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Faddeev-type calculation of (d,n) transfer reactions in three-body nuclear systems
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Exact Faddeev-type three-body equations are applied to the study of the proton transfer reactions (d,n) in
the system consisting of a nuclear core and two nucleons. The integral equations for the three-body transition
operators are solved in the momentum-space framework including the Coulomb interaction via the screening
and renormalization method. For a weakly bound final nucleus the calculation of the (d,n) reaction is more
demanding in terms of the screening radius as compared to the (d,p) reaction. Well-converged differential cross
section results are obtained for 7Be(d,n) 8B, 12C(d,n) 13N, and 16O(d,n) 17F reactions. A comparison with the
corresponding (d,p) reactions is made. The calculations fail to reproduce the shape of the angular distribution
for reactions on 12C but provide quite successful description for reactions on 16O, especially for the transfer to
the 17F excited state 1/2+ when using a nonlocal optical potential.
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I. INTRODUCTION

Although there is a long history of nuclear reaction calcula-
tions using three-body models [1,2], the rigorous Faddeev-type
scattering theory [3,4] has been practically applied to the
nuclear reaction problem only in the past decade [5,6]. Despite
being theoretically most complicated and computationally
more expensive than traditional approximate three-body re-
actions methods, the Faddeev formalism has an advantage
that, once numerically well-converged results are obtained,
the discrepancies with the experimental data can be attributed
to the shortcomings of the used potentials or to the inadequacy
of the three-body model. The numerical calculations [5,6] have
been performed using the Alt-Grassberger-Sandhas (AGS)
integral equations for transition operators [4] that were
solved in the momentum-space framework; the Coulomb
interaction was included via the screening and renormalization
method [7–9]. So far the applications of Faddeev-AGS equa-
tions are limited to three-body systems made of a proton (p),
neutron (n), and nuclear core (A). With A most often being one
of 10Be, 12C, 14C, or 16O, reactions initiated by the collisions
of the deuteron (d) with the nucleus A and of the proton
with the bound system (An) have been studied, including the
elastic proton and deuteron scattering, i.e., (p,p) and (d,d)
processes, deuteron breakup (d,pn) and one-neutron removal
(p,pn), deuteron stripping (d,p) and pickup (p,d), and, to a
lesser extent, the charge-exchange reaction (p,n). However,
to date there are no deuteron stripping (d,n) and time-reverse
(n,d) reaction calculations in the three-body Faddeev-AGS
equation framework. Among the two, the (d,n) process is
especially important since it may be used for the creation
and study of weakly bound core plus valence proton (Ap)
systems such as one-proton halo nucleus 8B. Therefore, the
aim of the present work is to extend the rigorous three-body
Faddeev-AGS framework and to apply it to the study of (d,n)
reactions.

In Sec. II the Faddeev-AGS formalism is recalled and
specific aspects of (d,n) reaction calculations are pointed
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out. In Sec. III physics results are presented for the (d,n)
reactions on 7Be, 12C, and 16O nuclei; for the latter two, the
comparison with the corresponding (d,p) reactions is made as
well. The results for the elastic scattering, extensively studied
in previous works [5,6,10], are not shown. The summary is
given in Sec. IV.

II. THEORETICAL FRAMEWORK

The AGS formalism is an integral equation formulation
of the exact three-body scattering theory. Instead of the
wave function it deals with transition operators that contain
the full physical information about the considered process.
The AGS integral equations are most convenient to solve
in the momentum-space representation. The standard AGS
formalism assumes short-range potentials within the three
pairs of particles. This condition is fulfilled by the nuclear
interactions vA, vp, and vn denoting p-n, n-A, and A-p
potentials, respectively. However, the proton-core Coulomb
repulsion wn, in the coordinate space given as wn(r) = Zαe/r
with Z being the charge number of nucleus A and αe ≈ 1/137
the fine structure constant, is of the long range. Nevertheless,
wn can be included rigorously using the screening and
renormalization method [7–9]. For this purpose, the screened
Coulomb potential

wnR(r) = wn(r)e−(r/R)n̄ , (1)

where R is the screening radius and n̄ is the screening
smoothness parameter, is added to the nuclear one, allowing
the standard scattering theory to be applied for the sum
vn + wnR .

