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� polarization in an exact rotating and expanding fluid dynamical model
for peripheral heavy ion reactions
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We calculate the � polarization in an exact analytical, rotating model based on parameters extracted from a
high resolution (3+1)D particle-in-cell relativistic hydrodynamics calculation. The polarization is attributed to
effects from thermal vorticity and for the first time the effects of the radial and axial acceleration are also studied
separately.
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I. INTRODUCTION

In high energy peripheral heavy ion collisions there is a
substantial amount of initial angular momentum directly after
the Lorentz contracted nuclei penetrate each other. The formed
quark gluon plasma locally equilibrates, the shear flow leads
to local rotation, i.e., vorticity, and then it expands, while its
rotation slows down.

Because of the finite impact parameter, the initial stages (IS)
have a nonvanishing angular momentum [1,2]. For the initial
stages, effective models such as the color glass condensate
(CGC) or Glauber model are used. In general, we use
experimental data, to construct a possible IS, at a given impact
parameter for the participant nucleons, and their eccentricity.
Early studies neglected effects arising from the nonvanishing
angular momentum, but interest increased recently [3–6].

After many decades of refinements [7,8], hydrodynamical
modeling became the best to describe the middle stages of
heavy ion collisions at relativistic energies. Thus, rotation and
its consequences in peripheral collisions were also studied in
fluid dynamical models [9,10].

We look at polarization in effects arising from thermal
vorticity in the exact rotating and expanding model [11], where
we are modeling an appropriate time period of the collision
[12]. Special attention was given to the collective motion, and
to extract it from observables which could confirm that such
descriptions are indeed plausible.

We calibrate an exact rotating model based on a (3+1)D
fluid dynamical model, the relativistic particle-in-cell method
(PICR), to fine tune the initial parameters of the rotating and
expanding fireball [12].

In Ref. [13] the differential Hanbury Brown and Twiss
(HBT) method was used to detect rotation in heavy ion
collisions.

Without at least some viscosity and/or interaction one could
not generate rotation from the original shear flow. On the other
hand to develop instabilities or turbulence the viscosity should
be small, so that the ratio of shear viscosity to entropy density
η/s should be of the order of �/4πkB , which can be achieved
at the phase transition between hadronic matter and QGP [14].

Thermal vorticity arises from the flow velocity field
[15], and the inverse temperature field present in heavy ion
collisions, and it arises mainly from a nonvanishing angular
momentum in the initial stage.

Fluctuations in the transverse plane can generate significant
vorticity, but in peripheral collisions the initial shear flow leads
to an order of magnitude larger vorticity [15]. This vorticity
may be further enhanced by the Kelvin-Helmholtz instability
(KHI).

In our formalism, the dynamics of the system after local
equilibration is computed using the relativistic (3+1)D fluid
dynamical model PICR. This fluid dynamical (FD) computa-
tion with small viscosity shows enhanced collective rotation
from an evolving KHI. In Ref. [16] a simple analytic model for
this phenomenon is explored using a few material properties:
the surface tension between the colliding nuclei, the viscosity,
and the thickness of the flow layer. This enables a classical
potential flow approximation, in which one may study the
dynamics of an onsetting KHI.

A more recent calculation of the onset and effects of the
KHI is performed in Ref. [12], in which the calibration of the
“Exact” model takes place. Here, it is pointed out that this
feature—the enhancement of rotation—is a dominant aspect
of the (3+1)D fluid dynamical model, but it is also seen in
UrQMD [17].

At high energy collisions, we need an initial state model,
which describes the dynamics until local equilibration is
reached. There are several options for describing this pre-
equilibrium dynamics, using color glass condensate (CGC)
fields, parton (or hadron) kinetic theory, or one-dimensional
Yang-Mills field (or flux tube) models [1,2]. In the (3+1)D
PICR fluid dynamical model that we use as our guidance for
the FD development, this last choice is used.

It is important to mention that for peripheral collisions the
initial shear and sometimes even the angular momentum are
neglected, while realistic initial state models include these
features [5,6,17].

From the initial shear flow, in the (3+1)D PICR fluid
dynamical model the general rotation develops gradually in
1–2 fm/c time. Thus, the Exact model is applicable from
this point of time on [12]. At the energies we discuss, by
this time the matter is in the locally equilibrated QGP phase,
and the local vorticity develops also. Because of the spin-orbit
interaction the local vorticity and the spin of quarks equilibrate.
The essential part of the dynamical development of flow (and
other collective mechanical processes) takes place in the QGP
phase, which is indicated by the constituent quark number
scaling of the flow harmonics.
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FIG. 1. (Color online) The direction of axes, as well as the
momentum p, and flow β vectors. The azimuth angle is measured
from the direction of the p vector, i.e., from the x axis.

This most significant middle stage of the reaction can be
modeled by the “Exact” model [11]. The model is based on a
set of scaling variables,

(sr ,sy) =
(

x2 + z2

R2
,
y2

Y 2

)
, (1)

in terms of the transverse and axial coordinates, x, z, and y,
and the characteristic radius R and axial length Y parameters.
The scaling parameter s = sr + sy is also introduced, being
the scaling variable as it appears in the thermodynamical
relations. Here we have interchanged the y and z axes to
resonate with choice of axes in heavy ion collision literature,
in which the reaction plane, in which the system rotates, is
spanned by ex and ez, leaving the axis of rotation to be defined
by ey .

