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Production of charge in heavy ion collisions
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By analyzing preliminary experimental measurements of charge-balance functions from the STAR Collabo-
ration at the Relativistic Heavy Ion Collider (RHIC), it is found that scenarios in which balancing charges are
produced in a single surge, and therefore separated by a single length scale, are inconsistent with data. In contrast,
a model that assumes two surges, one associated with the formation of a thermalized quark-gluon plasma and a
second associated with hadronization, provides a far superior reproduction of the data. A statistical analysis of
the model comparison finds that the two-surge model best reproduces the data if the charge production from the
first surge is similar to expectations for equilibrated matter taken from lattice gauge theory. The charges created
in the first surge appear to separate by approximately one unit of spatial rapidity before emission, while charges
from the second wave appear to have separated by approximately a half unit or less.
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I. INTRODUCTION AND THEORY

A principal goal of colliding heavy ions at high energy is to
verify whether one can create small drops of equilibrated quark
gluon plasma in the laboratory. Kinetic equilibration is not sur-
prising given the high collision rates and is validated by thermal
features of the data, especially observables related to collective
flow [1] and jet quenching [2]. Chemical equilibrium is more
difficult to justify. The final-state abundance of hadrons sug-
gests that chemical equilibrium was lost just after hadroniza-
tion when the temperature was near 165 MeV [3]. In contrast,
there is scant experimental evidence that chemical equilibrium
was maintained during the period when T > 200 MeV
when the matter is expected to be in a phase of strongly
interacting quark gluon plasma (QGP). That chemistry is
remarkable. Counting spins, colors, and flavors, there are
36 light degrees of freedom from the up, down, and strange
quarks, and an additional 16 from gluons. Thus, approximately
52 strongly interacting particles should inhabit a volume on
the order of one thermal wavelength cubed, ∼(�c/T )3.

At high temperature and zero baryon density, the chemical
makeup of the QGP cannot be quantified by counting quarks
or gluons because they tend to be off-shell or virtual, so
their number is not a well-defined observable. However, even
though the average charge within a volume V is zero, the
fluctuations of the charge characterize the degrees of freedom.
If one considers the three-by-three fluctuation tensor,

χab = QaQb

V
, (1)

with a and b referring to the up, down, and strange charge, one
can gain insight into the chemistry. If up, down, and strange
quarks are good quasiparticles with no interquark correlations
(a gaseous state),

χ
(QGP)
ab = (na + nā)δab, (2)

where na is the density of quarks of the given flavor, up, down
or strange. Correlations between quarks, such as the two being
in the same hadron, alter the expression. For a hadron gas the

correlations are

χ
(had)
ab =

∑
α

nαqαaqαb, (3)

where nα is the density of hadron species α which has a
charge qαa . As an example, protons contribute a factor of
four times their density to χuu because the “up” charge of
a proton is two. Even for strongly interacting and correlated
systems χab is a well-defined observable, because charge is
conserved by the strong interaction. From Eq. (3) one can see
that hadronic resonances induce off-diagonal elements to χab

[4]. For example, the K+ contributes negatively to χus and a
� hyperon gives a positive contribution to χus .

For a massless gas of quarks and gluons, the number of
quarks within a fluid element of fixed entropy stays constant
during an isentropic expansion because both the number
densities and the entropy density scale as T 3. Therefore,
in an isentropic expansion of a massless parton gas the
number of quarks within the fluid element stays relatively
constant. Lattice calculations show that this property remains
reasonably preserved even for a strongly interacting system.
The ratio χab/s is illustrated in Fig. 1 where it changes only at
the 10% level once T > 225 MeV. Below that temperature,
the system is hadronizing and χ is strongly temperature
dependent. Because of entropy conservation, the number of
hadrons just below Tc is marginally lower than the number of
quarks above Tc, so given that each hadron has two or three
quarks, copious quark production, through string breaking or
resonance decays, accompanies hadronization. As shown in
Fig. 1, some of the elements of the fluctuation tensor change
significantly, especially χuu/s ≈ χdd/s which nearly doubles.

Unfortunately, charge fluctuations, χab(T ), are not directly
accessible from experiment. If one could measure the charge
fluctuation within a small volume, a few fm3, one would expect
the fluctuation to approximate that of an equilibrated system
as long as the equilibrated system does not have correlations
beyond that scale. However, if one considers the net charge in
the entire system, it does not fluctuate because of the fact that,
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FIG. 1. (Color online) Charge fluctuations from lattice gauge
theory [5,6] (open symbols) are similar to those of a hadronic
gas (filled symbols for T = 165 MeV). For fixed entropy there
are increased numbers of up and down quarks in the hadronic
phase, whereas the number of strange quarks is slightly smaller.
The off-diagonal element disappears above Tc when hadrons dissolve
and quark-antiquark correlations disappear. At high temperatures the
results approach those of a Stefan-Boltzmann gas of massless partons
(S.B. limit).

unlike the assumptions for a grand canonical ensemble, the net
charge is fixed and χ → 0. In contrast, the charge correlation,

gab(�η) ≡ 〈ρa(0)ρb(�η)〉, (4)

is sensitive to both the equilibrated charge fluctuation and
accounts for the conservation of net charge. Here, ρa(η) is
the charge density per unit of spatial rapidity and the brackets
denote averages over events. Translational invariance along
the beam axis, or invariance to translations in spatial rapidity,
is assumed. Spatial rapidity is a measure of the position along
the beam, or z axis, z/t = tanh η. If all fluid elements begin at
z = t = 0 and if the elements do not accelerate longitudinally,
which is expected for a boost-invariant system, the spatial
rapidity can be associated with the longitudinal velocity of the
fluid element, vz = z/t . If a particle moves with the fluid, its
spatial rapidity stays constant [7].

If chemical equilibrium is attained and if the correlations
are local the correlation becomes

gab(�η) → χabδ(�η), (5)

where the δ function can be relaxed to some function of short
range that integrates to unity. For the realistic situation where
the charge is created locally and diffuses over a finite distance,
the correlation becomes

gab(�η) = χabδ(�η) + g′
ab(�η),∫

d�ηg′
ab(�η) = −χab. (6)

The last condition derives from charge conservation.