Via the Lippmann-Schwinger integral equation the pair
potentials yield the corresponding two-particle transition
operators

TA = vA + vAG0TA, (2a)

Tp = vp + vpG0Tp, (2b)

T (R)
n = vn + wnR + (vn + wnR)G0T

(R)
n . (2c)
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Here G0 = (E + i0 − H0)−1 is the free resolvent at the energy
E available for the relative three-body motion, and H0 is the
respective three-body kinetic energy operator. The two-body
transition operators, when iterated to all orders via AGS
equations, lead to the three-body transition operators. The
deuteron-nucleus scattering process is described by the set

U
(R)
AA = TpG0U

(R)
pA + T (R)

n G0U
(R)
nA , (3a)

U
(R)
pA = G−1

0 + T (R)
n G0U

(R)
nA + TAG0U

(R)
AA, (3b)

U
(R)
nA = G−1

0 + TAG0U
(R)
AA + TpG0U

(R)
pA . (3c)

Through T (R)
n also the three-body transition operators acquire

the dependence on the A-p Coulomb screening radius R. The
transition amplitudes for the two-cluster reactions initiated
by the d + A collisions are determined by the on-shell matrix
elements of three-body transition operators between the re-
spective initial and final two-cluster channel states |�A(qA)〉 =
|φA〉|qA〉, |�p(qp)〉 = |φp〉|qp〉, and |�(R)

n (qn)〉 = |φ(R)
n 〉|qn〉.

Here |qα〉 is a free wave for the α spectator-pair relative motion
with the momentum qα while |φA〉, |φp〉, and |φ(R)

n 〉 are two-
body bound state wave functions for the (pn), (nA), and (Ap)
subsystems calculated with the potentials vA, vp, and vn +
wnR , respectively. The dependence on the other discrete quan-
tum numbers is suppressed in the notation. None of the matrix
elements 〈�A(q′

A)|U (R)
AA |�A(qA)〉, 〈�p(qp)|U (R)

pA |�A(qA)〉,
〈�(R)

n (qn)|U (R)
nA |�A(qA)〉 has the R → ∞ limit; however, after

the renormalization with the appropriate (diverging as well)
phase factors ZαR the infinite R limit exists [7–9] and
corresponds to the physical transition amplitudes

TAA(q′
A,qA) = tCA (q′

A,qA) + lim
R→∞

[
Z

− 1
2

AR (q ′
A)〈�A(q′

A)|

× (
U

(R)
AA − tRA

)|�A(qA)〉Z− 1
2

AR (qA)
]
, (4a)

TpA(qp,qA) = lim
R→∞

[
Z

− 1
2

pR (qp)〈�p(qp)|

×U
(R)
pA |�A(qA)〉Z− 1

2
AR (qA)

]
, (4b)

TnA(qn,qA) = lim
R→∞

[〈
�(R)

n (qn)
∣∣U (R)

nA |�A(qA)〉Z− 1
2

AR (qA)
]
.

(4c)

In the case of the elastic scattering the longest-range screened
Coulomb contribution tRA , corresponding to the Coulomb
interaction between the nucleus and the center-of-mass (c.m.)
of the deuteron, is separated from U

(R)
AA and renormalized

analytically in the infinite R limit, leading to the standard
Rutherford amplitude tCA (q′

A,qA) [7]. All remaining terms have
to be calculated numerically, but owing to their short-range
nature, the convergence with R is quite fast, as will be
demonstrated. Since the AGS equations are solved in the
partial-wave representation, the renormalization factors are
most conveniently calculated as

ZαR(qα) = e−2i[σC
α,L(qα )−ηR

α,L(qα )], (5)

where the full and screened Coulomb phase shifts σC
α,L(qα)

and ηR
α,L(qα) correspond to the relative motion with the

angular momentum L between the particle α and c.m. of the
remaining pair.