Reference [12] calibrates the parameters of the Exact model
to the (3+1)D fluid dynamical model. The parameters are
extracted for experiments at

√
SNN = 2.76A TeV with impact

parameter b = 0.7bMax (see Figs. 1 and 2). In the (3+1)D PICR
model, rotation may increase because of Kelvin-Helmholtz
instability, whereas in the Exact model—and the later stages
in the experiments themselves—rotation slows because of
a transfer of energy to the explosively increasing radial
expansion of the system. The Exact model, therefore, is suited
to describe the period from the equilibration of rotation up to
the freeze-out.

In [11] the solution for a flow of conserved number
density, together with a constant, temperature-independent
compressibility, and a velocity field is described. Hence the
solutions take form, in cylindrical coordinates (r,y,φ), where
r = √

x2 + z2 with an equation of motion, ṙ(t) = v(r,t). The
Exact model assumes a linear velocity profile both in the radial
r , and in the axial y directions. This leads to a flow development
where a fluid element starting from a point (r0,y0,φ0), and at

FIG. 2. (Color online) The polarization of � particles �1( p),
in the participant center-of-mass (c.m.) frame for the first term
containing the (∇ × β) contribution, at time t = 0.5 fm/c after the
equilibration of the rotation, in the Exact model. The polarization
�1( p) points into the −y direction and changes from −1.5% at
the c.m. momentum (px = py = 0), to −8% in the corners, in 1%
steps per contour line. The negative percentage indicates that the
polarization is in the −y direction. The structure is just like that of
the energy weighted vorticity. Because of azimuthal symmetry of the
Exact model the px and pz dependencies of � are the same.

a later time t reaches the point,

r(t) = r0
R(t)

R(t0)
,

y(t) = y0
Y (t)

Y (t0)
, (2)

φ(t) = φ0 +
∫

dt ω(t),

showing explicitly how the solutions evolve in time, rotating
and expanding fluid. These equations follow the time evolution
of the scaling variables in the radial and axial directions.
This is a cylindrically symmetric setup with X(t) = Z(t),√

X2(t) + Z2(t) = R(t) and, in general, Y (t) �= R(t).
We have chosen the x,z plane as our plane of rotation, with

y being the axis of rotation. Our initial angular momentum,
then, points in the negative y direction, with an absolute value
of approximately 1.45 × 104

�. In an attempt to determine new
observables, we propose a search for � polarization. Although
the polarization could be described similarly for all fermions,
we chose the �s, because it is straightforward to determine
its polarization from its decay to p and π (where the p is
emitted into the direction of the polarization). Actually such
an experiment was already performed at RHIC, but the results
were averaged for � emissions to all azimuths, while we
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predict significant polarization for particles emitted in the ±x
direction in the reaction plane [18].

Our expectation is that this polarization, at least in part, will
be able to account for the polarization as observed in peripheral
regions in the first 10–15 fm/c following the impact in a heavy
ion collision.

To evaluate the polarization in the Exact model we use
the parametrization of the Exact model based on the realistic
(3+1)D PICR fluid dynamical calculation [12], and use the
vorticity calculated in the Exact model with these parameters
in Ref. [19].

II. FREEZE-OUT AND POLARIZATION

Polarization of �s was subject to theoretical studies before,
both in p + p and in heavy ion reactions. In single p + p
collisions forward production in small-transverse-momentum
fragmentation was theoretically studied and also observed.
These reactions did result in much higher polarizations up to
about 30% [20].

To apply this approach to heavy ion collisions is a complex
theoretical problem because several microscopic processes can
contribute to polarization and these can be combined with
different hadron formation mechanisms [21,22]. In Ref. [21]
it was contemplated that the final heavy ion results are
dependent on the hadronization mechanisms, and the effect
of the decay products of the polarized hyperons on the v2

flow harmonics v2 were studied. Reference [22] has also
studied the sensitivity of � production on the coalescence
or recombination mechanisms of the hadron formation.

As the previous works discussed a wide variety and
complexity of the microscopic description of hadronization
and the resulting polarization, we have followed a simpler
statistical picture, based on some simple assumptions of a
dilute gas of particles, on the “Relativistic distribution function
for particles with spin at local thermodynamical equilibrium”
[23].

This work does not address the mechanisms of hadroniza-
tion and the change of polarization during this process. It also
barely discusses the equilibrium between particle polarization
and local rotation in thermal equilibrium for dilute gases. Thus,
this approach is primarily applicable to the final hadronic
matter.

We follow the same reaction mechanism as used in all
(3+1)D PICR publications since 2001. We do not assume
a three-stage fluid dynamical process in the QGP phase,
mixed phase, and hadronic phase because the fastest adiabatic
development in the mixed phase would take 30–50 fm/c
[24]. Such a long expansion time would contradict all two-
particle correlation measurements showing a size and time
span at FO of less than 10 fm. Furthermore it would also
contradict the observed constituent quark number scaling and
the observed large �̄ abundance. The only way out of these
problems is supercooling in the QGP phase, followed by rapid
hadronization [25,26], and almost immediate freeze-out.

