not be infrared safe. In practice,
this means that observables should be only weakly dependent
on the infrared scale. We explicitly check this condition
below. (ii) The results will allow simple long-wavelength
dynamics, expressed in an expansion in gradients of μ, which
is compatible with color-glass physics at small distances. In
practice, this will allow us to safely apply the MV model
locally to realistic nuclei as long as the location is sufficiently
far away from the surface of the nucleus where the density μ
starts to fall off quickly.

B. The gluon distribution

The most important expectation value of fields in a single
nucleus is the two-point function 〈A(�x⊥)A(�y⊥)〉, which, in
light-cone gauge, is related to the gluon distribution. The Yang-
Mills equations (2) for a single nucleus on the + light cone
are most easily solved in a covariant gauge first, where A

μ
cov =

δμ+α. The equations reduce to

�α(x−,�x⊥) = −ρcov(x−,�x⊥), (79)

where the Laplace operator � acts on the transverse coordi-
nates. The explicit solution is

α(x−,�x⊥) =
∫

dz2
⊥G(�x⊥ − z⊥)ρcov(x−,�z⊥), (80)

with a Green’s function G(x⊥) = − ln(x2
⊥/�2)/4π , where �

is an arbitrary length scale. However, we are better served by
introducing a physically motivated regularization through a
gluon mass m which can be inserted into the Fourier trans-
formation of the Green’s function G̃(k) = 1/k2 → 1/(k2 +
m2) [36]. This gluon mass could be an unrelated infrared scale,
but for simplicity we choose it to be the same as the IR cutoff in
the gradient expansion of μ introduced in the previous section.
Including the gluon mass leads to the Green’s function

G(x⊥) = 1

2π
K0(mx⊥), (81)
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where K0 is a modified Bessel functions. This Green’s function
reproduces the previous expression in the limit m → 0 with
� = 2e−γE /m, where γE is Euler’s constant.

The two-gluon correlation function in covariant gauge can
then be easily derived from (74) as

〈αa(x−,�x⊥)αb(y−,�y⊥)〉

= g2

N2
c − 1

δabδ(x− − y−)γ (x−,�x⊥,�y⊥). (82)

Here we have introduced another Green’s function,

γ (x−,�x⊥,�y⊥)

=
∫

d2�z⊥G(�x⊥ − �z⊥)G(�y⊥ − �z⊥)λ(x−,�z⊥). (83)

We will see that γ depends strongly on the IR regularization
scale m. In the limit r = |�y − �x| → 0 it diverges like 1/m2;
cancellation of this divergence for observables is a critical test
of the theory.

The gluon field Ai in light-cone gauge can be derived from
the gluon field in covariant gauge with the help of the Wilson
line,

U (x−,x⊥) = P exp

[
−ig

∫ x−

−∞
α(z−,�x⊥)dz−

]
. (84)

Here P denotes path ordering of the fields α from right to left.
One can show that the correct gauge transformation to arrive
at the light-cone gauge potential is [18]

Aj (x−,�x⊥) = i

g
U (x−,�x⊥)∂jU †(x−,�x⊥). (85)

We apply this gauge transformation to the field strength tensors
in covariant gauge to obtain the corresponding tensors in light-
cone gauge, F = UFcovU

†. Their correlation function is

〈F+i
a (x−,�x⊥)F+j

b (y−,�y⊥)〉
= 〈(U†

ac∂
iαc

)
(x−,�x⊥)

(U†
bd∂

jαd

)
(y−,�y⊥)

〉
. (86)

In the above expression we have expressed the Wilson lines U
by their counterparts in the adjoint representation, U , by virtue
of the relation

UtaU
† = Uabtb. (87)

Let us take a small detour to discuss expectation values
of adjoint, parallel Wilson lines in the MV model [18].
A systematic study was carried out by Fukushima and
Hidaka [40]. For a single line we obtain

〈Uab(x−,�x⊥)〉

= δab exp

[
− g4Nc

2(N2
c − 1)

∫ x−

−∞
γ (z−,�x⊥,�x⊥)dz−

]
. (88)

This expectation value is suppressed because γ (z−,�x⊥,�y⊥)
tends to diverge in the limit m → 0. For a double line we have〈Uab(x−,�x⊥)Ucd (x−,�y⊥)

〉 = δadδbcd(x−,�x⊥,�y⊥), (89)

where

d(x−,�x⊥,�y⊥) = exp

[
g4Nc

2(N2
c − 1)

∫ x−

−∞
dz−�(z−,�x⊥,�y⊥)

]

(90)

is the exponentiation of the integral of

�(z−,�x⊥,�y⊥)

= 2γ (z−,�x⊥,�y⊥) − γ (z−,�x⊥,�x⊥) − γ (z−,�y⊥,�y⊥) (91)

along the light cone. This � is a subtracted version of γ . In
the original MV model the subtraction in � removes the 1/m2

singularity in γ for small m and renders the exponential d
finite. In particular, �(x−,�x⊥,�y⊥) vanishes in the ultraviolet
limit �y⊥ → �x⊥. We show below that this crucial cancellation
is still valid for our generalization. Here we have dropped
contributions from noncolor singlet pairs as in Ref. [40].

Now we return to the discussion of the correlation function
of fields. One can prove that the only possible contraction
of fields on the right-hand side of Eq. (86) comes from the
factorization of expectation values 〈U†U†〉〈∂iα∂jα〉 [41]. The
second factor can be determined from Eq. (82) as

〈∂iαa(x−,�x⊥)∂jαb(y−,�y⊥)〉

= g2

N2
c − 1

δabδ(x− − y−)∇ i
x∇j

y γ (x−,�x⊥,�y⊥). (92)

Together with Eq. (89), this leads to the result

〈F+i
a (x−,�x⊥)F+j

b (y−,�y⊥)〉

= g2

N2
c − 1

δabδ(x− − y−)

× [∇ i
x∇j

y γ (x−,�x⊥,�y⊥)
]
d(x−,�x⊥,�y⊥), (93)

for the expectation value of fields in light-cone gauge. The cor-
relation function of two gauge potentials in light-cone gauge
follows from an integration with retarded boundary conditions

Ai(x−,�x⊥) = −
∫ x−

−∞
dz−F+i(z−,�x⊥). (94)

One integral is easily evaluated to give〈
Ai

a(x−,�x⊥)Aj
b(y−,�y⊥)

〉
= g2δab

2∇ i
x∇j

y γ (�x⊥,�y⊥)

g4Nc�(�x⊥,�y⊥)

∫ min{x−,y−}

−∞
dx ′− ∂

∂x ′−

× exp

[
g4Nc

2(N2
c − 1)

�(�x⊥,�y⊥)
∫ x ′−

−∞
dz−h(z−)

]
. (95)

Note that we have used Eq. (75), which allows us to factor
h(x−) from γ (�x⊥,�y⊥) and �(�x⊥,�y⊥). We have formally
defined γ (�x⊥,�y⊥) as the integral of γ (x−,�x⊥,�y⊥) over x−
from −∞ to +∞, and similarly for �. Here we have rewritten
one factor of h(x−) as a derivative ∂/∂x ′− of the exponential.

