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For low energy reaction studies involving radioactive ion beams, the experimental reaction yields are generally
small due to the low intensity of the beams. For this reason, the stacked target technique has been often used
to measure excitation functions. This technique offers considerable advantages since the reaction cross-section
at several energies can be simultaneously measured. In a further effort to increase yields, thick targets are also
employed. The main disadvantage of the method is the degradation of the beam quality as it passes through the
stack due to the statistical nature of energy loss processes and any nonuniformity of the stacked targets. This
degradation can lead to ambiguities of associating effective beam energies to reaction product yields for the
targets within the stack and, as a consequence, to an error in the determination of the excitation function for the
reaction under study. A thorough investigation of these ambiguities is reported, and a best practice procedure of
analyzing data obtained using the stacked target technique with radioactive ion beams is recommended. Using this
procedure a re-evaluation is reported of some previously published sub-barrier fusion data in order to demonstrate
the possibility of misinterpretations of derived excitation functions. In addition, this best practice procedure has
been used to evaluate, from a new data set, the sub-barrier fusion excitation function for the reaction 6Li + 120Sn.
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I. INTRODUCTION

A. Radioactive beam experiments

In the past few decades, with the availability of radioactive
ion beams (RIBs), a lot of effort has been devoted to
experimental investigations of collisions induced by halo
and/or weakly bound nuclei. It is expected that the very
low breakup threshold of such nuclei combined with the
halo or cluster structure of the ground state can strongly
affect the reaction dynamics around the Coulomb barrier (e.g.,
Refs. [1–3]). In fact, for such nuclei, direct reaction processes
such as breakup or transfer can be favored by the low breakup
threshold coupled with the cluster or halo structure. In addition,
since the continuum of such nuclei is very close to the ground
state, coupling to continuum effects become important both for
elastic and for the different reaction channels, and a complete
theoretical description of such collisions requires complex
continuum discretized coupled channels (CDCC) calculations
(e.g., Refs. [4–6]). As an example, fusion excitation functions
induced by such nuclei may be affected by static and dynamic
effects. Static effects are due to the fact that the diffuse
surface of these nuclei affects the shape of the projectile-target
potential, reducing the average Coulomb barrier, thus leading
to a possible enhancement of the fusion cross-section. New
dynamic effects on fusion due to coupling to the continuum
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have also to be taken account of. Moreover, fusion reactions
in collisions induced by halo or weakly bound nuclei on
light or medium mass targets are complicated by the fact
that, due to the large breakup probability, in addition to
complete fusion (CF) there can be a significant contribution
of incomplete fusion (ICF) following breakup of the projectile
(e.g., Refs. [7–9]). For the above reasons, a lot of effort has
been devoted to the study of fusion reactions around the barrier
in collisions induced by halo or, more generally, weakly bound
nuclei.

The main experimental challenge of such experiments,
especially those using RIBs, at energies below the Coulomb
barrier is the low reaction yield due to weak intensity beams
and small cross-sections. For this reason thick targets are
often used with RIBs in order to increase the yield and
reduce the time for measurements. In particular, thick targets,
either a single unit or in a stack of them, are often used
in activation experiments. These kind of experiments have
distinct advantages. As an example, a fusion reaction induced
by a beam of light nuclei, such as the halo nuclei presently
available at different RIB facilities, on a medium mass target at
energies around and below the barrier, will lead to production
of low-energy evaporation residues (ER). Direct detection of
these slow ERs can be very difficult since, typically, they will
be in the same energy range as the β background from the
decay of the scattered radioactive beam. Moreover, a large
fraction of them may not come out from the target since their
energies are too small. However, the activation method takes
advantage of this by attempting to capture all the ERs, which
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come out from the target, by using a stopping foil after it
and subsequently deducing fusion cross-sections via on-line
or off-line detection of one or more ER radioactive decay
channels involving emission of gamma, x-ray, or α radiation.
Such an activation method can be made even more efficient if
a system of multiple foils, consisting of several target/stopper
foils, is used. In this case, the stopper foils also serve to
degrade the beam energy for the next target in the stack. The
main disadvantage of using a stack is that the beam energy
distribution will degrade as the beam traverses the different
stack elements due to energy straggling and foils thickness
nonuniformities. Therefore, as the beam traverses the stack,
it is essential to understand the nature of this degradation
in order that accurate excitation functions can be extracted.
The need to better understand these degradation effects has
been highlighted in recent years by some reported RIB
experiments where stacks have been used in order to measure
simultaneously reaction yields at a range of beam energies
[10–18]. It will be shown in this paper that unless due account is
given to the degradation of the beam energy distribution within
each target of the stack caused by beam straggling and target
nonuniformity, considerable misinterpretation of excitation
functions can result, especially at low energies. In previ-
ously published papers, generally, not enough information is
given concerning the experimental details to assess possible
misinterpretations. Therefore the focus of the current paper
is to report on a detailed investigation of these degradation
effects.