Thus in the PICR fluid dynamical calculations we discuss
exclusively the QGP phase, even for supercooled QGP. Based
on the mechanical equilibrium, evidenced by the constituent
quark number scaling, we have reason to assume that during

the FD evolution there is ample time to equipartition the
local rotation among all degrees of freedom in QGP from
the spin-orbit interaction. As this is a strongly interacting
form of matter the kinetic approximation as a dilute gas is
not necessarily applicable, and the energy momentum and
local angular momentum should also be carried by the fields.1

We have to assume that the rapid hadronization maintains
equipartition among all degrees of freedom carrying angular
momentum. So, based on this assumption we use the approach
of [23].

Actually the same applies the statistical and thermal
equilibrium among (most of) the abundances of final hadron
species. This can be understood based on the fact that the
statistical factors are the same in rapid formation of hadrons
as in thermal equilibrium.

We use the same assumptions for the Exact fluid dynamical
model as we used for the (3+1)D PICR fluid dynamics. Based
on the above, in the Exact model the energy weighted thermal
vorticity was calculated [19]. We explored the total energy of
the system and the energy of expansion, rotation, and internal
energy components and their time dependence. We observed
the transfer of energy from rotation to expansion, hence the
rotation slows as the system expands until the freeze-out.

According to the quantum-field-theoretical approach [23],
the expectation value of � polarization in an inverse tempera-
ture field, βμ(x) = uμ(x)/T (x), is

〈	μ(x,p)〉 = 1

8
εμρστ (1 − nF )∂ρβσ (x)

pτ

m
, (3)

where εμρστ is the completely antisymmetric Levi-Civita
symbol, nF is the Fermi-Jüttner distribution for spin-1/2
particles [(1 − nF ) is the Pauli blocking factor], and p is
the � four-momentum. We integrate this over some volume,
and ultimately over all of space, weighted by the number
density, normalized by the number of particles in that volume,
leaving a momentum-dependent polarization four-vector in the
participant frame of reference,

	μ(p) = �εμσρτ

pτ

8m

∫
d�λp

λnF (x,p)(1 − nF (x,p))∂ρβσ∫
d�λpλnF (x,p)

.

(4)

Note that, as opposed to electromagnetic phenomena, in
which particle and antiparticle will have antialigned polariza-
tion vectors, here it is shown that � and �̄ polarizations are
aligned in vorticious thermal flow fields.

While the average values of polarization may be as low
as 1%–2%, consistent with RHIC bounds, in some regions of
momentum space we see a larger polarization, about 5% for
momenta in the transverse plane and up to a momentum of
3 GeV/c. Kelvin-Helmholtz instabilities may further enhance
rotation, hence the thermal vorticity, defined as

ωμν(x) = 1
2 (∂νβμ − ∂μβν), (5)

1If we would consider only three valence quarks in kinetic
equilibrium according to [23], then the polarization of a coalesced
baryon would be 	B ∼ (	q )3, which would not be measurable.
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and thereby the signal strength increases by 10%–20%. At
LHC energies, there may be 5% � polarization from the corona
effect, single nucleon-nucleon collisions occurring outside of
the reaction zone of the collision itself. So attempts should
be made to further the understanding of this background,
and remove it from measurements to further isolate the �
polarization as it arises from the collision itself.

The � polarization is determined by measuring the angular
distribution of the decay protons in the �’s rest frame. In this
frame the � polarization is �0( p), which can be obtained by
Lorentz boosting the polarization �( p) from the participant
frame to the �’s rest frame [18],

�0( p) = �(p) − p
p0(p0 + m)

�(p) · p, (6)

where (p0, p) is the �’s four-momentum and m its mass.
Based on this equation we see that to maximize polarization,

we need to choose momenta for the � such that they lie in the
reaction plane, hence we fix p in the positive x direction.

III. SOLUTION FOR THE � POLARIZATION

As the � is transversely polarized, 	μpμ = 0, one can
confine himself to the spatial part of 	μ. The simplified spatial
part of the polarization vector is

�(p) = �ε

8m

∫
dV nF (x,p) (∇ × β)∫

dV nF (x,p)

+� p
8m

×
∫

dV nF (x,p) (∂tβ + ∇β0)∫
dV nF (x,p)

, (7)

where nF (x,p) is the phase space distribution of the �s. In
a previous calculation [18], the p dependence of nF , was
considered negligible in the integral and the time derivative
and gradient terms were also assumed to be smaller. The
present calculation shows that in general these terms are not
negligible and which terms are dominant depends on the
particular conditions.

We adopt the parametrization of the model from Ref. [19],
with the initial conditions R0 = 2.5 fm, Y0 = 4.0 fm, Ṙ0 =
0.20 c, Ẏ0 = 0.25c, ω0 = 0.1 c/fm, κ = 3/2, T0 = 300 MeV.
For this configuration Etot = 576 MeV/nucl.

A. The denominator

We first perform the integral in the denominator:

A(p) ≡
∫

dV nF =
∫ R

0
r dr

∫ +Y

−Y

dy

∫ 2π

0
dφ nF (x,p).