We can now evaluate the second integral. We are only inter-
ested in min{x−,y−} > 0. Upon taking the limit of vanishing

064912-11



CHEN, FRIES, KAPUSTA, AND LI PHYSICAL REVIEW C 92, 064912 (2015)

width of h we find that the fields are independent of the coordi-
nates x− and y− as long as min{x−,y−} > 0. We simply write

〈
Ai

a(�x⊥)Aj
b(�y⊥)

〉 = 2g2δab

∇ i
x∇j

y γ (�x⊥,�y⊥)

g4Nc�(�x⊥,�y⊥)

×
{

exp

[
g4Nc

2
(
N2

c − 1
)�(�x⊥,�y⊥)

]
− 1

}
.

(96)

This result holds for both the MV model [18] and our
generalization of it.

Before proceeding, let us write down the correlation
function of two gluon fields when we formally take the
ultraviolet limit �y⊥ → �x⊥. In that limit � → 0, and we can
expand the exponential function around 0, using only the two
leading terms, to arrive at the simpler expression,

〈
Ai

a(�x⊥)Aj
b(�x⊥)

〉 = δab

g2

N2
c − 1

∇ i
x∇j

y γ (�x⊥,�y⊥)
∣∣∣
�y⊥→�x⊥

. (97)

For further evaluation of the gluon distribution we have to
understand the correlation functions γ and �.

C. Gluon fields in the MV model with transverse gradients

The cancellation of the singularity in γ through the subtrac-
tion in Eq. (91) is a classic result of the original MV model for
constant (in transverse coordinates) average charge densities.
We now show that this result holds for the inhomogeneous
charge densities λ that we have permitted. More precisely,
we show how expectation values of fields, like the gluon
distribution above, can be systematically expanded in gradients
of μ. Let us introduce center and relative coordinates for two
points �x⊥ and �y⊥ in the transverse plane via �R = (�x⊥ + �y⊥)/2
and �r = �y⊥ − �x⊥. The discussion in this section uses the area
charge density μ, but all results apply in a straightforward
way to the generalized density λ and correlation functions not
integrated over x−.

In the original MV model with constant μ(�x⊥) = μ0, we
can easily calculate the correlation function γ defined in
Eq. (83) to be

γ0(r) ≡ γ0(�x⊥,�y⊥)

= μ0

∫
d2z⊥G(�x⊥ − �z⊥)G(�y⊥ − �z⊥)

= μ0

∫
d2k⊥
(2π )2

ei�k⊥�r 1

(k2
⊥ + m2)2

= μ0
r

4πm
K1(mr), (98)

where m is the same gluon mass introduced as an IR regulator
before. The γ0 depends only on the relative distance r = |�r|
owing to isotropy and translational invariance. As mentioned
before, γ0 exhibits a quadratic dependence on the infrared
cutoff m for small r; specifically, it is γ0(0) = μ0/4πm2.

However, this singularity cancels in the subtracted two-
point function (91). In the UV limit r → 0 the leading

term is

�0(r) = 2γ0(r) − 2γ0(0)

= μ0
r2

8π

(
ln

r2m2

4
+ 2γE − 1

)
+ O(m2r4). (99)

This is the equivalent of the result in Ref. [18] using a
finite gluon mass regularization. The �0 only exhibits a weak
logarithmic dependence on m for small r .

Let us now check that the same cancellation takes place if
λ is weakly varying on length scales 1/m as permitted here.
We are only interested in typical values of r = |�y⊥ − �x⊥| �
Q−1

s � m−1 because we later take the UV limit. We recall
from Eq. (81) that the Green’s functions G(z⊥) ∼ K0(mz⊥)
fall off on a scale 1/m � r . With this clear separation of
length scales we can restrict ourselves to the first few terms of
a Taylor expansion of μ around �R in the calculation of γ

μ(�z⊥) = μ( �R) + (�z⊥ − �R)i∇ iμ( �R) + · · · . (100)

This leads to

γ ( �R,�r) ≡ γ (�x⊥,�y⊥)

= γ0( �R,r) + 1

2
∇ i∇jμ( �R)γ ij (�r) + · · · . (101)

Here we have γ0( �R,r) = μ( �R)rK1(mr)/4πm analogous to
Eq. (98), representing the constant term. The linear term
vanishes because∫

d2�z⊥G(�z⊥ + �r/2)G(�z⊥ − �r/2)zi
⊥ = 0. (102)

The second-order term is

γ ij =
∫

d2�z⊥G(�z⊥)G(�r − �z⊥)zi
⊥z

j
⊥

= δij r2

24πm2
K2(mr) + rirj

r2

r3

48πm
K1(mr). (103)

These correlations functions can be conveniently computed in
Fourier space, similar to the technique in Eq. (98).

The subtraction of γ (0) removes the leading quadratically
divergent term in m as in the original MV model. We can
expand γ0 and γ ij for small mr . For � this leads to

�( �R,�r) = μ( �R)
r2

8π

(
ln m̂2r2 − 2

) + O(μm2r4)

+∇ i∇j μ( �R)

[
− δij + rirj

r2

]
r2

48πm2

+O([∇2μ]m0r4) + O(∇4μ), (104)

where m̂ = m exp(γE + 1/2)/2 ≈ 1.47m. Indeed, the depen-
dence on the cutoff m is, at most, logarithmic for the small
variations of μ that are permitted. Even though we could take
the expansion (101) farther we will never keep gradients of
μ larger than second order. Higher derivatives will be hard
to control phenomenologically, and it is now obvious that
condition (77) guarantees that the derivative correction in our
result for � is small.

Besides the subtracted correlation function � we need the
double derivative ∇ i

x∇j
y γ (�x,�y) for the gluon distribution (97).
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As discussed above, we neglect gradients of μ beyond second
order. We have two mass scales in the problem, m � Q, which
could cancel the dimensions of energy−1 introduced by the
gradient expansion. The UV cutoff Q was introduced earlier
as the resolution scale in the transverse plane. We anticipate
that in the next step of the calculation we take the limit r → 0,
meaning that explicit factors of r will turn into powers of
1/Q. We only keep terms like m−1∇ � Q−1∇ ∼ r∇. In other
words, we drop terms that are suppressed by additional powers
of the large scale Q. Thus, we arrive at

∇ i
x∇j

y γ (�x,�y) = μ( �R)
1

4π

[
δijK0(mr) − rirj

r2
mrK1(mr)

]

+ [2∇ i∇jμ( �R) + �μ( �R)δij ]

× mr

48πm2
K1(mr) + O(∇3μ,r2∇2μ, . . .),

(105)

where any gradients ∇ i on the right-hand side act only
on μ( �R). Note that terms with single derivatives ∇ iμ are
power suppressed. Now we take the formal limit r → 0. No
dependence on the direction of �r should remain in this limit
and we keep only terms isotropic in �r by setting rirj /r2 →
δij /2. The leading terms of the correlation function with two
derivatives in the ultraviolet limit are

∇ i
x∇j

y γ ( �R,�r)|r→0 = −μ( �R)
1

8π
δij ln(m̂2r2) + 1

48πm2

×[2∇ i∇jμ( �R) + �μ( �R)δij ]. (106)

Equations (104) and (106), together with Eq. (96) without
the gradient corrections, reproduce the standard result for the
two-point function in the MV model [18,37],

〈
Ai

a(�x⊥)Ai
a(�y⊥)

〉 = 4
(
N2

c − 1
)

g2Ncr2

[
1 − (m̂2r2)

g4Nc

16π(N2
c −1)

μr2]
.