Equation (4c) takes into account that there is no Coulomb
interaction between the neutron and the (Ap) pair, i.e.,
ZnR(qn) = 1 and the final n + (Ap) state is not distorted by the
Coulomb force. However, in contrast to other channel states,
the bound state |φ(R)

n 〉 is affected by the screened Coulomb
interaction. Due to |φ(R)

n 〉 one may expect for observables of
the (d,n) reaction a different convergence rate with increasing
R as compared to the (d,p) reaction. These differences will be
studied in the next section.

III. RESULTS

As already mentioned, the AGS integral equations (3) are
solved numerically in the momentum-space partial-wave basis.
Typically, the potentials vA, vp, and vn are allowed to act
in the partial waves with the respective pair orbital angular
momentum lα up to 3, 5, and 10; the latter is not really needed
for vn but is necessary for the screened Coulomb potential
wnR . Three-body states with the total angular momentum up
to J � 20 are included. With these cutoffs, well-converged
results are obtained.

The p-n potential vA is taken to be the realistic CD Bonn
potential [11]; the results show very little sensitivity to the
choice of vA provided it remains a realistic high-precision
potential. This is not so for the nucleon-core potentials vp

and vn. The predictions are therefore obtained using several
parametrizations of the nucleon-core optical potential, namely,
those of Watson (W) [12], Chapel Hill 89 (CH89) [13], and
Koning-Delaroche (KD) [14] and the nonlocal (NL) potential
introduced by Giannini and Ricco [15] but with the parameters
readjusted in Ref. [10] to the experimental data for the nucleon
scattering from 12C and 16O. For this reason the NL potential
is not applied to the d + 7Be reaction. Note that CH89 and
KD potentials were originally fitted to heavier nuclei A � 24
data but nowadays are often used also for light nuclei such
as isotopes of carbon or beryllium [16] and provide quite a
reasonable description. The Watson potential was designed
for the light p-shell nuclei but it is rather old and may lack
accuracy. The NL parameters are energy independent, while
for local energy-dependent potentials they are taken at half
energy of the deuteron beam Ed/2 as proposed in Refs. [1,17].
In the partial waves with the core-nucleon bound state the
potentials vp and vn must be real and energy independent.
In the coordinate space they are taken to have central and
spin-orbit parts, i.e.,

vα(r) = −Vcf (r,R,a) + σ · L Vso

2

r

d

dr
f (r,R,a), (6)

with f (r,R,a) = {1 + exp[(r − R)/a]}−1 and standard values
for the parameters R = r0A

1/3, r0 = 1.25 fm, a = 0.65 fm,
and Vso = 6.0 MeV fm2, while Vc is adjusted to reproduce the
desired binding energy. For all considered final-state nuclei the
binding energies εα , the valence particle quantum numbers,
and the respective Vc values are collected in Table I. Since
the excitations of the core A are not taken into account, all
these nuclei are single-component states with the respective
spectroscopic factor being unity.
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TABLE I. Valence nucleon quantum numbers in the spectroscopic
nlj notation, the binding energies εα , and the potential strengths Vc

for the considered final-state nuclei. For 17F(1/2+) and 17O(1/2+)
the Pauli forbidden 1s1/2 state is projected out.

Valence εα(MeV) Vc(MeV)

8B(2−) 1p3/2 0.137 43.074
13N(1/2−) 1p1/2 1.944 44.361
13C(1/2−) 1p1/2 4.946 44.365
17F(5/2+) 1d5/2 0.600 52.858
17F(1/2+) 2s1/2 0.105 53.002
17O(5/2+) 1d5/2 4.143 52.813
17O(1/2+) 2s1/2 3.272 53.167

The choice to fix the parameters of the local optical potential
at Ed/2 was proposed in Refs. [1,17] and has been used
widely, but recently has been criticized in Ref. [18] from
the adiabatic distorted-wave approximation (ADWA) point of
view, suggesting the energy that is higher by about 40 MeV.
However, such a high value Ed/2 + 40 MeV at low Ed is
not consistent with the three-body Faddeev-AGS formalism
where, when integrating over the spectator momentum qα ,
the two-body subsystem energy Eα = E − q2