(8)

According to Eq. (3) in Ref. [19] in terms of the scaling
variable s, we have

n = n0
V0

V
ν(s), (9)

ν(s) = 1

τ (s)
exp

(
−1

2

∫ s

0

du

τ (u)

)

= 1 × exp

(
−1

2

∫ s

0
du

)
, (10)

where the simplifying choice of τ (s) = 1 is used in the last
step. Therefore,

n(s) = n0
V0

V
e− 1

2 s . (11)

The EoS is assumed to be ε(s) = κT (t)n(s) and the energy
density ε(s) is calculated as in Eq. (29) in Ref. [19], therefore,

n(s) = ε

κT (t)
= CN

κT
e− sy

2 e− sρ
2 , (12)

where CN = κn0T0(V0
V

)1+1/κ .
From Ref. [18], the Fermi-Jüttner distribution is

nF (x,p) = 1

epμβμ−ξ + 1
≈ 1

epμβμ−ξ
= eμ/T

epμβμ
, (13)

where the ξ = μ/T , and μ is the chemical potential. The ther-
mal flow velocity, βμ(x) ≡ uμ(x)/T , is different at different
space-time points x.

The invariant scalar density for the Jünttner distribution is

n = 4πm2K2(m/T )

(2π�)3
eμ/T = eμ/T

C0
, (14)

where the C−1
0 = 4πm2T K2(m/T )/(2π�)3. With C0 and

n(s) = n, the Fermi-Jüttner distribution can be written as

nF (x,p) = eμ/T

epμβμ
= C0n(s)

epμβμ
. (15)

Now we introduce cylindrical coordinates for the location in
the configuration place x = (r,y,φ), and using the scaling
expansion model [11,12] with the scaling variables s ,sr ,sy .
Now, substituting Eqs. (12) and (15) into the denominator of
	(p), and parametrizing the range of integrations as in [19]
one obtains

A(p) = CNC0

κT

∫ aY

−aY

dy exp

(
− y2

2Y 2

) ∫ bR

0
rdr exp

(
− r2

2R2

)

×
∫ 2π

0
dφ e−pμβμ . (16)

The scalar product in cylindrical coordinates takes the
form pμβμ = (p0, p)(β0,β) =p0β0 − p · β = p0β0− prβr −
pyβy − pφβφ .

In our integral the pμ is given or “fixed” as the argument of
�(p), while the β = β(x) is changing. The integration with
respect to φ starts from the direction of the p vector. According
to the Eq. (5) in [19],

v = vr er + vφeφ + vyey = Ṙ
R
rer + ωreφ + Ẏ

Y
yey , and

β = ui/T = γ v/T . Thus in the integral for φ we exploit
the fact that in the Exact model the radial r , and axial y
components of the thermal velocity β do not depend on φ,
while the tangential component does not depend on y, i.e.,
βφ = γ r ω/T , but its direction is changing with respect to the
direction of p. As the integral is over the whole 2π angle we
can start it at any point of φ, so we start it from the externally
given p direction. Consequently, with this choice of the x
axis, p = (pr,py,0), and pz = pφ = 0. In this azimuthally
symmetric, exact model it is sufficient to calculate 	( p) for
one direction of p in the [x,z] plane.
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The direction of the thermal flow velocity β is tangential to
the direction φ, i.e., it points to the eφ+π/2 direction. Thus the
scalar product is

p · β(r, y,φ) = |px |βr cos (φ) + pyβy + |px |βφ cos
(
φ+π

2

)
,

where φ is the azimuth angle of the position around the y
rotation axis, counted starting from the x axis. See Fig. 1.

So, inserting the last expression for pμβμ into the last term
of the integral Eq. (16), the integral with respect to φ will take
the form,∫ 2π

0
dφ e−pμβμ =

∫ π

−π

dφ ea cos(φ)−b sin(φ) = 2πI0(
√

a2+b2),

(17)

where a = |px |βr = |px |γ Ṙr/T R and b = |px |βφ =
|px |γ r ω/T , and we used integral No. 3.338(4) in [27]. If we
define

c3 =
√(

pxγ Ṙ

T R

)2

+
(pxγ ω

T

)2
= |px |γ

T

√
(Ṙ/R)2 + ω2,

then
√

a2 + b2 = c3r , and∫ 2π

0
dφ e−pμβμ = e−γp0/T epyβy × 2πI0(c3r). (18)

Now, substituting this back into Eq. (16),

A(p) =
∫

dV nF (p,s)

= CNC0

κT

∫ aY

−aY

dry

∫ bR

0
r dr exp

(
− y2

2Y 2
− r2

2R2

)

× e−γp0/T epyβy 2πI0(c3 r). (19)

Now we may use the same simplifying nonrelativistic assump-
tion as in Eq. (5) of Ref. [19], i.e., we approximate uμ by
vμ as v = vr er + vyey + vφeφ = Ṙ

R
rer + Ẏ

Y
yey + ωreφ , and

thus γ = 1. It follows, then,

A(p) =
∫

dV nF (p,s)

= CNC0

κT
2πe−p0/T

∫ aY

−aY

exp(c1y − c2y
2)dy

×
∫ bR

0
r I0(c3r) exp(−c4r

2)dr, (20)

where c1 = pyẎ /(YT ), c2 = 1/(2Y 2), c4 = 1/(2R2) are con-
stants.

Now we assume an infinite system with scaling Gaussian
density profile, so that the integrals are evaluated up to infinity,
i.e., the parameters a = ∞, b = ∞. Thus, the y component
integration in Eq. (20) is calculated as∫ +∞

−∞
ec1y−c2y

2
dy =

√
π

c2
exp

(
c2

1

4c2
2

)
, (21)

where we used the integral formula No. 2.33(1) in [27], and
erf (+∞) = 1, erf (−∞) = −1.