(107)

Remember that our definition of μ has an additional factor
N2

c − 1 compared to Refs. [18,37].
Here we are strictly interested in the UV limit r → 0

regularized by a resolution length scale 1/Q. Plugging (106)
directly into (97) we obtain

〈
Ai

a(�x⊥)Aj
b(�x⊥)

〉 = δab

g2μ(�x)

8π
(
N2

c − 1
)[

δij ln
Q2

m̂2

+ ∇k∇ lμ(�x)

6m2μ(�x)
(δklδij + 2δikδjl)

]
, (108)

keeping all leading terms in powers of 1/Q up to second
order in gradients. We have made the replacement r → 1/Q
in the logarithm, which is equivalent to imposing Q as the
momentum cutoff in a Fourier representation. The typical
transverse momentum of gluons in the nuclear wave function
is given by the saturation scale Qs . Here we can take Q2

s ∼
g4μ/(N2

c − 1) in accordance with Ref. [37] (accounting for
the factor N2

c − 1 difference in the definition of μ). Qs is the
largest scale in the problem and thus the ultraviolet scale Q
for a single nucleus should be proportional to Qs with some
numerical factor, Q = KQs .

D. Higher twist gluon correlation functions

For the components of the energy-momentum tensor be-
yond the leading term in the τ expansion, we need expectation
values of gluon fields beyond the two-point function. We
compute those correlation functions in this section. With
more fields or more derivatives these are akin to higher twist
distributions of the gluon field. The power counting technique
in 1/Q we introduced in the previous section will be useful
for bookkeeping.

One additional transverse covariant derivative in the two-
gluon correlation function can be computed as follows. First,
we again express gauge potentials in terms of field strengths〈

DkAi
a(x−,�x⊥)Aj

b(y−,�y⊥)
〉

=
∫ x−

−∞
dx ′−

∫ y−

−∞
dy ′−〈

(DkF+i)a(x ′−,�x⊥)F+j
b (y ′−,�y⊥)

〉
.

(109)

Using the same change to covariant gauge as in Sec. IV B,
and recalling that Dk

covF
+i
cov = ∂k∂iα, the expectation value on

the right-hand side can be transformed into the expression

〈U†
aa′(x ′−,�x⊥)U†

bb′ (y ′−,�y⊥)∂k∂iαa′(x ′−,�x⊥)∂jαb′ (y ′−,�y⊥)〉

= δab

g2

N2
c − 1

δ(x ′− − y ′−)
[ − ∇ i

x∇k
x∇j

y γ (x ′−,�x⊥,�y⊥)
]

×d(x ′−,�x⊥,�y⊥), (110)

in analogy to Eq. (93). Note that correlators with three gluon
fields vanish because an even number of adjoint Wilson
lines and fields α have to be contracted with each other.
Combinations 〈Uα〉 ∼ 0 are suppressed [40].

The two integrals over x ′− and y− can be dealt with exactly
as in the case of the simple two-point function. The result
for arbitrary longitudinal positions x− > 0 (after taking the
thickness of light-cone sources to zero) is

〈DkAi
a(�x⊥)Aj

b(�x⊥)〉

= − g2

N2
c − 1

δab∇ i
x∇k

x∇j
y γ (�x⊥,�y⊥)

∣∣∣∣
�y⊥→�x⊥

, (111)

in the interesting UV limit r → 0. The same expectation
value with the covariant derivative acting on the second gauge
field would result in the same expression with the obvious
replacement ∇k

x → ∇k
y .

We apply the same basic strategy to calculate expressions
with more derivatives. We obtain

〈
DkAi

a(�x⊥)DlA
j
b(�x⊥)

〉 = g2δab(
N2

c − 1
)∇ i

x∇k
x∇j

y ∇ l
yγ (�x⊥,�y⊥).

(112)

In the same spirit we have

〈
DkDlAi

a(�x⊥)Aj
b(�x⊥)

〉 = g2δab

(N2
c − 1)

∇ i
x∇k

x∇ l
x∇j

y γ (�x⊥,�y⊥).

(113)
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The higher derivatives of the correlation function γ are
straightforward to calculate. We have

∇ i
x∇k

x∇j
y γ (�x⊥,�y⊥)

= μ( �R)

4π

[(
δij rk

r
+ δik rj

r
+ δjk ri

r

)
mK1(mr)

− rirj rk

r3
m2rK2(mr)

]
+ ∇ lμ( �R)

8π

×
(

δjl r
irk

r2
− δil r

j rk

r2
− δkl r

irj

r2

)
mrK1(mr)

− ∇ lμ( �R)

8π
(δjlδik − δilδjk − δklδij )K0(mr), (114)

where we kept the two leading orders, 1/r and m, in our
power counting in mr . One can check that the contribution of
the leading term to observables, such as βi , vanishes owing to
the odd number of powers in ri . Hence, the relevant term in
the UV limit is

∇ i
x∇k

x,y∇j
y γ (�x⊥,�y⊥)|�y⊥→�x⊥

= ∇ lμ( �R)

16π
ln

(
Q2

m̂2

)
(∓δjlδik ± δilδjk + δklδij ). (115)

The lower signs are valid if the derivative ∇k acts on y⊥
instead of x⊥. The lower signs in the previous expression
will be useful for the expectation value 〈Ai

aD
kA

j
b(�x⊥)〉. As a

consistency check, we note that Eq. (115) switches between
upper and lower signs under the exchange {i,a} ↔ {j,b}, as
dictated by symmetry. As discussed above, we have dropped
a term O(g2μQ) that does not contribute to observables.