Even though the net charge over the entire collision volume
does not fluctuate and even though the short-range correlation
only carries information about the current value of χ , one can
gain insight into the temporal history of χab by analyzing the
dependence of χab on �η, or in a three-dimensional analysis
on �x,�y,�η. For example, if χab/s were to stay constant
after the initial time, g′

ab(�η) would be a broad function with
a width determined by how far charge pairs produced early
would separate over the history of the collision. This width
might be driven by a combination of two effects. First, if
the balancing quarks are produced by the fragmentation of a
longitudinal flux tube, the tunneling would lead to the charges
being significantly separated at birth along the beam direction,
perhaps by a solid fraction of one unit of spatial rapidity. For
example, if the quarks were born with a separation of 0.5 fm,
and were created at a proper time of 0.5 fm/c, the separation
would be on unit of spatial rapidity. In contrast, if particles were
born 0.5 fm apart at a time of 5 fm/c, the separation would be
only 0.1 units of spatial rapidity. If the system maintains local
chemical equilibrium, as defined by the lattice calculations
displayed in Fig. 1, at hadronization a second contribution to
gab would arise to account for the change in χab. This second
contribution to g′

ab(�η) would be more tightly constrained in
�η because of the reduced time available for the charges to
diffuse away from one another.

Diffusion represents another mechanism of separation. For
a strongly interacting QGP the diffusion constant and the
separation would tend to be smaller. From [8] one can estimate
the diffusive separation with a simple analytic formula based
on assuming cross sections stayed constant with temperature.
The diffusive width to the balance function was

σ 2
η = 4β ln(τ/τ0), β = vt/(nτσ ). (7)

If the cross section of σ = 10 mb = 1.0 fm2 were used, and
if the density scaled by the time τ were nτ = 5 fm−2, and if
τ/τ0 = 10, the particles would separate by approximately one
unit of spatial rapidity. If several collisions were required to re-
thermalize a particle the diffusive separation would increase.

The correlations in terms of charges, gab, translate into
correlations between specific hadronic species α and β,

Gαβ(�η) ≡ 〈(nα(0) − nᾱ(0))(nβ(�η) − nβ̄(�η))〉. (8)

A relationship between gab(�η) and Gαβ (�η) can be derived if
one assumes that a small balancing charge is spread randomly,
or thermally, amongst the hadrons [9].

Using a blast-wave prescription, which provides a para-
metric description of thermal emission overlaid with collective
flow and includes the effects of decays, one can then project the
correlations in coordinate space to correlations in momentum
space. These correlations are divided by the yield of particles
of type α and are called charge balance functions,

Bαβ(�y) = 〈(nα(0) − nᾱ(y))(nβ(0) − nβ̄(�η))〉
n̄α + n̄ᾱ

, (9)

which have been measured by experiment [10–20].
In the next section, the methods are reviewed for trans-

lating charge correlations, gab(�η), to Gαβ(�η) and then to
balance functions Bαβ(�y) using a blast-wave prescription.
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Preliminary measurements from STAR are reviewed in
Sec. III, while Secs. IV and V illustrate how individual balance
functions are determined by specific parameters in the model.
In Sec. V eight model parameters are systematically varied
in a Markov Chain Monte Carlo (MCMC) exploration of
parameter space that implements model emulator techniques.
The results make a strong case that the matter created in central
Au+Au collisions at Relativistic Heavy Ion Collider (RHIC) is
close to being chemically equilibrated early in the collision. In
Sec. VI these findings are summarized and some ideas for
future analysis are presented.

II. GENERALIZED BALANCE FUNCTIONS AND
THE TWO-SURGE BLAST-WAVE MODEL

In this paper we present comparisons to a simple model
that can reproduce the behavior expected from the trends
seen in the lattice results displayed in Fig. 1. The picture
assumes two surges of charge production: one where the
initial equilibrated matter would be formed and a second
corresponding to the jump in the susceptibilities near Tc. To
that end, the model will assume that the first surge results
in charge correlations significantly spread in rapidity, while
the second surge, occurring as the temperature falls below
T ∼ 200 MeV, would result in significantly more compact
correlations. The spread in spatial rapidity at breakup from
the two surges will be described by two widths, σA for the
first surge and σB for the second surge. First, we repeat the
derivations in [9] and describe how these correlations carry
over into correlations in rapidity between two specific hadronic
species.

The 3 × 3 charge correlation matrix in coordinate space,
g′

ab(�η), determines the observable hadronic correlations in
the final state if one assumes that the differential additional
charges in a small volume are distributed thermally amongst
the hadrons. Here, we define a correlation between two
hadronic species α and β [9],

Gαβ(�η) ≡ 〈(nα(0) − nᾱ(0))(nβ(�η) − nβ̄(�η))〉, (10)

gab(�η) = 1

4

∑
αβ

Gαβ(�η)qαaqβb, (11)

where qαa is the charge of type a carried by the hadron
species α. There are many more hadronic species than charges,
so Gαβ cannot be uniquely determined from gab without
making assumptions. The factor of 1/4 accounts for the double
counting of species. For instance, the sum over α,β includes
both π+π− and π−π+.

If one assumes that an additional differential charge density
δρa within a given volume element is spread amongst the
various species randomly, i.e., thermally, the change in each
species’ yield can be found by finding the chemical potential
δμa required to generate δρa .

δnα = (eδμaqαa − 1)n̄α = δμaqαan̄α, (12)

where δμ has absorbed the 1/T factor typically used in
defining chemical potentials and is dimensionless, while n̄α

refers to the average particle density. The three values δμa can
now be found from the three constraints in Eq. (10). In turn

these then determine δnα .