For the integration of the r component,∫ +∞

0
r I0(c3r) e−c4r

2
dr

= 1

c3
√

c4
exp

(
c2

3

8c4

)
M− 1

2 ,0

(
c2

3

4c4

)
, (22)

where the M−μ,ν(z) is the so-called “Whittaker Function,” No.
6.643(2) in [27].

Now, we obtain the final form of Eq. (21):

A(p) = 2π
√

π

κT

CNC0

c3
√

c2c4
e−p0/T exp

(
c2

1

4c2
2

)

× exp

(
c2

3

8c4

)
M− 1

2 ,0

(
c2

3

4c4

)
. (23)

However, in the relativistic case, the integrations with
respect to y and r cannot be performed analytically, because

of the presence of the factor γ = 1/
√

1 − v2
r − v2

y − v2
φ .

B. The numerator

Reference [19] calculates the energy weighted vorticity,
which is azimuthally symmetric, i.e., independent of the
azimuthal angle φ. In the definition of the polarization, Eq. (7),
we have p0 nF (p,x) = ε nF (p,x) for �s with momentum p.
In [19], however, the energy weighting is performed with the
total energy density of the fluid Etot = Eint + Ekin, which in
general is not the same as ε nF (p,x). On the other hand the
bare vorticity is just a constant in the nonrelativistic Exact
model, while the EoS may be more general and it may lead to
more involved R(t) and Y (t) dependence than the ideal Jüttner
gas approximation would allow.

Thus we use the direct, nonrelativistic vorticity values
ω(t) from Ref. [19], and not the presented energy weighted
vorticity, i.e.,

∇ × β = −2 ω(t) ey/T (t), (24)

so that the thermal vorticity has only the y-directed component
in the Exact model. With the model parameters mentioned
above (beginning of Sec. III), the thermal vorticity is �(∇ ×
β) = −0.13 at t = 0.5 fm/c, and it decreases very slowly with
time, about 1%–2% per 1 fm/c. This constant vorticity will
make the numerator simple:

B(p) ≡
∫

dV nF (∇ × β) = −2ωey

T
× A(p). (25)

Therefore, the first term of polarization vector, i.e., Eq. (7)
will be

�1(p) = − �ε

8m

∫
dV nF (x,p) (∇×β)∫

dV nF (x,p)
= �εω

4mT
ey, (26)

which means the polarization vector arising from the vorticity
�1(p) in the Exact rotation model is a constant (although time
dependent), and parallel to the y axis.

One may add the freeze-out (FO) probability to the
integral. According to the Ref. [28], the FO probability is
ws = (pμ σ̂

μ
s )( p · u(x)), where the approximation is used that
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the FO direction σ̂
μ
s is parallel to the flow velocity u(x) =

γ v(x). In the first term of the numerator, which depends on
the constant y-directed vorticity this FO probability influences
the numerator and denominator the same way, so the effect of
the two integrals cancel each other in the FO probability also.

C. The second term

The numerator in the second term of polarization vector
reads

C( p) ≡
∫

dV nF (x,p) (∂tβ + ∇β0). (27)

If, in the nonrelativistic limit, γ = 1 is assumed, then ∇β0 = 0
and ∂tβ = ∂t (v/T ), so we have to evaluate only the first term
of the sum in the integrand. According to Refs. [19,29], the
time derivatives of velocity are

∂tvr =
[(

R̈

R
− Ṙ2

R2

)
− ω2

]
r ≡ c5r,

∂tvφ =
(

ω̇ + 2
Ṙ

R
ω

)
r ≡ c6r, (28)

∂tvy =
[
Ÿ

Y
− Ẏ 2

Y 2

]
y ≡ c7y,

where c5 = (R̈/R − Ṙ2/R2 − ω2), c6 = (ω̇ + 2(Ṙ/R)ω), and
c7 = (Ÿ /Y − Ẏ 2/Y 2).

Therefore,

∂tβ = (c5rer + c6reφ + c7yey)/T ,

provides the time components of the vorticity in the three
spatial directions. Here, as the model is symmetric, ∂tβy

vanishes, and with the model parameters mentioned above
(Sec. III), at t = 0.5 fm/c and r = 1 fm �

c
∂tβr = 0.024 and

�

c
∂tβφ = 0.009. Both these vorticity components decrease

slowly with time by about 0.0005 in 1 fm/c.
Equation (27) is a volume integral of a vectorial quantity,

which is not convenient to perform in cylindrical coordinates.
So we transform it into Cartesian coordinates: er = cos φ ex +
sin φ ez, eφ = − sin φ ex + cos φ ez. Therefore, T ∂tβ =
(c5 cos φ − c6 sin φ)r ex + (c5 sin φ + c6 cos φ)r ez + c7y ey.

The integral of Eq. (27) can be expanded as

C( p) =
∫

dV nF (x,p) ∂tβ

= CNC0

κT
e−p0/T

∫∫∫
rdrdφdy exp(c1y − c2y

2)

× exp(a cos φ − b sin φ − c4r
2)∂tβ, (29)

where a and b are defined after Eq. (17).
It is convenient to define an integrating operator Ā as

Ā =
∫

dV nF (x,p) ×

=
∫∫∫

r dr dφ dy ec1y−c2y
2
ea cos φ−b cos φ−c4r

2 × ,

and then Eq. (29) will be

C( p) = Ā∂tβ ≡ 1

T
(I ex + J ez + H ey), (30)

where we defined

I ≡ Ā(c5 cos φ − c6 sin φ)r,

J ≡ Ā(c5 sin φ + c6 cos φ)r,

H ≡ Āc7y.