Caution is needed when calculating four derivatives acting
on γ . The leading behavior of ∇ i

x∇j
y ∇k

x∇ l
x,yγ (�x⊥,�y⊥)|�y⊥→�x⊥

is similar to � ln r , which vanishes everywhere except for
r → 0. A proper integration will give us the leading term
(again regularizing 1/r by Q) as

∇ i
x∇j

y ∇k
x∇ l

x,yγ (�x⊥,�y⊥)
∣∣
�y⊥→�x⊥

= ∓μ( �R)

32π
Q2(δij δkl + δikδjl + δjkδil). (116)

In the UV limit the next-to-leading term in the transverse scale
hierarchy is

∇ i
x∇j

y ∇k
x∇ l

x,yγ (�x⊥,�y⊥)
∣∣
�y⊥→�x⊥

= ∇m∇nμ( �R)

32π
ln

(
Q2

m̂2

)
(δij δkmδln − δikδjmδln

∓δilδjmδkn + δjkδimδln ± δjlδimδkn ∓ δklδimδjn)

±∇m∇nμ( �R)

96π
ln

(
Q2

m̂2

)
(δij δkmδln + δikδjmδln

+ δilδjmδkn + δjkδimδln + δjlδimδkn + δklδimδjn)

∓ �μ

96π
ln

Q2

m̂2
(δij δkl + δikδjl + δilδjk). (117)

The expectation values of gluon fields with up to two
covariant derivatives will enable us to calculate the expectation

values of components of the energy-momentum tensor up to
order τ 2 in the next section, including the effects of transverse
flow. In addition, we calculate energy density and pressure
up to order τ 4. To that end we also compute the leading Q4

terms of the fourth-order coefficients. However, we neglect all
effects of transverse gradients at fourth order, which would
lead to very lengthy expressions.

V. THE ENERGY-MOMENTUM TENSOR
OF COLLIDING NUCLEI

After the discussion of gluon correlation functions in single
nuclei we now return to the case of two colliding nuclei. We
further break down the expressions for the components of the
energy-momentum tensor in the small τ expansion in terms
of the fields Ai

1 and Ai
2 in the individual nuclei. It is then

straightforward to apply the results of the last section.

A. Energy density and flow

The expectation value of the initial energy density ε0 from
Eq. (45) can be written as [37]

ε0 ≡ 〈ε0〉 = g2

2
fabefcde(δij δkl + εij εkl)〈Ai

1,aA
k
1,c〉ρ1

×〈Aj
2,bA

l
2,d〉ρ2 . (118)

Note that in this chapter we calculate only averages of
components of the energy-momentum tensor and henceforth
suppress the symbol 〈· · · 〉 in the notation for simplicity.
Applying (108) for each nucleus, the initial energy density
is

ε0(�x⊥) = 2πNcα
3
s

N2
c − 1

μ1(�x⊥)μ2(�x⊥) ln

(
Q2

1

m̂2

)
ln

(
Q2

2

m̂2

)
, (119)

where μ1 and μ2 are the expectation values of the densities
of charges in nuclei 1 and 2, respectively, and Q1 and Q2

are UV scales chosen for the wave function of nuclei 1
and 2, respectively. We have dropped terms proportional to
∇∇μ/m2, which are subleading for the energy density.

Expression (119) is very interesting. The appearance of αs

to the power 3 can be understood in the following way. This
classical calculation corresponds to the emission of a gluon
from source 1, the emission of another gluon from source 2,
followed by their fusion via a triple-gluon vertex. This involves
three powers of the coupling g in the amplitude, hence to a
power of 3 in αs when the amplitude is squared to get the
energy density. The initial energy density is very sensitive to
the numerical value of αs , because changing it by a factor of
2 results in a change in the initial energy density of a factor
of 8. Quantum corrections to the classical CGC results are
difficult to compute [42,43], but may change this sensitivity
dramatically. For example, it is reasonable to expect that one
coupling is evaluated at the scale Q1, the second coupling
at the scale Q2, and the third at a common scale Q. Using
the lowest-order renormalization group result for the running
coupling

αs(M
2) = 1

β2 ln
(
M2/�2

QCD

) , (120)
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with β2 = (11Nc − 2Nf )/12π , we would get

ε0(�x⊥) ≈ 2πNcαs(Q2)

β2
2

(
N2

c − 1
) μ1(�x⊥)μ2(�x⊥). (121)

This triumvirate of running couplings is reminiscent of what
happens when computing quantum corrections to the small-
x evolution of the gluon distribution [44]. It appears that
scale dependencies are weaker once quantum corrections are
established. Of course, the functions μi(�x⊥) also depend, to
some degree, on the scales.

For phenomenological purposes we introduce a common
UV scale Q and, in what follows, we always make the
simplification ln(Q2

i /m̂
2) → ln(Q2/m̂2), i = 1,2. For exam-

ple, we can choose Q2 to be simply the arithmetic mean
of the scales of both nuclei, Q2 = (Q2

1 + Q2
2)/2. This is a

very good approximation in the traditional MV setup, where
nuclei are considered homogeneous slabs of color charges.
For most realistic applications this will still be a reasonable
choice. Recall that Qi is proportional to the saturation scale,
Qi = KQsi for a given nucleus i, with a numerical factor
K . In collisions of two nuclei the relevant scale for the
energy density is typically the larger of the two saturation
scales [45,46]. However, experimentally accessible saturation
scales do not cover a large range. Even for the largest nuclei
at LHC energies they are at most a few GeV, barely one
order of magnitude larger than �QCD. Hence, assuming one
common scale from some averaging procedure between both
nuclei seems sufficient for many purposes. Because of the
limited range in Qs we also neglect a dependence of Q on the
transverse coordinate which is, in principle, present. Thus we
do not evaluate any transverse derivatives acting on Q.

The expectation value of the rapidity-even flow vector in
the transverse direction at order τ is simply given by

αi = −2πα3
s

Nc

N2
c − 1

ln2 Q2

m̂2
∇ i(μ1μ2)

= −ε0
∇ i(μ1μ2)

μ1μ2
. (122)

Separation of contributions from both nuclei for the rapidity-
even flow vector leads to

βi = g2fabefcdeε
ij (εmnδkl − εklδmn)

[〈(
DiAm

1,a

)
Ak

1,c

〉〈
An

2,bA
l
2,d

〉
+ 〈(

Am
1,a

)
Ak

1,c

〉〈(
DiAn

2,b

)
Al

2,d

〉]
. (123)

The expectation value then takes a form complementary to
αi [39],

βi = −ε0
μ2∇ iμ1 − μ1∇ iμ2

μ1μ2
. (124)

Note that the expectation value of βi disappears for μ1 = μ2.
Thus, it vanishes for collisions of identical nuclei with impact
parameter b = 0. We have discussed in detail in Ref. [39] how
βi describes a rotation of the fireball for b = 0 while still
preserving boost invariance. We come back to this in the next
section.