α/2Mα runs from
the maximal value E = EdA/(A + 2) − 2.225 MeV to −∞.
Although Ref. [6] took this aspect into account and used an
extended Faddeev-AGS formalism allowing optical potentials
that vary with the two-body subsystem energy, the standard
calculations in the present work are performed with optical
potentials taken at a fixed energy in order to have a single
three-body Hamiltonian and thereby preserve a Hamiltonian
theory. For the same reason the binding potentials (6) are
chosen to be energy independent as well. These inconsistencies
and ambiguities arise due to the reduction of the (A + 2)-body
problem to the three-body problem. The related uncertainties
in the present results will be discussed at the end of this section.

To demonstrate the numerical reliability of the proposed
calculational scheme for (d,n) reactions, the convergence with
the Coulomb screening radius R is studied in Fig. 1. As a
working example, the reactions with the strongest Coulomb
interaction, i.e., 16O(d,n) 17F, are chosen. Since 17F has
ground and excited states, the convergence is checked for
different values of the orbital angular momentum ln and of
the binding energy εn for the bound proton-core pair as
listed in Table I. In the case of the 17F(1/2+) excited state,
owing to its very weak binding εn = 0.105 MeV, a more
significant sensitivity to the Coulomb screening radius R
may be expected. This is indeed so as Fig. 1 shows for the
differential cross section dσ/d� as a function of the c.m.
scattering angle 	c.m. at deuteron beam energy Ed = 12 MeV.
While for the transfer to the ground state 17F(5/2+) the R
independence is established at R > 12 fm, the same level of
convergence for the transfer to the excited state 17F(1/2+)
is reached only at R � 20 fm. For comparison, dσ/d� is
presented also for the 16O(d,p) 17O(1/2+) reaction where the
final-channel two-particle bound state is Coulomb-free but
the two-cluster scattering state has to be renormalized. The
convergence with R is considerably faster in this case. Thus,
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FIG. 1. (Color online) Differential cross section for 16O(d,n) 17F
and 16O(d,p) 17O transfer reactions at Ed = 12 MeV. Results
obtained with different values of the Coulomb screening radius R

are compared. The screening smoothness parameter n̄ = 8.

compared to (d,p), the calculation of (d,n) reactions is more
demanding in terms of the screening radius but nevertheless
well-converged results are obtained.

In the following the physics results for 7Be(d,n) 8B,
12C(d,n) 13N, and 16O(d,n) 17F reactions are presented and
compared with the experimental data.

I start with the 7Be(d,n) 8B reaction where the experimental
data are rather scarce and a bit contradictory [19,20]. Differ-
ential cross section results at d + 7Be kinetic c.m. energy of
4.5 and 5.8 MeV obtained using CH89, KD, and W optical
potential models are given in Fig. 2. The predictions of CH89
are closest to the data but one should keep in mind that this
potential as well as KD is not fitted to the nucleon- 7Be data. All
calculations reproduce reasonably the angular shape of dσ/d�
but overpredict its magnitude. This is not unexpected given the
existence of low-energy excitations of the 7Be core that are
not taken into account in the present calculations. Relying on
the analogy with the 10Be(d,p) 11Be reactions [21] one may
expect that including the 7Be core excitation would lead to
the reduction of the transfer cross section, at least at forward
angles.

Next I show in Fig. 3 the differential cross section for the
12C(d,n) 13N transfer reaction at Ed = 7, 12, 18, and 25 MeV.
The used optical potentials are CH89, KD, and NL. For all of
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FIG. 2. (Color online) Differential cross section for the
7Be(d,n)8B transfer reaction at Ec.m. = 4.5 and 5.8 MeV.
Predictions obtained using Chapel Hill 89 (dashed-dotted
curves), Koning-Delaroche (dotted curves), and Watson
(dashed-double-dotted curves) optical potentials are compared
with the experimental data from Refs. [19] (5.8 MeV) and [20]
(4.5 MeV).