δρa =
∑

α

qαa

∑
b

n̄αqαbδμb, =
∑

b

χ
(had)
ab δμb,

δμa =
∑

b

χ
(had)−1
ab δρb,

δnα = n̄α

∑
ab

qαaχ
(had)−1
ab δρb. (13)

Using the fact that in Eq. (10) nα − nᾱ = 2δnα ,

Gαβ(�η) = 4
∑
abcd

n̄αqαaχ
(had)−1
ab gbc(�η)χ (had)−1

cd qβd n̄β . (14)

Using the expression for χ (had) in Eq. (3) one can see that the
form is consistent,

1

4

∑
αβ

Gαβ(�η)qαaqβb = gab(�η). (15)

In the two-surge model, calculating the experimentally
measurable Gαβ(�y), where �y is the correlation in relative
asymptotic rapidity, involves the following steps:

(1) Calculate gab(�η) at hadronization. Assume a form
consisting of two surges,

g′
ab(�η) = −(

χ
(had)
ab − χ

(QGP)
ab

) e−�η2/2σ 2
B(

2πσ 2
B

)1/2

−χ
(QGP)
ab

e−�η2/2σ 2
A(

2πσ 2
A

)1/2 . (16)

Here, σA describes the width in spatial rapidity to
which charges created in the first wave have separated
by the time one reaches breakup and σB characterizes
the separation from the second wave at breakup. The
strength of the first surge, χ

(QGP)
ab , is the susceptibility

using a number per unit rapidity, or taken from lattice,

χ
(QGP)
ab = χ

(lattice)
ab (T ≈ 300 MeV)

s

dS

dη
, (17)

and χ
(had)
ab is given by the properties at chemical

freeze-out, which for this calculation will be defined by
a temperature Tchem = 165 MeV. One can also calculate
the entropy density of a hadron gas at chemical
equilibrium schem.

(2) Gαβ(�η) is calculated from gab using Eq. (14). After
substituting Eq. (16) into Eq. (14),

Gαβ(�η) = −wA,αβn̄αn̄β

e−�η2/2σ 2
A(

2πσ 2
A

)1/2

−wB,αβn̄αn̄β

e−�η2/2σ 2
B(

2πσ 2
B

)1/2 ,

wA,αβ = 4
∑
ab

qαa

(
χ (had)−1χ (QGP)χ (had)−1)

ab
qβb,

wB,αβ = 4
∑
ab

qαaχ
(had)−1
ab qβb − wA,αβ. (18)
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(3) Given Gαβ(�η) at freeze-out, the correlations in
coordinate space are then mapped to correlations in
spatial rapidity, Gαβ(�y), according to the blast-wave
prescription. This mapping is done by the following
Monte Carlo procedure. (a) Pairs of particles are chosen
with probability proportional to n̄αn̄β . (b) The particles
are then placed in coordinate space with the relative
position randomly according to a Gaussian width
σA. (c) The particle’s local momenta are generated
thermally, then boosted transversely according to the
blast-wave prescription described below. (d) If the
particles are both stable the balance functions for
the given relative rapidity bin is incremented by
wA,αβn̄2

totεαεβ , where n̄tot is the number of hadrons
per unity rapidity and εα is the efficiency with which
particle α is measured, and depends on the particle type,
its transverse momentum and rapidity [21]. (e) If one
or both particles are unstable, they are decayed and the
relative rapidity is calculated for each of the products
α′ and β ′. Each correlation Gα′β ′ is then incremented
by wA,αβn̄2

totεα′εβ ′ . Steps b–f are repeated using the
weight wB and the width σB . Decays are accounted for
by considering the intracorrelations between any of the
particles of type A and species α′ and α′′ and using a
weight n̄α .

(4) After using the previous steps to calculate Gαβ(�y),
one can then calculate the “generalized” balance
function, i.e., the balance function for specific species,
by the relation,

Bαβ(�y) = Gαβ(�y)

n̄α + n̄ᾱ

. (19)

The denominator requires generating particles with the
species being picked proportional to n̄α . Then one
should boost and decay the particles, and increment
the denominator for the type α′ by the efficiency for
the final species by an amount εα′n(tot). As long as the
number of samplings is the same as the previous step,
the normalization should be correct.
One can test calculations along the way by considering
the normalization of various quantities with perfect
acceptance.∑

β

(wA,αβ + wB,αβ)n̄βqβa = 4qαa, (20)

∑
αβ

∫
d�ηqαaGαβ(�η)qβb = −4χab,

∑
β

∫
d�yBαβ (δy)qβb = −2qαb. (21)

The quantities also have the symmetry, Gαβ̄ = −Gαβ

and Bαβ̄ = −Bαβ .

The blast wave used to transversely boost the particles
uses four parameters. The first is the kinetic temperature
at breakup. Although particle yields are determined by the
temperature Tchem = 165 MeV, where chemical equilibrium
would be lost, the particle’s momenta are determined by the

kinetic temperature Tkin = 102 MeV. The second parameter
is the transverse collective velocity, u⊥ = 0.732. After being
generated thermally, they are boosted by a transverse velocity
chosen from the distribution,

dN

duxduy

∼ e−(u2
x+u2

y )/2u2
⊥ . (22)

The two parameters u⊥ and Tkin are chosen to roughly repro-
duce the mean transverse momentum of pions and protons seen
by the STAR [22] and PHENIX [23] collaborations at RHIC.
The third and fourth parameters determine the chemistry. In
addition to Tchem, a parameter FB = 2/3 is used to reduce
the yield of all baryons to account for baryon annihilation
below Tchem [24,25]. Rather than employing the somewhat
large baryon annihilation factors here, calculations were also

FIG. 2. (Color online) Preliminary balance functions from STAR
(green circles) are shown from four pairs of species: π+π−, K+K−,
pp̄, and K−p. The upper curves (red squares) show the result
after applying the approximate acceptance and efficiency correction
described here. Measurements are for the most central collisions,
0%–5%.
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performed using lower values of Tchem as suggested in
[6,26,27]. If the final p/π ratios are similar, results change
little.