B. Higher orders in τ

The expectation values of terms at order τ 2 can be calcu-
lated in a straightforward but increasingly lengthy manner. For
the coefficient δ we have the intermediate result

δ = 〈[Dm,E0][Dm,E0] + [Dm,B0][Dm,B0]〉
= g2fabefcde(δij δkl + εij εkl)

×[〈(DmAi)1,a(DmAk)1,c〉ρ1

〈
A

j
2,bA

l
2,d

〉
ρ2

+ 〈
Ai

1,aA
k
1,c

〉
ρ1

〈(DmAj )2,b(DmAl)2,d〉ρ2

+〈(DmAi)1,aA
k
1,c〉ρ1

〈
A

j
2,b(DmA)l2,d

〉
ρ2

+ 〈
Ai

1,a(DmAk)1,c

〉
ρ1

〈
(DmA)j2,bA

l
2,d

〉
ρ2

]
+ g4fabcfcdeffghfhie(δij δkl + εij εkl)

×(〈
Am

1,aA
m
1,f Ai

1,dA
k
1,i

〉
ρ1

〈
A

j
2,bA

l
2,g

〉
ρ2

+ 〈
Ai

1,bA
k
1,g

〉
ρ1

〈
A

j
2,dA

l
2,iA

m
2,aA

m
2,f

〉
ρ2

)
. (125)

Using the higher twist gluon correlation function we derived
in Sec. IV D this evaluates to

δ = 4ε0Q
2 ln−1

(
Q2

m̂2

)
+ ε0

[
1 + 2Q2

3m2
ln−2

(
Q2

m̂2

)]

×
[�μ1

μ1
+ �μ2

μ2

]
+ 14πα2

s

Nc

(N2
c − 1)

ε0 ln

(
Q2

m̂2

)

×(μ1 + μ2) + 14πα2
s

3m2

Nc

(N2
c − 1)

ε0

×
[

2(�μ1 + �μ2) + μ2
1�μ2 + μ2

2�μ1

μ1μ2

]
. (126)

The other coefficients at order τ 2 are

ω = ε0

4μ1μ2
[∇1∇1(μ1μ2) − ∇2∇2(μ1μ2)

+ 2(∇1μ1∇1μ2 − ∇2μ1∇2μ2)] − Nc

N2
c − 1

5πα2
s ε0

3m2

×[−∇1∇1(μ1 + μ2) + ∇2∇2(μ1 + μ2)], (127)

γ = ε0

2μ1μ2
[∇1∇2(μ1μ2) + (∇1μ1∇2μ2 + ∇2μ1∇1μ2)]

+ Nc

N2
c − 1

10πα2
s ε0

3m2
∇1∇2(μ1 + μ2). (128)

It is interesting to note the hierarchy for terms at order of
τ 2. Terms with derivatives are subleading to terms without,
for example (τQ)2 � (τQ)2(∇∇μ)/(m2μ) � τ 2(∇∇μ)/μ,
while true non-Abelian terms of order (ταs)2μ could be large
as well.

The energy flow ξ i at order τ 3 can be expressed with the
help of Eq. (71) as derivatives of second-order quantities. The
leading Q2 correction to rapidity-odd flow at order τ 3 is

ζ i = −9

2
ε0Q

2 ln−1

(
Q2

m̂2

)
μ1∇ iμ2 − μ2∇ iμ1

μ1μ2
, (129)

up to second order in transverse gradients.
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FIG. 5. (Color online) Evolution of the ratios of the transverse
(upper curves) and longitudinal (lower curves) pressure over energy
density for the classical gluon field at fourth-order accuracy in time,
compared to the numerical result from Ref. [20] at leading order for
g = 0.5 (solid lines). Values of a = 0.8, 0.9, and 1.0 (dash-dotted,
dotted, and dashed lines, respectively) are indicated.

At fourth order in τ we focus on the leading Q4 contribu-
tions for simplicity. For the relevant coefficients, we obtain the
expectation values

ρ = 3

32
ε0Q

4 ln−1

(
Q2

m̂2

)
+ 3

8
ε0Q

4 ln−2

(
Q2

m̂2

)
, (130)

κ = −64

3
ρ. (131)

VI. PHENOMENOLOGY OF CLASSICAL FIELDS
IN HEAVY-ION COLLISIONS

With the results from the last section we are now ready
to discuss the early-time evolution of key quantities in high-
energy nuclear collisions analytically. We can compare to some
numerical results available in the literature.

A. Time evolution of energy density and pressure

Let us begin by first considering the very simple case of
homogeneous, equally thick nuclei, in other words, the case
of colliding slabs with μ1 = μ2 being constants. In that case,
any dynamics comes solely from the longitudinal expansion of
the system. Because of its simplicity, this is an approximation
often employed in the literature to study the general behavior
of color-glass systems.

Neglecting transverse gradients, and keeping only the
leading (τQ)k terms, the results from the last section imply

ε = T 00(τ,η) = ε0

[
1 − (Qτ )2

a

(
1 − 1

2
cosh 2η

)

+ 3(Qτ )4

32a2
(a + 4)

(
1 − 2

3
cosh 2η

)
+ O(τ 6)

]
, (132)

pT = T ii(τ,η)=ε0

[
1− (Qτ )2

a
+ 3(Qτ )4

32a2
(a + 4) + O(τ 6)

]
,

(133)

pL = T 33(τ,η) = −ε0

[
1 − (Qτ )2

a

(
1 + 1

2
cosh 2η

)

+ 3(Qτ )4

32a2
(a + 4)

(
1 + 2

3
cosh 2η

)
+ O(τ 6)

]
, (134)

where we have defined a = ln(Q2/m̂2) for brevity. We have
neglected terms of order (αsa)2Q2μ for two reasons. First,
we have not computed the corresponding terms for the fourth
order in time so we cannot evaluate these terms consistently.
The calculation is somewhat tedious and reserved for a future
publication. Second, the exact relation between μi and Q is
not fixed from first principles. We can estimate that with a
reasonable value K = 2 the corrections to pT /ε and pL/ε are
small up to about Qτ ≈ 0.8, which leads us to believe that the
following analysis is valid.

We can write very simple but powerful pocket formulas
for the time evolution of key quantities. For example, the
transverse and longitudinal pressures relative to the energy

FIG. 6. (Color online) Different flow fields (black arrows) and initial energy density ε0 (shading) for Pb + Pb collisions at impact parameter
b = 6 fm in the x-y plane. Lighter regions correspond to higher densities. The nucleus centered at x = 3 fm travels in the positive η direction.
(a) αi ; (b) βi ; (c) full transverse Poynting vector T 0i at η = 1. Note that αi is proportional to T 0i at η = 0.
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density at midrapidity behave as

pT

ε
(τ ) = 1 − 1

a
(Qτ )2 + 3(a+4)

32a2 (Qτ )4

1 − 1
2a

(Qτ )2 + a+4
32a2 (Qτ )4

,

(135)
pL

ε
(τ ) = −1 − 3

2a
(Qτ )2 + 5(a+4)

32a2 (Qτ )4

1 − 1
2a

(Qτ )2 + a+4
32a2 (Qτ )4

.

Suppose we drop the order τ 4 terms in the numerator and
denominator. Then at a time given by (Qτ )2 = 4

5a we have
pT = pL = 1

3ε. This corresponds to the equation of state of a
massless gas of quarks and gluons.