Using the integral formula No. 2.33(6) of [27] the function
H becomes

H = 2π
√

πCNC0

κT
e−p0/T c7c1

2c3c2
√

c4c2

× exp

(
c2

3

8c4

)
exp

(
c2

1

4c2
2

)
M− 1

2 ,0

(
c2

3

4c4

)
. (31)

The function I can be expanded as a function of integrals
over φ, r , and y. The integral over φ brings in the Bessel
function, 2πc8I1(c3r)/c3 [see No. 3.937 (1) and (2) of [27]],
where c8 = (c5a

′ − c6b
′), a′ = a/r = |px |Ṙ/T R, and b′ =

b/r = |px |ω/T . Subsequently, the integral with respect to r
brings in the “Whittaker Function” and then the final form of
I after performing the separable integration with respect to y
leads to

I = 2π
√

πCNC0

κT
e−p0/T c8

c2
3c4

√
c2

× exp

(
c2

3

8c4

)
exp

(
c2

1

4c2
2

)
M−1, 1

2

(
c2

3

4c4

)
. (32)

Evaluating the integral J is similar to I :

J = 2π
√

πCNC0

κT
e−p0/T c9

c2
3c4

√
c2

× exp

(
c2

3

8c4

)
exp

(
c2

1

4c2
2

)
M−1, 1

2

(
c2

3

4c4

)
, (33)

where the only difference is c9 = (c5b
′ + c6a

′) compared to
c8 in I .

Then, substituting I , J , H back into Eq. (30), one can obtain
the analytical solution for numerator in the second term of the
polarization vector as

C( p) =
∫

dV nF (x,p) ∂tβ = 1

T
(I ex+J ez+H ey)

= 2π
√

πCNC0

κT 2
e−p0/T exp

(
c2

3

8c4

)
exp

(
c2

1

4c2
2

)

×
[

c8

c2
3c4

√
c2

M−1, 1
2

(
c2

3

4c4

)
ex

+ c9

c2
3c4

√
c2

M−1, 1
2

(
c2

3

4c4

)
ez

+ c7c1

2c3c2
√

c4c2
M− 1

2 ,0

(
c2

3

4c4

)
ey

]
. (34)
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Dividing this by A( p), i.e., Eq. (23), one gets

C( p)

A( p)
= 1

T

[
c8

c3
√

c4

M−1, 1
2

M− 1
2 ,0

ex+ c9

c3
√

c4

M−1, 1
2

M− 1
2 ,0

ez+c7c1

2c2
ey

]
.

(35)

Then, we obtain the second term of the polarization vector:

�2( p) = � p
8m

× C( p)

A( p)

= �

8mT

[
pyc9

c3
√

c4

M−1, 1
2

M− 1
2 ,0

ex − |px |c9

c3
√

c4

M−1, 1
2

M− 1
2 ,0

ey

+
( |px |c7c1

2c2
− pyc8

c3
√

c4

M−1, 1
2

M− 1
2 ,0

)
ez

]
. (36)

As we can see, and as is given also by the definition, Eq. (7),
the second term of polarization is orthogonal to the particle
momentum:

�2( p) ⊥ p, (37)

thus if we use the choice that p should be in the [x,y] plane
and its z component should vanish, then the y component of
�2( p), should depend on px only (see Fig. 5).

IV. THE FREEZE-OUT STAGE

The fluid dynamical model is in principle not adequate to
describe the final, post-freeze-out (FO) particle distributions,
the abundance of the particle species, and also their polar-
ization. This is so because the post-freeze-out distributions
must not be in local thermal equilibrium and must not have
interactions among the final emitted particles. Furthermore,
the emitted particles should not move back into the interacting
zone, i.e., towards the pre-FO side of the FO hypersurface.
How to handle the freeze-out is described in great detail
in [30]. It indicates two ways to handle this process: (i)
Consider the post-FO matter as if it has an equation of state
(EoS). This is only possible if the post FO EoS is that of a
noninteracting ideal gas and the FO hypersurface is timelike.
(ii) The other approach is that the post-FO matter is described
by a dynamical model with weak and rapidly decreasing
interaction, like UrQMD or PACIAE, matched to the QGP
fluid on the FO hypersurface. The change at crossing this
hypersurface is in general significant, as the pre-FO matter
is strongly interacting, supercooled QGP, while the post-FO
matter is weakly interacting and has different (usually fewer)
degrees of freedom in both situations. The FO across the
hypersurface is stronger if the latent heat of the transition
is larger.

The precise way to perform this transition is described
in [30]. This method is demonstrated in several earlier fluid
dynamical model calculations (also using the PICR method)
for precision calculations of flow harmonics.

As mentioned in the introduction, at high energies (RHIC
and LHC) the constituent quark number scaling and the
large strangeness abundance clearly indicate a supercooling
and rapid hadronization. Furthermore at these energies the
transition is in the crossover domain of the EoS, thus the

expected changes are smaller, and the major part of the FO
hypersurface is timelike, which allows one to use ideal gas
post-FO distributions, as we do it here using the method of
[23]. These are the conditions which make the changes in
mechanical parameters (e.g., v) small at freeze-out while the
temperature changes are larger [30].