The blast-wave picture used here is perhaps the simplest
model that can readily incorporate two surges while providing
a reasonable mapping between the correlations in coordinate
space and those in asymptotic relative rapidity. If both widths
σA and σB are set equal to one another, it becomes a one-surge
model. Of course, both charge creation and emission are
more complicated than what can be described in this picture.
First, although one expects two surges, the susceptibility
seen in Fig. 1 does rise slowly as the temperature falls in
the region T � 200 MeV. One could replace the two surges
with a continuum of creation proportional to d/dτ (χab/s).
Each point in space would then contribute to the final gab.
However, it is clear that if the system stays close to chemical
equilibrium, the bulk of these contributions comes from two
surges. Additionally, if either surge is not strongly confined to
a specific time, the shape of the ensuing correlation should
no longer be Gaussian, even if the separation is purely
diffusive. A second weakness of the model comes from
the assumption that the matter disassociates simultaneously
according to a single breakup temperature Tkin, but with yields
determined by a single temperature Tchem. For shorter lived
resonances like the ρ meson, yields should substantially drop

between the two temperatures. Thus, the contributions from
resonance decays are probably significantly overstated. How-
ever, if a neutral particle decays and rethermalizes, the ensuing
relative rapidity of the two charges is not wholly different
than if the two decay products escaped unscathed, because
these decays have relative momenta of typical thermal scales.
Despite these shortcomings, the two-surge model should
provide an insightful point of comparison. A more realistic
picture of creation, transport, and emission of conserved
charges is currently being pursued by some of the authors.

III. SUMMARIZING EXPERIMENTAL MEASUREMENTS

The STAR Collaboration has presented preliminary balance
functions for four combinations of species: π+π−, K+K−,
pp̄, and K−p [28,29], displayed in Fig. 2. Before discussing
the result, we apply an approximate acceptance and efficiency
correction so that the true widths of the balance functions can
be better discerned. This correction is approximate and based
on an assumption that the balance functions depend only on
the relative rapidity, or equivalently that the balance functions
do not depend on the transverse momenta of the two particles.
Assuming equal numbers of particles and antiparticles, the
balance function can be exactly expressed as

B(�y) =
∫

dpadyadpbdybδ(|yb − ya| − �y)[Nαβ(pa,ya,pb,yb) − Nαβ̄(pa,ya,pb,yb)]∫
dpadyaNα(pa,ya)

, (23)

with pa referring to the transverse momentum coordinates of
the particle of type α and pb doing the same for type β. The
rapidities of the two types are then ya and yb. In terms of the
balance function,

Nαβ(pa,ya,pb,yb) − Nαβ̄(pa,ya,pb,yb)

= Nα(pa,ya)B(p)(pa,ya,pb,yb)Aβ(pb,yb), (24)

where Aβ(pb,yb) is the efficiency that can vary between zero
and unity, and B(p) is the balance function if the acceptance
for the particle of type β were perfect. Now, to make the
approximation, one assumes that an additional particle of type
β at yb has its transverse momentum distribution distributed
according to the single-particle probability, Nβ(pb,yb), with
half the strength coming at yb = ya + �y and the other at
yb = ya − �y.

B(p)(pa,ya,pb,yb) ≈ 1

2
B(p)(�y)

N
(p)
β (pb,yb)∫

dpbN
(p)
β (pb,yb)

. (25)

One can now insert Eqs. (24) and (25) into Eq.
(23) and see that B(p)(�y) factors out of the

expression,

B(�y) = B(p)(�y)

{∫
dpadyaNα(pa,ya)Ā(yb = ya + �y)

2
∫

dpadyaNα(pa,ya)

+
∫

dpadyaNα(pa,ya)Ā(yb = ya − �y)

2
∫

dpadyaNα(pa,ya)

}
,

Āβ(yb) ≡
∫

dpbN
(p)
β (pb,yb)Aβ(pb,yb)∫
dpbN

(p)
β (pb,yb)

. (26)

If the efficiency Aβ(pb,yb) is perfect, the balance function is
B(p)(�y). The expression in the brackets on the right-hand side
represents the acceptance correction C(�y).

B(p)(�y) = B(�y)

C(�y)
,

C(�y) =
∫

dpadyaNα(pa,ya)Āβ(ya + �y)

2
∫

dpadyaNα(pa,ya)

+
∫

dpadyaNα(pa,ya)Āβ(ya − �y)

2
∫

dpadyaNα(pa,ya)
. (27)

The acceptance probability Aβ(yb) is basically the ratio of
the measured yield of particles of type β at yb relative
to the true yield. Using a STAR acceptance and efficiency
filter [21], this can be found by generating particles with the

064905-5



PRATT, MCCORMACK, AND RATTI PHYSICAL REVIEW C 92, 064905 (2015)

blast-wave prescription, then seeing what fraction is recorded.
The correction factor C(�y) then requires averaging Aβ

over the various possibilities for ya , which can again be
performed with the blast-wave prescription. Figure 2 shows
both the original preliminary balance function from STAR
and the corrected version. For large �y the factor is large and
the experimental uncertainties are magnified. Points are not
plotted where the uncertainty surpasses the maximum size of
the balance function.

Because the form for the acceptance and efficiency cor-
rections was built on what may be a dubious assumption,
they were also applied to model balance functions. In this
case, the corrected balance functions can be compared to
those calculated with perfect acceptance to see whether the
difference between corrected and perfect balance functions
differ. Figure 3 shows three sets of balance functions Bαβ(�y):
the corrected version as described above, the balance function
where the efficiency for the particle of type β is perfect but
where the acceptance and efficiency for α is given by the filter,
and finally a balance function where the acceptance for both
types is perfect. Because a balance function’s denominator
divides out the efficiency of the first particle, all three would
be identical if the balance function were truly only a function
of �y as assumed in the approximation described by Eq. (25).
The parameters used in the model were for the two-surge
model, chosen to roughly reproduce the experimental balance
functions: σA = 1.0, σB = 1/3. The susceptibility for the
quark gluon plasma was chosen to be

∑
a χab/s = 0.18 and

χss/χuu = 0.93, to be roughly consistent with the lattice
calculations in Fig. 1 for temperatures near 300 MeV.