We can compare the results in Eq. (135) with those of
Gelis and Epelbaum [20]. They performed a real-time lattice
simulation for colliding slabs using the gauge group SU(2).
In Fig. 5 we show results for the transverse and longitudinal
pressures over the energy density, pT /ε and pL/ε, from our
analytic approach up to fourth order in τ and the numerical
results from Ref. [20] (labeled LO in their work). Here we have
chosen the values of a = 0.8, 0.9, and 1.0, all of which give
very good matching for small time and are not unreasonable
for small saturation scales. Note that this is a very schematic
comparison for several reasons. A more quantitative statement
would require a careful analysis of the IR and UV scales in the
numerical calculation and their relation to Qs , a further inves-
tigation of μ3 and μ5 terms in the analytic result, and the use of
SU(2) instead of SU(3) in our calculations. However, it is inter-
esting to note that the results agree quite well up to τ ∼ 1/Q.

The comparison with numerical work is important in two
ways. First, the study in Ref. [20] indicates that classical field
dynamics is sufficient for times smaller than τ0 ∼ 1/Qs , at
least at small to moderate values of the strong coupling g.
After that, time quantum corrections and instabilities start
to dominate. The successful comparison also validates our
previous argument about the convergence radius of the small-
time expansion which we expected to be given parametrically
by 1/Qs . Indeed, we can reproduce the results for transverse
and longitudinal pressure very well up to that time. If we would
want to relax the conditions and allow transverse gradients,
we would also introduce dimensionless terms τ∇ i which are
smaller than τQ in the region of applicability.

Serendipitously, our near-field expansion works rather well
up to the same time scale to which the classical field approach
is valid. Thus, we are led to believe that our analytic results are
a rather simple and almost complete account of the collision
dynamics up to τ0. The asymptotic values for pT /ε and
pL/ε reached in the classical theory after τ0 are ∼ 1/2 and
∼ 0, respectively. Quantum corrections and instabilities will,
however, lead to further isotropization soon after τ0 [20].

B. Global flow of glasma

Two of us have discussed the effect of the two first-
order flow terms αi and βi in detail in Ref. [39]. The
hydrodynamiclike flow term αi obviously leads to both radial
and elliptic flow; see left panel of Fig. 6. Note that this is flow
of energy of the classical gluon field at this point. However,
owing to energy and momentum conservation, this flow will

FIG. 7. (Color online) Transverse Poynting vector T 0i (black
arrows) and initial energy density ε0 (shading) in the η-x plane at
y = 0. Lighter regions correspond to higher densities. (a) Pb + Pb
at b = 6 fm. Angular momentum is carried by the gluon field. (b)
Pb + Ca at b = 0 fm, the Pb nucleus is moving to the right. The
system expands more strongly in the wake of the larger nucleus.

translate into a flow of fluid cells after thermalization. We will
discuss this in a future publication.

The rapidity-odd flow term βi potentially has many in-
teresting implications; see center panel of Fig. 6. Its event
average vanishes for central collisions (impact parameter
b = 0) for collisions of identical nuclei. However, for finite
impact parameters it carries the angular momentum of the
gluon field that is transferred from the nonvanishing angular
momentum of the two colliding nuclei. The flow field exhibits
a characteristic rotation pattern around the impact vector; see
the right panel of Fig. 6 and the top panel of Fig. 7. This would
lead to directed flow v1 of particles, which has been observed in
experiments. The angular momentum would be transferred to
the quark-gluon fluid at a later stage with potential interesting
consequences [47,48]. We again refer the reader to Ref. [39]
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for more details. In collisions of two different species of nuclei,
βi leads to an increase of the radial flow in the wake of
the larger nucleus while suppressing flow in the wake of the
smaller nucleus; see bottom panel of Fig. 7. For asymmetric
collisions at finite impact parameter the flow field becomes
more complicated. This could lead to interesting flow patterns
unique to classical gluon field dynamics [39]. Those could be
a novel signature for the importance of CGC in this regime.
For the illustrations shown here, Woods-Saxon profiles have
been used for the volume density of nucleons in the nuclei
from which the transverse color charge densities μ1,2 are
computed.

The second order in time also introduces a pressure
anisotropy in the transverse plane for asymmetric collision
systems. The eccentricity of the transverse pressure εp =
(T 11 − T 22)/(T 11 + T 22) is often used to measure the buildup
of elliptic flow in the system. For the event average we read
off from Eq. (57) that

εp(x,y,η) = ω(x,y)τ 2

4ε0(x,y)
, (136)

up to second order in gradients and up to second order in τ .
This quantity is independent of η. We see that the pressure
anisotropy indeed starts to grow quadratically in time. We
leave further numerical analysis to a future paper.

Third-order corrections typically slow the linear growth
of the energy flow. For the rapidity-even part we again
have a compact formula if we neglect terms with three or
more derivatives. From Eq. (71) and the expression for the
expectation values of αi and δ we obtain

T 0i
even = τ

2
αi

[
1 − 1

2a
(Qτ )2

]
cosh η. (137)

Similarly, from the expectation values for βi and ζ i , we have

T 0i
odd = τ

2
βi

[
1 − 9

16a
(Qτ )2

]
sinh η, (138)

when higher-order gradients and terms or order μ3
i are

neglected. Interestingly, when we look at V i = T 0i/T 00 at
midrapidity as a proxy for velocity, the leading corrections in
the time evolution cancel in numerator and denominator. They
are of order −(Qτ )2/2a for both the energy density and the
even part of the energy flow. In other words, while the growth
of T 0i slows and invariably peaks and diminishes owing to

FIG. 8. (Color online) Time evolution for |V | (solid black line)
and for the radial projection of T 0i (arbitrary units, dashed red line)
for central Pb + Pb collisions at midrapidity with approximations as
described in the text.

the longitudinal expansion, the velocity V i continues to grow
roughly linearly as

V i = −τ

2

∇ iε0

ε0
+ O(τ 5) (139)

at midrapidity when transverse gradients of third order and
higher are neglected. Figure 8 shows the time evolution of
the radial velocity |V | up to corrections of order τ 5 for a point
r = 5 fm away from the center of a central Pb + Pb collision at
midrapidity. We also computed the time evolution of the radial
projection of T 0i , including the τ 3 correction, to contrast its
slowing down to the linear growth of V i . For the calculation
of T 0i , we have chosen Q2 = 2 GeV2 and a = 1. Figure 9
displays the radial dependence of |V | for the same central
Pb + Pb collisions at τ = 0.2 fm. We see that the surface
velocity peaks around 0.2. However, one has to be cautioned
that typically the first Fermi of the boundary (beyond r = 6
fm for a Pb nucleus) is usually outside of the applicability of
this calculation.