Thus, just in the case of constituent quark number scaling,
we assume that other mechanical processes like mechanical
polarization will not significantly change at freeze-out at
RHIC and LHC energies. This conclusion is restricted to local
thermal and flow equilibrium, and should not apply to some of
the microscopic processes, which dominate p + p reactions.

Also, in the case of freeze-out through spacelike FO hy-
persurfaces, the mechanical parameters change significantly,
the post-FO distribution is far from a thermal distribution (it
is a cut-Jüttner or canceling-Jüttner distribution), and thus the
conditions of [23] that we use, are not satisfied.

In this connection we may mention that in earlier related
publications, previous experimental � polarization measure-
ments, which were negative, were discussed. It was pointed
out that polarization as measured was averaged for all �
particle directions. Here, as well as in the previously detailed
PICR fluid dynamical calculations, it was emphasized that
polarization should be measured after finding event by event
the reaction plane and the center of mass of the system.
Significant polarization can only be expected for particles
emitted in selected directions.

Preliminary experimental polarization studies in the RHIC
Beam Energy Scan program along these lines are promising
[31], and may lead soon to positive quantitative results. At this
point in time the present relatively simpler FO treatment of
the model calculations with constant time FO are sufficient,
and can be refined when quantitative experimental data are
available.

A. Conclusion

Finally, adding Eqs. (36) and (26) we get the analytical
solution for � polarization in the Exact model:

�(p) = �

8mT

[
pyc9

c3
√

c4

M−1, 1
2

M− 1
2 ,0

ex +
(

2εω − |px |c9

c3
√

c4

×
M−1, 1

2

M− 1
2 ,0

)
ey +

( |px |c7c1

2c2
− pyc8

c3
√

c4

M−1, 1
2

M− 1
2 ,0

)
ez

]
.

(38)

Notice that Eq. (38) is the analytical solution in the
nonrelativistic limit. The “Whittaker Function,” Mμ,ν(z), is
the confluent hypergeometric function. For the relativistic
case, the integrations of the �-polarization vector cannot
be performed analytically, because of the presence of γ =
1/

√
1 − v2

r − v2
y − v2

φ , which will make the integrations more
involved. Thus, a numerical solution for the � polarization
would be needed.

The effect of vorticity is shown in Fig. 2. The nonrelativistic
Exact model can handle reactions with modest energy and
modest rotation, so the overall vorticity and the resulting
polarization is not too large. Furthermore, the rotation and
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FIG. 3. (Color online) The absolute value of � polarization,
�2( p), in the participant center-of-mass (c.m.) frame for the second
term containing the (∂tβ) contribution, at time t = 0.5 fm/c after the
equilibration of the rotation, in the Exact model. The polarization
changes from zero at the c.m. momentum (px = py = 0), up to 20%
in the corners at px = −4GeV/c, in 2.5% steps per contour line. In
the corners at px = 4GeV/c, the polarization is 12%. This second
term is orthogonal to p, and it is smaller, especially at c.m. momenta,
where it is negligible. This term arises from the expansion, which is
increasing rapidly in the Exact model with time and also increases
with the radius. At large radius the larger expansion leads to larger
momenta. The structure of the second component of polarization
arises from the asymmetries of the different components of �2( p).

vorticity decrease with time while the radial and axial
expansion increases. This expansion leads to the second term
of polarization �2, which depends on ∂tβ (while the ∇β0

terms vanishes in the nonrelativistic approximation). Because
of the simplicity of the Exact model, the vorticity arising from
the shear flow of the peripheral initial state is constant in
space and depends on the time only. However, because of the
construction of thermal vorticity, both the angular momentum
and the temperature in the denominator decrease with time,
thus ∇ × β is hardly decreasing with the time, and it has a
significant value, −0.13, in natural units. At the same time in
this model the time-dependent vorticity is smaller by almost an
order of magnitude. The time-dependent vorticity components
also decrease faster than the one originating from the initial
shear flow.

Nevertheless, the second term in the polarization is of
comparable magnitude to the term arising from local vorticity;
see Fig. 3.

The presented plots are such that px points into the direction
of the observed � particle, while the py is the axis direction.
All results should be either symmetric or antisymmetric for a
±py change. On the other hand reversing the px axis must not
change the data, as the x axis is chosen to be the direction of

FIG. 4. (Color online) The x component of the � polarization
�2x( p) in the participant center-of-mass (c.m.) frame for the second
term containing the (∂tβ) contribution, at time t = 0.5 fm/c after the
equilibration of the rotation, in the Exact model. The polarization
vanishes at the c.m. momentum (px = py = 0), and changes from
zero up or down to ±8% in the corners, in 1% steps per contour line.
This term arises from the expansion, which is increasing rapidly in
the Exact model with time and also increases with the radius. At large
radius the larger expansion leads to larger momenta.

the argument of �( p), which must be azimuthally symmetric
in the [x,y] plane.

The polarization arising from the dynamics of the radial
and spherical expansion �2 was not discussed before in
the literature, as the dominance of the vorticity effect was
anticipated and studied up to now. The �2 plots in Figs. 3, 4,
5, and 7 show the components of the polarization arising from
the dynamics of the spherical expansion. The most interesting
y component arises from the x component of the momentum
and the z component of the thermal velocity change β̇z (Fig. 5).