The paper is organized as follows. Section II, following
a brief experimental overview, will explore in some detail
the traditional methods that have been used to deduce
excitation functions from activation data with the stacked
target technique, as well as introducing an alternative method
based on a deconvolution approach. For this approach a
detailed knowledge of the target properties, in particular the
target thickness distribution, must be available. This detailed
knowledge is contained within the target energy distribution
function D(E,t0) which represents the probability to find a
beam particle with energy E inside the considered target of
thickness t0. D(E,t0) is unique to each target, beam species,
and beam energy profile.

Section III addresses the nature and the determination of
D(E,t0). It will be shown that this function can be determined
from knowledge of the incoming beam energy distribution,
beam ion energy loss, coupled with knowledge of target
thickness distribution profile. Section IV will discuss methods
to determine target thickness distribution profiles.

Section V will discuss some problems and challenges in the
use of thick targets for RIBs experiments by illustrating them
through a study of simulations of 9Li + 120Sn reaction.

In Sec. VI these different extraction methods to deduce
excitation functions will be illustrated by their application to
the analysis of new activation data obtained for the fusion
reaction 6Li + 120Sn experiment performed with nonuniform
targets.

Section VII summarizes the conclusions, suggesting the
most reliable analysis methods to extract the best estimate
of cross-section excitation functions from activation data
obtained using the stacked target technique.

FIG. 1. (Color online) Diagrammatic representation of an activa-
tion experiment for measuring the fusion excitation function using the
stacked target technique.

II. STACKED TARGET TECHNIQUE

A. Experimental overview

As indicated in Fig. 1, the technique involves using a stack
of several target and stopper/degrader foils. The basic idea is
that as the beam penetrates the foils, the beam energy will
decrease, so the activation produced in different targets will be
associated with different mean beam energies.

The stopper foils have two functions: (a) to capture any
high energy reaction products escaping from the immediate
upstream target and (b) to decrease the mean beam energy for
the next downstream target. At the end of the beam irradiation,
the activity in each target/stopper foil is monitored over a
period of time.

The first foil will be irradiated with average beam energy
E0, and reactions producing activation centers are initiated
for beam particles around this energy. The beam then passes
through a catcher/degrader foil. However, when the beam
enters the second target foil it will have a greater energy spread
than for the first target due to the statistical nature of projectile-
target interactions and thickness nonuniformity of the first
target/catcher foils. This spreading will progressively increase
as the beam traverses a greater number of elements in the stack.
The activation measured in each target/stopper foil of the stack
is therefore the result of an integrated production of ERs over
a finite beam energy range. The task of the experimenter is
twofold: (1) to accurately measure the ERs activities, and their
associated errors, for each target/stopper foil combination
and to extract their mean production cross-sections and (2)
to relate the measured mean cross-sections to a representative
beam energy and thus to the actual cross-section excitation
function. The focus of the current paper is on this second task.

B. Relating mean cross-sections extracted with the stack
technique to beam energies

The basic experimental data for the stacked target technique
are the measured yields, Y , of the ERs. The mean cross-section,
σmean, can be calculated by using the usual relationship:

σmean = Y

Nt0NB

, (1)
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where Nt0 is the number of atoms per unit area of the target
and NB the number of beam particles passing through the
target. The problem is how to relate these measured mean
cross-sections to effective beam energies in order to accurately
match the actual cross-section excitation function, σ (E). One
way that has been used is to simply relate the measured σmean

to the mean beam energy, defined as:

Ē = Ei + Ef

2
. (2)

Here Ei is the mean energy of the beam particles entering
the target and Ef the mean energy of the beam particles after
completely traversing the target. Ef is usually determined with
the aid of simple energy loss calculations. This approximation
is not completely correct, in particular at energies below the
Coulomb barrier, since it does not take into account that each
reaction energy, inside the target, has a different weight. This
is not only due to the energy dependence of the fusion cross-
section, σ (E), but also due to the beam energy distribution
inside the target. In fact, as will be discussed in Sec. III, in
general the probability to find a beam particle with a given
energy inside the target is a function of the considered energy.
For this reason, an alternative proposed definition of effective
energy, which at first seems more correct than the previous
one, is given by the following weighted average:

Eeff =
∫ ∞

0 Eσ (E)D(E,t0)dE∫ ∞
0 σ (E)D(E,t0)dE

(3)

with

D(E,t0) =
∫ ∞

0
g(E0,Ei)

∫ t0

0
f (Ei,t0,E,x ′)dx ′dEi, (4)

where D(E,t0) represents the probability that a beam particle
will have energy E inside the considered target of thickness t0;
it will be identified in the following as the energy distribution
function inside the target. f (Ei,t0,E,x ′) is the probability that
a projectile incident on the target of thickness t0 at an incident
energy Ei has an energy E at a depth x ′ inside the target,
where 0 < x ′ < t0; g(E0,Ei) is the probability that a particle,
as part of the entrance beam of mean energy E0, has an energy
Ei . In many cases, g(E0,Ei) is usually considered a Gaussian
distribution. It will be shown later that this is not always the
case.

Furthermore, other assumptions, which do not seem to be
fully justified, in the light of the present results, are sometimes
made concerning the averaging procedure to determine Eeff

(e.g., Ref. [18]). Further discussion of this issue will be
reported in Sec. V C.

Moreover, it seems that, in all the previous journal articles
the effect of the foil thickness nonuniformity on the beam
energy distribution in the stack targets were not considered
explicitly. So to explicitly account for target nonuniformity
Eq. (4) should include another term, the thickness probability
distribution function, w(t), which represents the probability
that a particle entering a nonuniform target actually experi-
ences a thickness t . In this case the energy distribution inside

the target will be defined as follows:

D(E,t0) =
∫ t0

0
w(t)

∫ ∞

0
g(E0,Ei)

×
∫ t

0
f (Ei,t,E,x ′)dx ′dEidt, (5)

with 0 < x ′ < t . In this case t0 represents the maximum target
thickness. To determine Eeff , by using the Eq. (3) with D(E,t0)
given by Eq. (4) or Eq. (5), the function σ (E) is needed, but
this is unknown, and indeed it is the purpose of the experiment.
However, a reasonable way to proceed is to relate the measured
σmean to the corresponding Ē of Eq. (2) and use this function
to calculate Eeff . A new function σ (Eeff) then can be deduced
and used again in Eq. (3) to determine a new Eeff . One or two
iterations of this nature usually converge to the final value of
Eeff .

Investigation of Eq. (3), with D(E,t0) given by Eq. (5),
under various conditions leads to interesting insights, since
the value of Eeff extracted can be equal to, larger than, or
smaller than the value of Ē calculated by using Eq. (2). For
example:

(1) for a uniform thick target, and for a cross-section
independent of beam energy, Eeff = Ē;

(2) for a uniform thick target, but where the cross-section
increases with increasing beam energy, Eeff > Ē,
because the higher cross-section weights the yield
towards the entrance energy;

(3) for a nonuniform target with a cross-section indepen-
dent of beam energy, Eeff < Ē, since the incoming
beam particles can locally explore a target thickness
larger than the average one, thus reducing the average
interaction energy; and

(4) for a nonuniform target, and when the cross-section
increases with increasing beam energy, the effects of
(2) and (3) are both relevant. Therefore, Eeff can be
larger than, smaller than, or equal to Ē depending on
the relative weight of the effects (2) and (3).

Clearly, the situation in inferring the actual Eeff is quite
complex and will depend on the detailed reaction/target
parameters for any one case. However, it will shown in the
following sections that the procedure to determine σ (E) by
relating σmean to Eeff is in any case incorrect.

C. Problems with thick targets and large beam energy
distributions

As discussed in the previous section, to the present, in
all analyses of activation experiments the measured cross-
sections, σmean, have been associated either to the mean energy,
Ē, or to the effective energy, Eeff , based on an energy averaging
procedure similar to Eq. (3). In this section, the results of a
simple analysis (details given in the Appendix) will show that,
in general, neither of these two approaches is correct.

This conclusion already has been implied within experi-
mental studies of nuclear reactions of astrophysical interest,
where, due to the very low beam energies combined with the
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FIG. 2. Ē, Eeff , and Er for the 9Li + 120Sn reaction, plotted as a
function of the energy loss in the target for an average incident beam
energy of 17 MeV: (a) δ incoming beam energy distribution and (b)
Gaussian incoming beam energy distribution with FWHM = 2 MeV.
See text for details.

use of extended gas targets, the effects of the projectile energy
loss cannot be neglected [19].