C. Towards quark-gluon plasma

Let us summarize our knowledge of nuclear collisions at a
typical time τ0 = 1/Qs . The energy-momentum tensor can be
written, up to third order in τ , as

T mn =

⎛
⎜⎜⎜⎜⎝

ε0 − τ 2

8 (−2�ε0 + δ) τ
2 αx + τ 3

16ξx τ
2 αy + τ 3

16ξy τ
8 ∇ iβi

τ
2 αx + τ 3

16ξx ε0 − τ 2

4 (−�ε0 + δ − ω) γ 1
2βx

τ
2 αy + τ 3

16ξy γ ε0 − τ 2

4 (−�ε0 + δ + ω) 1
2βy

τ
8 ∇ iβi 1

2βx 1
2βy − ε0

τ 2 + 1
8 (−2�ε0 + 3δ)

⎞
⎟⎟⎟⎟⎠. (140)

Here we have used the τ,x,y,η coordinate system for the
tensor. This gets rid of unwieldy cosh η and sinh η terms
from boosts. Note that there is no explicit dependence on η in
this coordinate system owing to boost invariance. This tensor
exhibits the standard features expected of a fireball: radial and

elliptic flow and a decrease of energy density and pressure
with time, mostly owing to the longitudinal expansion. In
addition, we find angular momentum and directed flow for
finite impact parameter collisions and a complicated flow
pattern for asymmetric collision systems. These features can be
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FIG. 9. Dependence of |V | on the radial coordinate r for central
Pb + Pb collisions at midrapidity. The radius of a Pb nucleus is about
7 fm.

predicted more or less accurately and in analytic form averaged
over events.

The reader should keep in mind that the phenomenological
analyses in the present section are rather crude and could
be refined in many ways, as pointed out numerous times.
However, they result in compact pocket formulas which could
be useful for quick estimates in many situations. A more
careful analysis can be done starting with the full expressions
from Sec. V.

After a proper time τ0, instabilities growing from small fluc-
tuations take over, leading to turbulent behavior of the fields.
Further isotropization and equilibration is then expected to lead
to QGP near kinetic equilibrium. From a phenomenological
perspective, one could simply translate the energy-momentum
tensor of the classical field around the time τ0 directly into
hydrodynamic fields, as was done in Ref. [19] for ideal
hydrodynamics and in Ref. [17] for viscous hydrodynamics.
However, this obviously leads to large shear stress corrections,
as can be seen from the large difference between transverse
and longitudinal pressure around τ0, as presented previously.
It would be very interesting to see how key features of the
transverse flow field translate into hydrodynamics and how
they fare during subsequent hydrodynamic evolution. This
would enable us to connect features of classical gluon fields
in the initial state to observables.

It would be relatively straightforward to build a semian-
alytic event generator from our results. For example, one
could follow Ref. [16], which used a model for charge
configurations of nuclei in collisions. In our approach, their
numerical solution to the Yang-Mills equations would be
replaced by our analytic time evolution using the near-field
approximation. Then, from the sampled charge distributions,
one has to calculate the coefficients ε0, αi , βi , δ, etc., to obtain
an event-by-event energy-momentum tensor.

VII. CONCLUSION

In this paper we worked out analytic solutions of the
Yang-Mills equations for two nuclei with random color charges

colliding on the light cone. Using a recursive solution we
computed the early-time gluon field and energy-momentum
tensor in a near-field approximation. We find that this ap-
proximation gives acceptable results roughly up to a time τ0

given by the inverse of the saturation scale Qs . This coincides
with the time at which the entire classical field approximation
starts to breaks down anyway. Explicit expressions for the
fields and energy-momentum tensor up to order τ 4 have been
provided.

We have also calculated expectation values for the energy-
momentum tensor when many events are averaged. Our
calculation generalizes the MV model to allow small but
nonvanishing gradients in the average color charge in the
transverse plane. This permitted us to discuss flow phenomena
in averaged events. We provide a comprehensive set of
expectation values of coefficients of the energy-momentum
tensor which allow predictions for event-averaged T μν for
times around τ0. We give compact and analytic formulas
for key quantities like the time evolution of energy density,
transverse and longitudinal pressure, the time evolution of
transverse flow of energy, and the time evolution of the
transverse pressure asymmetry.

We find that the transverse flow of energy grows linearly
with time and that it can reach sizable values at the surface of
the fireball at τ0. We have also discovered that the asymmetry
between transverse pressures starts to grow quadratically
in time. The time evolution of transverse and longitudinal
pressure matches well with numerical results available in the
literature up to τ0. Besides the usual radial and elliptic flow a
rapidity-odd flow emerges. We suggest that this energy flow
of the glasma could contribute to directed flow measured at
RHIC and LHC. It carries angular momentum which rotates
the fireball. More complex flow patterns appear for collisions
of asymmetric nuclei. The characteristic glasma flow pattern
could potentially lead to another signature for color-glass
dynamics in high-energy collisions.

At τ0 ∼ 1/Qs our calculation becomes unreliable. How-
ever, matching our results to a (3 + 1)D viscous hydrodynamic
code might be attempted. We discuss this in a forthcoming
publication. We have also discussed the possibility to construct
an event generator based on the results of this paper.
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APPENDIX A: GENERAL DEFINITIONS

Some conventions and useful formulas are gathered in this
appendix. We denote 3-vectors by bold symbols; vector arrows
denote 2-vectors in the transverse plane. As an example, xμ =
(t,x) = (t,�x⊥,z). Light-cone coordinates are defined by

x± = 1√
2

(x0 ± x3), (A1)

with d4x = dx+dx−d2x⊥ and xμyμ = x+y− + x−y+ −
xi

⊥yi
⊥. Note that ∂μ = (∂/∂t, − ∇) and ∂± = ∂/∂x∓. Unless

indicated otherwise, small latin indices i,j,k indicate trans-
verse components of a vector, greek indices label 4-vectors
in (t,x,y,z) coordinates, and latin indices m,n label 4-vectors
in (τ,x,y,η) coordinates. Underlined latin indices refer to the
SU(3) algebra.

Proper time τ and space-time rapidity η for a space-time
point xμ are defined as

τ =
√

t2 − z2 =
√

2x+x−, (A2)

η = 1

2
ln

(
t + z

t − z

)
= 1

2
ln

(
x+

x−

)
. (A3)

It is useful to express Cartesian and light-cone derivatives via
hyperbolic ones by

∂± = x±

τ

∂

∂τ
∓ 1

2x∓
∂

∂η
, (A4)

and

∂

∂t
= cosh η

∂

∂τ
− 1

τ
sinh η

∂

∂η
, (A5)

∂

∂z
= − sinh η

∂

∂τ
+ 1

τ
cosh η

∂

∂η
. (A6)

Our conventions for covariant derivatives and field strength
tensors are

Dμ = ∂μ − igAμ, (A7)

Fμν = i

g
[Dμ,Dν] = ∂μAν − ∂νAμ − ig[Aμ,Aν]. (A8)

Here Aμ, Fμν , and Jμ are SU(Nc) valued functions that can
be expressed as linear combinations of the SU(Nc) generators

ta , a = 1, . . . ,N2
c − 1. The generators are defined through

[ta,tb] = if abc tc and normalized by

Tr ta = 0, Tr(tatb) = 1
2δab. (A9)