Even without a model the STAR measurements make it
clear that describing the separation of balancing charges with
a single scale in relative spatial rapidity cannot describe the
data. The four experimental balance functions for the most
central collisions are displayed in Fig. 2. In the absence of
acceptance corrections, a one-surge model, such as Eq. (18)
with σA = σB , would give balance functions of equal width if
they were calculated as a function of spatial rapidity. However,
given that the mapping to spatial rapidity is thermally smeared
to a larger extent for lighter particles because of their higher
thermal velocity, one would expect the following hierarchy of
widths σαβ :

σπ+π− > σK+K− > σpK− > σpp̄. (28)

The STAR data violate this expectation as it appears that

σpp̄ > σK+K− > σπ+π− > σpK− . (29)

The π+π− balance function should be strongly affected by
decays. If one were to decay a chemically equilibrated hadron
gas at T = 165 without any further hadronic interactions,
nearly half the positive pions would come from decays where
the π+ is accompanied by a π−. Thus, it should not be
surprising that the π+π− balance function has a relatively
narrow component. This could either be considered a third
surge, or as an extension of the second surge. Determining
what part of this narrowing is from decays vs the rise in the
charge susceptibility in the transition region requires detailed
analysis. However, the fact that the K−p balance function
is narrower than either the pp̄ or K+K− balance functions,

FIG. 3. (Color online) The acceptance and efficiency corrected
balance function Bαβ (�y) from model calculations (red circles) is
compared to the corresponding calculations with the acceptance
and efficiency for particle type β being perfect (blue triangles) and
for both particles having perfect acceptance (green squares). If the
assumptions upon which the acceptance and efficiency corrections
were based are justified, the three calculations would be nearly
identical.

and even narrower than the π+π− balance functions, seems
impossible to describe with a one-surge model.

IV. COMPARING THE TWO-SURGE MODEL
TO PRELIMINARY STAR RESULTS

The left-side panels of Fig. 4 compare calculations using
one scale, σA = σB , at three values, σA = 0.25, 0.5, and 1.0.
For σA < 1.0 the model predictions provide poor descriptions
of the data. For σA = 1.0, the K+K− balance function is well
produced and the pp̄ balance function only differs at smaller
relative rapidity. This latter failure could well be from the lack
of baryon-annihilation in the one-surge picture. The π+π−
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FIG. 4. (Color online) Balance functions for the one-surge blast-wave model characterized by a width σA = 0.25 (dotted blue lines),
σA = 0.5 (dashed green line), and σA = 1.0 (solid red line) are compared to preliminary STAR results in the left-side panels. A width of ∼1.0
is necessary to explain the K+K− and pp̄ balance functions, but this width overestimates the width of the π+π− balance functions and fails
to approach the K−p balance function. The calculations include decays that occur below T = 165 and result in a narrow contribution that is
similar but smaller than what appears in the measured π+π− balance function. The right-side panels show results for a two-surge model with
σA = 1.0 and σB = 0.4. The two contributions to the K−p balance function have opposite signs which allows the resulting sum to be narrower
than either the pp̄ balance functions. The strength of the first surge is determined by matching the expected quark susceptibility to entropy
ratio as extracted from lattice contributions.

balance function from the model is wider than the data, as
it seems the model would fit better with the narrowest of the
three sample balance functions. As expected, the K−p balance
function cannot be explained with a single scale. As expected,
the single-scale model predicts widths that fall between the
widths for the pp̄ and K+K− balance functions. Resonances
that decay into both a proton and kaon are already considered
in this calculation.

The two-surge model provides a far superior description of
the data than a one-surge model. To illustrate the sensitivity

of the predictions to specific parameters, Fig. 5 shows how
some of the balance functions react to changes of the de-
fault parametrization [σA = 1,σB = 0.4,(χuu + χdd + χss)/
s = 0.18,χss/χuu = 0.93]. In the default parametrization the
quark to entropy ratios from the first surge are set to be con-
sistent with lattice calculations. Changing the ratio of strange
to up quarks, χss/χuu, from the first surge significantly affects
the K+K− balance function as seen in Fig. 5. For smaller
strangeness in the first surge, the second surge must then pick
up the difference, which gives a larger peak at small �y.
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FIG. 5. (Color online) The sensitivity of balance functions to
various parameters in the two-surge blast wave model is shown
above. The default calculation (solid red line) assumes the first
surge achieved chemical equilibrium according to lattice calcu-
lations for T ∼ 300 MeV. This would be a strangeness to up
quark ratio, χss/χuu = 0.93, and a net quark to entropy ratio,
(χuu + χdd + χss)/s = 0.18. In the default calculation the spreads
of the two surges are σA = 1.0,σB = 0.4 units of spatial rapidity.
The sensitivity of the K+K− balance function to changes in the
strangeness content of the first wave is illustrated by comparing to
calculations with χss/χuu = 0.5 (green dashed line) and χss/χuu =
1.4 (dotted blue line). For pp̄, calculations were performed for
different quark contents, (χuu + χdd + χss) = 0.1 (green dashed line)
and (χuu + χdd + χss)/s = 0.25 (blue dotted line). K−p balance
functions results are shown for varied widths, σB = 0.1 (green dashed
line) and σB = 0.7 (blue dotted line).

Adjusting the net quark to entropy ratio (χuu+χdd +χss)/s
of the first surge affects all the balance functions, especially
the pp̄ balance function as shown in the middle panel of Fig.
5. If the quark content of the first surge is below equilibrium,
the second surge would have to compensate for it and the pp̄

balance function would have a positive narrow contribution,
which is not seen in the data.

Of the four balance functions studied here, the K−p balance
function is the most sensitive to the separation of scales,
σB/σA, and most strongly illustrates the need for two surges.
This derives from the cancellation of the opposite-sign weights
for the A and B contributions in Eq. (18). If σA were to equal
σB the balance functions would nearly cancel as can be seen
in Fig. 4. As σB/σA → 0, both the narrow positive peak near
�y = 0, and the broad negative feature for �y ∼ 1 become
more pronounced.