This can be stated in another way. Generally, for the
measured cross-section σmean, a reaction energy Er may be
defined such that σmean = Er ), where σ (E) is the true cross-
section function. So the data point (σmean,Er ) will coincide
with the σ (E) curve. Unfortunately, neither the data points
(σmean, Ē) nor (σmean, Eeff) will lie on the σ (E) curve. In
Fig. 2, the values of Er are compared with the ones of Eeff and
Ē, calculated using the formulas detailed in the Appendix for
the 9Li + 120Sn reaction studied in Sec. V. For this calculation
it is assumed that the trend of the 9Li + 120Sn sub-barrier
fusion excitation function has an exponential trend with a
slope α = 1.72 MeV−1, obtained from a fit of the exponential
part of Eq. (15). Such a slope is with in the range of typical
slopes observed in sub-barrier fusion experimental data. The
values of the three energies have been calculated for a 9Li

entrance energy of 17 MeV and for different energy losses
in the target (i.e., targets of different thicknesses). The results
shown in Fig. 2(a) correspond to an entrance beam energy of
zero energy spread and in Fig. 2(b) to a Gaussian entrance
energy spread of 2 MeV FWHM, assuming this spread to be
constant within the target. As can be seen, only for the ideal
case of a monoenergetic beam and for very thin targets will the
three energies coincide. If the beam energy distribution is large,
even in the case of very thin targets, Eeff and Ē will differ from
Er . The presence of the energy straggling of the beam, and of
the target nonuniformities, will further modify this behavior,
as noted in Sec. II C, and Ē could even be larger than Eeff .
This demonstrates that one must be very cautious in assigning
an energy to measured mean cross-sections, especially in the
exponential region of the cross-section, if thick targets and/or
large beam energy distributions are used.

D. A deconvolution procedure for analysis of stacked
target experiments

Since, in general, neither Ē nor Eeff accurately represent
the energy Er to be associated with the measured average
σmean, the authors have investigated an alternative procedure
based on a deconvolution of the stack yields. The outline of
this procedure is given below.

The problem of extracting a physically continuous function,
like an energy varying cross-section, from a finite number of
measurements each of which integrates the function over a
wide energy bin is a problem that is encountered in various
experimental studies. To be specific, suppose that the physical
quantity of interest, z, is a continuous function of the physical
parameter, x, such that z = f (x). The experimental objective
is to determine this relationship. But the reality maybe that
this can only be investigated with an apparatus that integrates
z over a range of x in the following manner:

zexp,i =
∫

f (x)Ri(x)dx, (6)

where zexp,i represents the actual measurement and Ri(x)
the response function of the instrument for the particular
measurement i. It is assumed that these response functions
are well determined. The task is then to extract f (x) from a
finite number of such measurements. However, in general, it is
not possible to extract a continuous function unambiguously
from a finite number of measurements. Nevertheless the level
of ambiguity can be considerably reduced if some prior
knowledge about the form of the function is available. If this
knowledge can be expressed in a guess function, ĝ(x,μ), where
μ signifies parameters to be determined, then prior predictions
can be made concerning zexp,i , i.e.,

zi =
∫

ĝ(x,μ)Ri(x)dx. (7)

The procedure would then be to use this Bayesian prior,
and so change μ until zexp,i and zi overlap as close as
possible when taking account of the errors associated with
zexp,i . A recent publication by Jovancevic et al. [20] details
the above procedure to extract neutron cross-sections from
activation data. This is a particularly challenging situation
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because such cross-sections vary rapidly with energy, and
so special analytical techniques are needed to reduce the
ambiguity of deducing f (x) from ĝ(x,μ). If, on the other hand,
it is known that f (x) has a smooth varying structure, then a
straightforward minimization procedure with respect to μ may
be sufficient to quantify f (x). For the experimental situation
considered in this paper, the fusion excitation functions σ (E)
are generally known to be smooth monotonic functions in the
energy region near and below the Coulomb barrier. The actual
experimental measurements are energy mean cross-sections
specified for a particular measurement i by:

σmean,i =
∫ ∞

0 σ (E)Di(E,t0)dE∫ ∞
0 Di(E,t0)dE

, (8)

where the response function Di(E,t0) is defined in Sec. II. The
task is to deduce the continuous function σ (E) from a finite
number of values of σmean,i . This may be done by quantifying
a suitable function ĝ(x,μ) which shows the same expected
energy behavior as σ (E) and then minimizing the following
expression with respect to μ:

S =
∑

i

(
σmean,i − ĝmean,i

βi

)2

, (9)

where

ĝmean,i =
∫ ∞

0 ĝ(E,μ)Di(E,t0)dE∫ ∞
0 Di(E,t0)dE

(10)

and βi is the experimental error associated with σmean,i .
Application of the procedures described in this section

requires detailed knowledge of D(E,t0). As will be described
in the next section, D(E,t0) can be deduced with reasonable
reliability with modern codes such as SRIM [21,22]. If the
targets are nonuniform, then it is necessary to know the
target thickness probability distribution, w(t), for determining
D(E,t0); the method, developed by the present authors, to
determine w(t) will be outlined in Sec. IV.