This immediately implies that

Tr(X) = 0, Tr([X,Y ]) = 0, (A10)

for any X, Y in the SU(Nc) algebra because [X,Y ] ∈ SU(Nc).
Using the ordinary product rule and the Jacobi identity,

one can show that covariant derivatives obey the generalized
product rule

[Di,XY ] = [DiX]Y + X[Di,Y ], (A11)

for any X, Y in the SU(Nc) algebra; in particular,

[Di,[X,Y ]] = [[DiX],Y ] + [X,[Di,Y ]]. (A12)

It is sometimes helpful to interpret Tr(AB) as a bilinear
scalar product on SU(3) and [A,B] as a skew-symmetric
product whose result is orthogonal to both X and Y such that

Tr(X,[X,Y ]) = 0. (A13)

This leads to some important ways to simplify expressions
with a trace involved. They include

Tr(X[Di,X]) = − 1
2∇ i Tr(X2), (A14)

εij [Di,[Dj,X]] = ig[B3,X], (A15)

Tr([DiX][DiX]) = 1
2� Tr(X2) − Tr(X[Di,[Di,X]]),

(A16)

Tr(εij [Di,X][Dj,Y ]) = 1
2εij∇ i Tr([Dj,X]Y − [Dj,Y ]X)

+ 1
2εij Tr([Di,[Dj,X]]Y

− [Di,[Dj,Y ]]X), (A17)

Tr(X[Di,[Di,X]]) = 1
2� Tr(X2) − Tr([Di,X][Di,X]),

(A18)

where X and Y are any SU (Nc) fields. As an example, the
second equation implies that

εij Tr(E0[Di,[Dj,B0]]) = 0, (A19)

εij Tr(B0[Di,[Dj,E0]]) = 0. (A20)

APPENDIX B: EXPRESSIONS AT ORDER τ 3 AND τ 4

At order τ 3 the transverse fields are

F i±
(3) = − e±η

4
√

2

([
Dj,F

ji
(2)

] ± [Di,F+−
(2) ]

) + ig

8

(
εij

[
B0,F

j±
(1)

] ± [
E0,F

i±
(1)

]) ∓ ig

8

e±η

2
√

2
εij [Dj,[E0,B0]], (B1)

whereas E3
(3) = 0 = B3

(3). In terms of the initial fields the third-order fields are

Ei
(3) = − 1

16
(cosh η εij [Dj,[Dk,[Dk,B0]]] + sinh η [Di,[Dk,[Dk,E0]]]) − ig

16
εij sinh η([B0,[D

j,E0]] + [E0,[D
j,B0]])

− ig

16
cosh η([E0,D

i,E0] − [B0,[D
i,B0]]) − ig

16
sinh ηεij [Dj,[E0,B0]], (B2)
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and

Bi
(3) = − 1

16
(sinh η[Di,[Dk,[Dk,B0]]] − cosh ηεij [Dj,[Dk,[Dk,E0]]]) − ig

16
cosh η([B0,[D

i,E0]] + [E0,[D
i,B0]])

− ig

16
sinh ηεij ([B0,[D

j,B0]] − [E0,[D
j,E0]]) − ig

16
cosh η[Di,[E0,B0]]. (B3)

The longitudinal field at order τ 4 is

E3
(4) = 1

64
[Di,[Di,[Dj,[Dj,E0]]]] + 1

16
igεij [[Di,E0],[Dj,B0]], (B4)

B3
(4) = 1

64
[Di,[Di,[Dj,[Dj,B0]]]] − 1

64
igεij [[Di,E0],[Dj,E0]] + 3

64
igεij [[Di,B0],[Dj,B0]] + g2

64
[E0,[B0,E0]]. (B5)

For the energy-momentum tensor the transverse flow vectors ξ i and ζ i , as defined in Eq. (62), are given in terms of E0 and
B0 by

ξ i = [Di,E0[Dl,[Dl,E0]] + B0[Dl,[Dl,B0]]] + [Di,E0][Dl,[Dl,E0]] + [Di,B0][Dl,[Dl,B0]] − igεijB0[E0,[D
j,E0]],

(B6)

ζ i = εij ([Dj,E0[Dl,[Dl,B0]] − B0[Dl,[Dl,E0]]] − 3[Dj,E0][Dl,[Dl,B0]] + 3[Dj,B0][Dl,[Dl,E0]]) − 3igE0[B0,[D
i,B0]].

(B7)

The components which we defined at order τ 4 are

ρ = B0B(4) + E0E(4) + 1
2 (B(2)B(2) + E(2)E(2)), (B8)

κ = [Di,B0][Di,[Dk,[Dk,B0]]] + [Di,E0][Di,[Dk,[Dk,E0]]] + igεij [Di,B0]([B0,[D
j,B0]] − [E0,[D

j,E0]])

+ igεij [Di,E0]([B0,[D
j,E0]] + [E0,[D

j,B0]] + [Dj,[E0,B0]]), (B9)

σ = εij [Di,E0][Dj,[Dk,[Dk,B0]]] − εij [Di,B0][Dj,[Dk,[Dk,E0]]] + ig[Di,B0]([B0,[D
i,E0]]

+ [E0,[D
i,B0]] + [Di,[E0,B0]]) + ig[Di,E0]([E0,[D

i,E0]] − [B0,[D
i,B0]]), (B10)

λ = E1
(1)E

1
(3) + B1

(1)B
1
(3) − E2

(1)E
2
(3) − B2

(1)B
2
(3), (B11)

ν = −E1
(1)E

2
(3) − B1

(1)B
2
(3) − E1

(3)E
2
(1) − B1

(3)B
2
(1). (B12)

We omit the lengthy expression for λ and ν in terms of E0 and B0.

APPENDIX C: ENERGY-MOMENTUM CONSERVATION AT ORDER τ 3

We prove explicitly the conservation of transverse momentum at order τ 3, i.e., Eq. (71). We do this for the first component
ξ 1 = ∇1(−�ε0 + δ − ω) − ∇2γ , the proof for ξ 2 would be similar:

∇1(−�ε0 + δ − ω) − ∇2γ = −∇1
{
(E0[Dl,[Dl,E0]] + B0[Dl,[Dl,B0]]) + ([Dl,E0][Dl,E0] + [Dl,B0][Dl,B0])

− ([Dl,E0][Dl,E0] + [Dl,B0][Dl,B0])
} + 1

2

(
[D1,[D1,E0]2] + [D1,[D1,B0]2]

− [D2,[D2,E0]2] − [D2,[D2,B0]2]
) + [D2,[D1,E0][D2,E0] + [D1,B0][D2,B0]]

= [
D1,E0[Dl,[Dl,E0]] + B0[Dl,[Dl,B0]]

] + [D1,E0][Dl,[Dl,E0]] + [D1,B0][Dl,[Dl,B0]]

= ξ 1. (C1)

Here we have used the product rule for covariant derivatives extensively and Eq. (A16) for the first equal sign and Eq. (A15) at
the second equal sign.
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