them the angular shape fails in accounting for the experimental
data: The data points from Refs. [22–25] are overestimated at
forward angles 	c.m. < 30◦ and underestimated at large angles
	c.m. > 90◦. This discrepancy is comparable with the one in the
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FIG. 3. (Color online) Differential cross section for the
12C(d,n) 13N reaction at 7, 12, 18, and 25 MeV deuteron energy.
Predictions obtained using the Chapel Hill 89 (dashed-dotted
curves), Koning-Delaroche (dotted curves), and nonlocal (solid
curves) optical potentials are compared with the experimental data
from Refs. [22] (7 MeV), [23] (12 MeV), [24] (18 MeV), and [25]
(25 MeV).
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FIG. 4. (Color online) Differential cross section for the
12C(d,p) 13C reaction at 12 MeV deuteron energy. Curves are as in
Fig. 3, and the experimental data are from Ref. [26].

12C(d,p) 13C reaction [26], displayed in Fig. 4. A somewhat
similar discrepancy, i.e., overprediction at small angles and
underprediction of the data at larger angles, was observed also
at higher energies in the 12C(d,p) 13C reaction, but only for
the 13C ground state 1/2−; the agreement for the transfer to
13C excited states 1/2+ and 5/2+ was significantly better,
especially when using the nonlocal optical potential [10].
In this view the failure of the calculations to reproduce the
12C(d,n) 13N data is not unexpected.

Finally I consider the 16O(d,n) 17F reactions. Unfortu-
nately, the available experimental data for the angular dis-
tribution of the cross section, to the best of my knowledge,
are limited to low energies Ed � 12 MeV. The theoretical
predictions based on CH89, KD, and NL optical potentials
at Ed = 7.7, 9.3, 11, and 12 MeV are presented in Fig. 5
and compared with the experimental data from Refs. [27,28].
For the transfer to the 17F ground state 5/2+ the theoretical
results follow the data [28] up to 	c.m. = 30◦ at Ed = 7.7 MeV,
up to 60◦ at Ed = 11 MeV, and up to 90◦ at Ed = 12 MeV
but underpredict at larger angles. This discrepancy is most
sizable at Ed = 7.7 MeV, reaching a factor of 2, possibly due
to the compound-nucleus reaction mechanism that is expected
to become relevant with decreasing energy. The data from
Ref. [27] is slightly overestimated at small angles, possibly
indicating some inconsistency between the two sets [27,28].
The agreement is better for the transfer to the 17F excited
state 1/2+. While CH89 and KD results slightly underestimate
the data, the nonlocal potential NL reproduces well the
experimental data in the whole angular regime up to 	c.m. =
120◦. This possibly indicates that a simple proton plus core
model for the 17F excited state 1/2+ is adequate, and supports
the conjecture of Ref. [32] on this state being one-proton halo.
This is not unexpected given the very weak binding of the
17F(1/2+) nucleus.

The results for 16O(d,p) 17O reactions at Ed = 7.7, 11, 12,
and 13.3 MeV are presented in Fig. 6. The agreement between
the theoretical predictions and experimental data [29–31] is
almost as good as in the case of Fig. 5, the exception being
the Ed = 12 MeV data from Ref. [30], whose normalization
seems to be inconsistent with the other sets. It is noteworthy
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FIG. 5. (Color online) Differential cross section for 16O(d,n) 17F reactions leading to the 17F ground state 5/2+ (top) and excited state
1/2+ (bottom) at the deuteron energy Ed = 7.7, 9.3, 11, and 12 MeV. Curves are as in Fig. 3, and the experimental data are from Refs. [27]
(9.3 MeV) and [28] (other energies).

that the nonlocal potential NL whose parameters, in contrast
to the local potentials CH89 and KD, are independent of the
energy provides a successful description of 16O(d,p) 17O and
16O(d,n) 17F reactions over a broad range of energies (see
Ref. [10] for (d,p) reactions at higher energies).