The π+π− balance function is the least sensitive to
changing model parameters for two reasons. First, the pions
are light and their thermal motion smears any structure in
relative rapidity. Second, nearly half the balancing π+π− pairs
come from resonance decays that produce both a positive and
negative pion. Figure 6 shows the contribution to each balance
function in the default two-surge calculation from the first and
second surges, and from decays below the chemical freeze-out
temperature. The π+π− balance function is strongly affected
by decays. The decay contribution is constant in the context
of this model, but could easily be sensitive to alterations
of the model not considered here. In particular, this model
assumes the chemical yields of various resonances do not
change below chemical freeze-out, T = 165 MeV, and kinetic
freeze-out when the particles are emitted, T = 102 MeV. In
a realistic calculation resonances like the ρ would decay and
their products would rescatter before final emission. Their
contribution might then move to lower values of �y because
the relative momentum of the pions from a ρ0 decay tend to be
higher than those from thermal motion. Of course, the yields
themselves might be different. An improved calculation would
include the effects of rescattering and baryon annihilation,
better account for the spectral shape of the broader mesons,
and more accurately describe the acceptance and efficiency for
which weak decays, e.g., the Ks , are captured by the detector.

Because the strangeness susceptibility is somewhat flat near
the transition region, and because few resonances decay to
K+K−, the K+K− balance function is dominated by the
first surge. In both the preliminary STAR data and in the
models, contributions from φ decays have been removed.
The K+K− balance function is then an excellent candidate
to determine σA. Because of baryon annihilation near and
below chemical freeze-out, the baryon susceptibility drops
and the second-surge contribution to the pp̄ balance function is
negative. If not for thermal smearing, one would see a dip in the
pp̄ balance function. In reality, much of the annihilation occurs
at the very end of the reaction and involves baryons with small
relative momenta. Thus, the negative contribution from baryon
annihilation should be more pronounced than the calculations
shown here. The K−p balance function is especially insightful
because the two contributions have similar strengths and
opposite signs. For this reason, the resulting peak can be
remarkably narrow, and followed by a shallow negative
contribution at larger �y. This makes it possible for modest
changes in model parameters to significantly affect the size and
shape of the K−p balance function. The negative dip at larger
�y requires a large experimental acceptance. Even though
STAR has an acceptance of ±0.9 units of pseudorapidity, the
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FIG. 6. (Color online) Balance functions for the two-surge model
with default parameters (solid black line) are divided into three
components. The first surge (dashed red line) gives the widest
contribution, with the width determined by σA plus some thermal
smearing. The width from the contribution from the second surge
(dotted green line) is set by σB , plus thermal smearing. The third
contribution is from decays (dot-dashed blue line). The decay
contribution provides nearly half the π+π− balance function, but is
much less important for the other species pairs. The K+K− balance
function is dominated by the first surge. The pp̄ balance function has
contributions from both, with the small negative contribution from
the second surge resulting in a very flat balance function at small �y.
The K−p balance function has contributions of similar strength but
opposite sign. This results in a narrow peak at small �y that is much
narrower than either the pp̄ or K+K− balance functions. Further, at
large �y the K−p balance function turns slightly negative.

acceptance in rapidity for protons and kaons is effectively
narrower because of the mapping of rapidity to pseudorapidity
for more massive particles. Combined with the small size of the
balance functions, STAR’s measurements of the K−p balance
function for �y > 1 are difficult.

TABLE I. Eight parameters were simultaneously varied between
the Min and Max ranges shown above. The first four parameters
were two spatial rapidity widths, σA and σB , the quark to entropy
ratio of the first surge (χuu + χdd + χss)/s, and the strangeness to
up ratio of the first surge χss/χuu. The other four parameters varied
the blast wave kinematics: the kinetic freeze-out temperature Tkin, the
transverse flow parameter u⊥ defined in Eq. (22), the baryon reduction
factor FB which accounts for baryon annihilation, and λvisc, which
accounts for the anisotropic shape of the phase space distribution in
momentum space from viscous effects.

Parameter σA σB (χuu + χdd + χss)/s χss/χuu Tkin u⊥ FB λvisc

Min 0.3 0 0.05 0.0 75 0.5 0.6 0.7
Max 1.5 1.0 0.35 1.3 120 0.875 0.8 1.0

V. STATISTICAL COMPARISON OF MODEL TO DATA

Figure 5 makes a case that the first surge of particle
production is close to what one would expect from chemically
equilibrated matter. However, the study of model responses
shown in Fig. 5 is quite incomplete given that model parame-
ters can be changed in a coordinated fashion. A more rigorous
method is to simultaneously vary all model parameters while
comparing to all the data. Here, we present results from not
only changing the four model parameters mentioned before,
but four additional parameters. The posterior likelihood is
calculated in this eight-dimensional space by comparing to
all four balance functions. This will provide a distribution of
likely parameters that not only provides the most likely point,
but provides the full likelihood in the eight-dimensional space
by a Markov Chain Monte Carlo (MCMC) procedure.

Table I lists the parameters varied in this analysis. The first
seven parameters were described in Sec. II and the eighth
accounts for the fact that the momentum distribution might
not be anisotropic. After generating thermal particles, the
momenta are scaled by a matrix,

pi = pi + �ijpj , �zz = −λ, �xx = �yy = λ/2. (30)

This factor reduces the thermal smearing when mapping the
spatial and momentum rapidities and gives narrower balance
functions. However, it does not affect the width of the decay
contribution.

Even though the calculation of the balance functions
requires only ∼10 min of CPU time, hundreds of thousands of
points need to be calculated during the MCMC trace. Using
the techniques of model emulators in [30], the likelihood is
calculated by interpolating principal components of the data
from 1536 full model runs. The full model runs were performed
at points spread throughout the parameter space according to
Latin hypercube sampling. These techniques are described in
[31,32].