Now if we study the axis directed components, this is
given by 	y = 	1y + 	2y . Both these terms have a negative
maxima of the same magnitude (−8%), at the corners px,py =
±4GeV/c, thus these terms add up constructively and result in
�-particle polarizations reaching −16% at high momenta. At
small momenta the polarization is still the same sign but has a
reduced value of the order of 1.5% arising from the vorticity
(Fig. 6).

In this Exact model the x and z components of the
polarization arise only from the second term �2( p). The x
component is reaching ±8%, while the z component is smaller;
it reaches about ±3%. These both are asymmetric for ±py

change, and show an opposite symmetry. The x component
is proportional to py and the dynamics of radial expansion.
Thus it follows the signature of py (Fig. 4). The z component
is proportional to py and the dynamics of radial expansion,
thus it follows the signature of py (Fig. 7). The z component
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FIG. 5. (Color online) The y component of � polarization
�2( p), in the participant center-of-mass (c.m.) frame for the first
term containing the (∂tβ) contribution, at time t = 0.5 fm/c after the
equilibration of the rotation, in the Exact model. The polarization
changes from zero in the middle to −8% at px = ±4 GeV/c, in 1%
steps per contour line. This y-component points into the axis direction
just as the first term �1, thus these two are additive. The y component
of �2( p) does not depend on py , as shown in Eq. (36).

FIG. 6. (Color online) The y component of � polarization �( p)
in the participant center-of-mass (c.m.) frame for the second term
containing the (∂tβ) contribution at time t = 0.5 fm/c after the
equilibration of the rotation in the Exact model. The polarization
is −1.5% at the c.m. momentum (px = py = 0), it is −16% in the
corners. The change is in steps of 2% per contour line.

FIG. 7. (Color online) The z component of � polarization �2( p)
in the participant center-of-mass (c.m.) frame for the second term
containing the (∂tβ) contribution, at time t = 0.5 fm/c after the
equilibration of the rotation, in the Exact model. The polarization
vanishes at the c.m. momentum (px = py = 0); it is ±3% in the
corners. The change is in steps of 0.5% per contour line. The corners
at py = −4 GeV/c are positive while at py = 4 GeV/c are negative.

is proportional to pxβ̇y and inversely proportional to pyβ̇x

(Fig. 7). These two effects compensate each other so the
maxima of the polarization are smaller and the symmetry is
opposite to that of the x component. This term is sensitive to the
balance between the axial expansion and the radial expansion
in the model.

The � polarization is measured via the angular distribution
of the decay protons in the �’s rest frame, as shown in Eq. (6).
The resulting distribution is shown in Fig. 8. This new study
indicates that the dynamics of the expansion may lead to
non-negligible contribution to the observable polarization. The
structure of 	0y( p) is similar to the one obtained in Ref. [18],
but here the contribution of the “second” ∂tβ term is also
included, which makes the y-directed polarization stronger at
high px values, 12%, while it was 9% in Ref. [18], both in the
negative y direction. Furthermore, the second term changes
the structure, of the momentum dependence of 	0y( p), and it
becomes ±px asymmetric.

Recently the vorticity and polarization were also studied
in two fluid dynamical models [32]. The initial states that
were used from Bozek and Gubser neglected fully the initial
shear flow in the central domain of the reaction, in contrast to
other models where this is present [1,2,17,33,34]. This results
in negligible thermal vorticity in the central domain of the
collision (Figs. 3 and 13 of Ref. [32]), and consequently a
negligible polarization from the vorticity from the “first term”
discussed here. Thus, the observed vorticity arises from the
“second term.”
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FIG. 8. (Color online) The (a) radial x and (b) axial y components of � polarization �0( p) in the �’s rest frame. For 	0x( p) the contours
represent changes of 1% from −9.5% in the upper left-hand corner to 9.5% in the upper right-hand corner, whereas the contours of 	0y( p)
change in steps of 2% ranging from 	0y = 0 (!) at the c.m. momentum (px = py = 0) to −12% for px = ±4GeV/c at the edges. Both plots
are asymmetric because of the Lorentz boost to the � rest frame.

On the other hand there is qualitative agreement between
Fig. 12 of Ref. [32] and this work in the sense that only the
y-directed (i.e., [x,z] or [x,η]) component of the vorticity
leads to an overall average net polarization. This arises in both
models from the initial angular momentum and points into
the −y direction. In Ref. [32] this arises as a consequence of
viscous evolution of the initial, vorticity-less flow, while in our
Exact model it is present in the initial state.

Recent preliminary experimental results reported for the
first time [31], significant � and �̄ polarization for peripheral
collisions at RHIC for beam energies

√
sNN = 7.7 − 39 GeV

aligned with the axis direction of the angular momentum
of the participant system. Furthermore, the � and �̄ polar-
izations were pointing in the same direction confirming our
approach.

In this work we analyzed and compared the two terms of
polarization, in the Exact model. Including both rotation and
expansion, and vorticity arising from both of these effects
enables us to study the consequences of the two terms
separately. This study indicates that the assumptions regarding
the initial state are influencing the predictions on the observed
vorticity, while in all cases observable polarization is predicted.
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