To study the sensitivity of the results to some ambiguities in
the chosen Hamiltonian, two additional types of calculations
are presented in Fig. 7 for 16O(d,n) 17F reactions at Ed =
12 MeV. First, the real binding potential in the nA partial waves

with bound states is replaced by the complex NL potential;
i.e., the 17O bound states listed in Table I are not supported
and the (d,p) reactions are not taking place. Nevertheless,
the results for the (d,n) reactions remain almost unaltered,
except at large angles 	c.m. > 60◦ for the transfer to the 17F
excited state 1/2+. Second, both nA and pA potentials in
the partial waves with bound states are kept real at negative
two-body subsystem energies Eα but are taken to be complex
NL potentials for Eα > 0. Such an abrupt change has been
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FIG. 6. (Color online) Differential cross section for 16O(d,p) 17O reactions leading to the 17O ground state 5/2+ (top) and excited state
1/2+ (bottom) at the deuteron energy Ed = 7.7, 11, 12, and 13.3 MeV. Curves are as in Fig. 3, and the experimental data are from Refs. [29]
(7.7 and 11 MeV), [30] (12 MeV), and [31] (13.3 MeV).
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FIG. 7. (Color online) Differential cross section for 16O(d,n) 17F
reactions at Ed = 12 MeV. Results of standard calculations using the
NL potential (solid curves) are compared with the results using the
complex nA potential in all partial waves (dashed-dotted curves) and
with the results using energy-dependent nA and pA potentials in the
partial waves with bound states (dotted curves). The experimental
data are from Ref. [28].

chosen to maximize the possible effect. Although the AGS
equations can be solved with such potentials [6], they do not
correspond to a definite Hamiltonian, so the conclusions from
such calculations have to be taken with care. The effect of the
allowed energy dependence is small for the transfer to the 17F
ground state 5/2+ up to 	c.m. < 45◦ but is of moderate size
for the transfer to the 17F excited state 1/2+, even at forward
angles. It appears to be correlated with the binding energy. A
possible explanation is that the two-body t-matrix pole, located
at Eα = −εα , affects also the Eα > 0 region if the binding is
weak as in the case of the 17F excited state 1/2+. In addition
to being non-Hamiltonian, the energy-dependent potential
destroys the consistency between the bound-state features and
threshold behavior that is important in low-energy reactions.
The standard calculations of this paper should therefore be
considered as more adequate.

IV. SUMMARY

Proton transfer reactions in the deuteron-nucleus collisions
were described in a three-body model for the proton + neutron
+ nuclear core system. The framework of exact integral equa-
tions for three-body transition operators as proposed by Alt,
Grassberger, and Sandhas was used; they were solved in the
momentum-space partial-wave representation. The Coulomb
interaction between the proton and the core was included via
the screening and renormalization method. The differences
relative to the calculation of neutron transfer reactions were
pointed out. When the final-state nucleus is weakly bound,
e.g., the 17F in the excited state 1/2+, the convergence with
the screening radius becomes slower for the (d,n) reactions
as compared to (d,p), thereby making the numerical (d,n)
calculations more demanding. Nevertheless, well-converged
results were obtained for the differential cross sections of
7Be(d,n) 8B, 12C(d,n) 13N, and 16O(d,n) 17F reactions.

Realistic CD Bonn potential was used for the interaction
between nucleons. In partial waves with the nucleon-core
bound states the potential strength was adjusted to reproduce
the experimental binding energies, while in the other partial
waves one of the four optical potentials, i.e., Watson, Chapel
Hill 89, Koning-Delaroche, and the nonlocal one by Giannini
and Ricco, was used. For the 7Be(d,n) 8B reaction the
calculations reproduced reasonably the angular shape of the
differential cross section data but overpredicted its magnitude,
presumably due to the neglect of the 7Be core excitations.
A disagreement with the experimental data in the angular
distribution of dσ/d� was observed in the 12C(d,n) 13N
reaction, similar to earlier findings in the corresponding (d,p)
reaction. The description of the 16O(d,n) 17F reactions was
quite successful, especially for the transfer to the 17F excited
state 1/2+ using the energy-independent nonlocal optical
potential that reasonably reproduced also the 16O(d,p) 17O
data over a broader energy range.
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