The statistical analysis assumes Gaussian forms for the
likelihood,

L ∼ exp

{∑
a

(
y(model)

a − y(exp)
a

)
�−1

ab

(
y

(model)
b − y

(exp)
b

)
/2

}
,

�ab = σ 2
a δab, (31)
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where the experimental y
(exp)
a and model y(model)

a (x) are
compared relative to the uncertainty σa . The eight parameters
are considered to have uniform prior distributions as listed in
Table I. The uncertainties σa encapsulate not only experimental
uncertainties, but any uncertainties one might expect from
missing physics in the model. This can be thought of as a
systematic theory error. For a schematic model such as used
here, assigning uncertainties is ad hoc, which means the final

likelihood distribution is also suspect. However, even with that
caveat, the statistical analysis helps determine what parameters
best fit the data and can also assist with understanding
which observables are best constraining specific parameters of
interest. For this analysis, each individual point in the balance
function was used, except for the first bin in relative rapidity.
This bin carries both experimental difficulties from two-track
resolution and is strongly affected by femtoscopic correlations,

FIG. 7. (Color online) One- and two-dimensional projections of the posterior likelihood for the eight-parameter two-surge blast-wave
model, as computed using preliminary balance functions from STAR. Red, green, and blue lines represent 1 − σ , 2 − σ , and 3 − σ contours.
The gray lines show lattice expectations for χss/χuu and (χuu + χdd + χss)/s. The quark content of the first surge, (χuu + χdd + χss)/s appears
about 10% higher than the value expected from lattice and the strangeness to up ratio is about 20% lower.
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which are ignored by the model. The uncertainty for each point
was defined as

σa =
√

(0.12ya)2 + (0.001)2, (32)

effectively a 12% error. This seems somewhat large, but
because neighboring points in a balance function provide
similar information and are similarly susceptible to theoretical
approximations, groups of points can be redundant. For
example, if the same quantity is measured four times, a 12%
error falls to a 6% error. So if each balance function were
divided up into groups of four points, the error would translate
into half this uncertainty. The MCMC method described here
was repeated with several forms for the uncertainty. For

smaller uncertainties the likelihoods became more compact,
but the position of the maximum likelihood did not change
significantly. In addition to the balance functions, the mean
transverse momenta for pions, kaons, and protons were treated
as observables. The values were averaged from STAR and
PHENIX measurements and a 6% uncertainty was assigned.
Each balance function had 17 points because of the binning
being in units of 0.1 in relative rapidity and extending to
�y < 1.8, with the first bin being neglected. The four balance
functions thus provided 68 observables, adding the three mean
transverse momenta result in 71 observables.

Figure 7 displays projections of the likelihood distribution
as taken from the MCMC trace. The eight plots along
the diagonal show one-dimensional projections, while the

FIG. 8. (Color online) The left-side balance functions (a)–(d) were calculated from 40 parameters randomly taken from the prior, i.e., they
were randomly generated in the regions defined in Table I. The parameters for the right-side balance functions (e)–(h) were also randomly
generated, but the choices were weighted with the experimental likelihood. This validates the statistical procedure and serves as a guide for
how strictly the definition of uncertainties constrains the fits.
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off-diagonal plots show two-dimensional projections. The
quark content of the first surge is close to expectations from
the lattice calculations shown in Fig. 1, but might be 5% high.
Given that entropy production during the collision might be
at the 10% level, the entropy used in the denominator here
might be 10% higher than the entropy at early times. Thus, it
would not be surprising if the χ/s ratios extracted here were
be 10% lower than the expected values for lattice calculations.
This implies that the (χuu + χdd + χss)/s ratio may actually
be ∼15% higher than expectations and that the strangeness
content, may be about 15% lower than such expectations.
This variation is at the 1 − σ level in the comparison here,
but because defining the uncertainty was somewhat arbitrary,
stating a discrepancy between an extracted value and a lattice
value is correspondingly arbitrary.

The widths of the two surges are strongly constrained by
the analysis. The first surge’s width is close to unity, which
is in line with expectations. The characteristic width of the
second surge appears to be just below half the broader width,
σB/σA � 0.5. This differs from the previous analysis of [33],
which found a preference for σB/σA � 0.3. This change is
being driven by the inclusion of the K−p balance function.
If neglected, there is a preference to fit the π+π− balance
function by lowering σB . Thus, the two balance functions are
somewhat at odds with one another, which suggests that some
physics is being poorly described or missing. A possible culprit
would be the way in which decays are treated. If the number of
decaying particles is significantly reduced between chemical
and kinetic freeze-out, the π+π− balance function, which
is strongly affected by decays, might narrow. The balance

function with σB/σA ∼ 0.45, would then be able to better
reproduce both balance functions. Additionally, to reproduce
the narrow π+π− balance function, the fitting procedure is
skewing the choice of the final breakup temperature Tkin to
lower values. Analyses based mainly on spectra have usually
found temperatures in the 90- to 110-MeV range, whereas
this analysis prefers values centered around 80 MeV, with a
width of about 10 MeV. Thus, reducing the decay contribution
might not only better reproduce the π+π− balance function,
but should also become more consistent with the extracted
breakup temperature.

As a test of the statistical procedure we consider an assort-
ment of balance functions calculated from random points in
parameter space. In the left-side panels of Fig. 8 the parameters
are taken randomly from the prior, i.e., they are random
numbers generated between the minimum and maximum
values listed in Table I. On the calculations for the right
side of Fig. 8 the parameters were taken randomly from the
posterior distribution, i.e., weighted by the likelihood. These
points were extracted from taking 40 points far away from one
another in the MCMC trace. Whereas the balance functions
on the left-side panels vary widely and often stray far from the
data, the balance functions from experimentally constrained
parameters on the right side come close to the data. The π+π−
balance function varies only modestly as parameters are varied
throughout the prior, which means it has limited resolving
power, although this could change if the π+π− balance
function turns out to be significantly sensitive to missing
or poorly represented physics, e.g., reabsorption of hadronic
decays into the medium. In contrast, the other three balance

FIG. 9. (Color online) The ratio ∂〈〈xi〉〉/∂y(exp)
a is shown for every combination of 71 observables and eight parameters. This describes how

an extracted value for a parameter 〈〈x〉〉 would change if a given observable were increased by one sigma while keeping the other observables
fixed. Each of the four balance functions provides 17 observables, corresponding to the 18 rapidity bins with the first bin being ignored. The first
17 observables along the x axis represent the π+π− balance function, and the other three balance functions are represented by each subsequent
group of 17 observables. Additionally, the three mean transverse momenta for pions, kaons, and protons are included as observables. For
example, one can see that the extracted value of χss/χuu would fall or rise if the low momentum bins of the K+K− balance function were
raised or lowered. The response is opposite for bins of higher relative rapidity. One can also see the relatively strong resolving power for the
K+K−, pp̄, and K−p balance functions.

064905-12



PRODUCTION OF CHARGE IN HEAVY ION COLLISIONS PHYSICAL REVIEW C 92, 064905 (2015)

functions vary widely throughout the prior, as was expected
from the studies presented in Fig. 5. These measurements then
have much higher potential to discriminate between different
sets of parameters. The reasonably good model-to-data match
validate that the statistical method was effective in identifying
the most likely regions of parameter space.

Given the large numbers of parameters and observables,
it can be difficult to understand the degree to which given
measurements contribute to constraining the parameters, or
the degree to which a measurement, if changed by one sigma,
would lead to new parameters. In [34] methods were derived
to perform sensitivity analyses from the MCMC trace. One
such measure is the quantity, ∂〈〈xi〉〉/∂y(exp)

a keeping all other
yb 
=a fixed. This addresses the question of how the average
value of a specific parameter xi in the posterior would change
if a single observable ya were altered without repeating the
entire MCMC with a new value of y

(exp)
a . In the expression

above, the double brackets 〈〈· · · 〉〉 refer to an average from the
posterior, and single brackets 〈· · · 〉 denote the average over
the prior. Figure 9 shows the values of this partial derivative
where the parameters xi are scaled by the widths of their
priors so that 〈(x − 〈x〉)2〉 = 1, and the observables ya are
scaled by their uncertainties σa . The resulting derivative then
describes how much the parameter would change as a fraction
of its prior width when the parameter ya is increased by σa .
Figure 9 presents a much more detailed set of information than
what is shown in Fig. 5.

VI. SUMMARY AND OUTLOOK

Preliminary STAR measurements of charge balance func-
tions for specific species provide strict constraints on any
picture of the chemical evolution of the superhadronic matter
created in heavy ion collisions. To fit all four of the balance
functions, the blast-wave model used here had to employ two
separate surges of charge production. Balancing charges from
the first surge appear to have separated by approximately
one unit of spatial rapidity by the time the matter reaches
chemical freeze-out. Charges from the second surge appears
to have spread a bit less than half that amount. It is difficult
to determine the physics driving the spread of the first surge.
It may mainly be from the separation inherent to breaking
strings, or equivalently the tunneling of balancing charges in
the breaking of a flux tube. Another possibility is that the
spread is largely diffusive. Either way, the charges must be
created early if they are to separate by such a large distance by
chemical freeze-out.

The strengths of the two surges can also be determined
by comparing the two-surge model to data. Remarkably, the
strength of the first surge is consistent with the matter from
the first surge approaching chemical equilibrium. A model
run based on assuming perfect equilibrium, followed by an
isentropic expansion, reproduces the preliminary STAR data
at the 5% level. A more comprehensive search through eight-
dimensional parameter space, including four parameters that
adjust the blast-wave description, show that the best chemistry
for fitting the data has susceptibilities within 20% of those
calculated on the lattice. The response of the measurements
to the susceptibilities was found to be strong, and thus should

provide good resolving power within the context of any model.
Measurements were shown to be sensitive to both the spread
and the strength of the charges.

The preliminary STAR measurements considered here are
the first of their kind, and should inspire numerous additional
measurements of different species, measurements as functions
of relative azimuthal angle [35,36] and transverse momentum,
and as a function of the three-dimensional pair momentum.
As a general statement, balance functions are six-dimensional
correlations that can be measured between any two species
pairs. Every new combination of species and every more
differential binning of the six-dimensional phase space should
provide new insights and better shed light onto the story
of the chemical evolution of the reaction. In addition to
higher statistics, these goals may also require expanding the
acceptance of current experiments. Here, we provide a quick
list of some measurements that would help illuminate an
assortment issue:

(1) Measurements of unidentified particles have been
made as a function of both the relative and total az-
imuthal angle. However, one could consider the relation
between the width in azimuthal angle and relative
rapidity. Balancing charges that are created early can
be preferentially selected by considering the balance
function at large relative rapidity, and should also have
broader balance functions in relative azimuthal angle.
This might help distinguish the physical cause of the
separation of early charge pairs, diffusion vs flux tube
breaking.

(2) The STAR Collaboration’s acceptance for identified
particles extends to ±0.9 units of pseudorapidity,
but when translated into real rapidity is significantly
narrower for heavier particles like kaons and protons.
The ALICE detector at the LHC covers ±0.8 units of
pseudorapidity. ATLAS and CMS cover much wider
regions, but without particle identification. The long-
range correlations should better illuminate the early
production charges. For instance, if a measurable
fraction of pairs comes from the initial state, those
balancing charges might be particularly well separated.
The greater acceptance would also make it easier to
perform the analysis mentioned in the preceding bullet.

(3) To better understand decays, balance functions can
be binned as a function of the invariant mass or
momentum. Contributions from specific decays, e.g.,
Ks → ππ , can be identified by their peak. Contribution
from broader resonances such as ρ0 → π+π− may be
more difficult to see, but nonetheless the comparison
should be able to identify whether the populations of
unstable resonances are poorly represented by this, or
any other model.

(4) Measurements can be performed as a function of beam
energy and centrality [17] and for different choices of
colliding nuclei [13]. The narrowing of the balance
function for unidentified particles may be related to the
existence of two surges [8], but that conclusion needs
to be investigated in detail alongside the analyses
listed above.
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If these measurements are to lead to truly rigorous con-
clusions, the models must improve beyond the schematic
blast-wave model considered here. To justify Gaussian forms
for the two surges, each surge must be created during a
short time. More realistically, charges are created continuously
according to the rate at which χab/s is changing. The evolution
of the charges and the creation of new charge pairs after
chemical freeze-out is an area that was poorly modeled here.
By the time of kinetic freeze-out many of the resonances will
already have decayed, with their products being reabsorbed
by the medium. Baryon annihilation, which was implemented
here by reducing the baryon yield at chemical freeze-out, in
fact, occurs mostly later. The corresponding dip should then
be more concentrated at low relative momentum, a feature
that is indeed seen in the data. These improvements cannot
be naturally added to a schematic blast wave model, but
they can be accounted for in microscopic simulations. Such

calculations are entirely tractable and are being performed
currently by this group. Once the models can encapsulate
all the important physics, statistical analyses like those
presented here can lead to much more convincing and rigorous
conclusions.
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