III. DETERMINATION OF THE ENERGY DISTRIBUTION
FUNCTION D(E,t) FOR UNIFORM FOILS

As explained in Sec. II B, the energy distribution inside
the target, D(E,t0), represents the probability to have a beam
particle with energy E inside the considered target of thickness
t0. According to Eq. (5), to determine D(E,t0) it is necessary
to know the particle energy probability distribution before
the target, g(E0,Ei), and f (Ei,t,E,x), i.e., the probability
that an incoming ion of energy Ei will have energy E at a
generic depth x inside the target. The SRIM code has been used
for determining f (Ei,t,E,x) and g(E0,Ei). The f (Ei,t,E,x)
function has been determined by the following procedure. For
each incoming energy Ei of the beam particles a full SRIM sim-
ulation has been performed considering gradually increasing
target layers, ranging from 0 mg/cm2 to the maximum value of
the target thickness. The probability distribution f (Ei,t,E,x)
is the energy distribution after a thickness x. For each incoming
energy Ei the f (Ei,t,E,x) distributions obtained for each
layer x have been summed over x. In order to obtain the
final D(E,t0) distribution, for all incoming energies given by

the g(E0,Ei) distribution, a weighted sum over Ei has been
performed. This procedure is formally expressed by Eq. (4).
Since the f (Ei,t,E,x) is determined from multiples histories
of many particles, straggling effects are accounts for.

These simulations showed that the determination of the
beam energy distribution in a target is not trivial when
using a stack, since it depends not only on the features of
the single target but also on the targets placed upstream.
Moreover, this kind of study was particularly useful since
it illuminates many of the subtle effects of the stacked target
technique. These effects, which influence the extraction of
accurate cross-sections, are even significant if the target foils
used are thinner than those often used in RIB experiments.
As examples of such simulations (which will be relevant to
the experimental situations discussed in Secs. V and VI), the
D(E,t0) distributions have been calculated for the following
two situations: (a) a 120Sn uniform target 0.5 mg/cm2 thick
directly irradiated by a 6Li beam of 18.44 MeV and (b) a target
which is the fourth in a stack of uniform Sn foils (0.5 mg/cm2

thick) and uniform 93Nb (2 mg/cm2 thick) catchers but with
an increased 6Li energy entering the first target in the stack
so the average energy entering the fourth target is the same
energy as the almost monoenergetic beam used for (a). The
two corresponding D(E,t0) distributions are shown in Fig. 3.

The g(E0,Ei) distribution, in the case of the single foil
irradiation, depends only on the characteristics of the beam
delivered by the accelerator. In the example of Fig. 3, it has
been assumed that g(E0,Ei) for situation (a) has a Gaussian
shape with a full width at half maximum (FWHM) of 0.1%.
For a target placed in a stack, g(E0,Ei) will again depend on
the characteristics of the beam delivered by the accelerator
but is generally dominated by the energy straggling in the
foils placed upstream. To take this into account, g(E0,Ei) for
situation (b) has to be calculated (using SRIM) by considering
all the foils upstream. For the two cases the energy distribution
function inside the target has a different shape. It is found that
the rectangular shape obtained in the case of the single foil
measurement is typical of targets irradiated by a beam whose
input energy distribution FWHM is smaller than the average
energy loss, �E, in traversing the target. However, when the
FWHM of the beam energy distribution before a target is larger
than �E (caused by energy straggling of upstream foils in a
stack), the shape will be Gaussian like. In addition, the energy
range of the energy distribution inside the target will differ
from when a single foil alone is used. This means that, even if
the average incoming energy and the target thickness are the
same, the measured cross-section is integrated over different
energy regions in the two cases. This difference is due to the
different widths of the two incoming energy distributions. The
region inside the red lines in Fig. 3 represents the energy
range estimated by performing an energy loss calculation,
without taking into account the finite width of the energy
distribution. This is a good approximation in the case of single
foil irradiation, but it is half of the energy range observed in the
stack case. In view of this observation, the integration range
cannot be determined by simply performing an energy loss
calculation, since it would lead to an underestimation of the
real beam energy range inside the target. Of course, this effect
becomes more and more important as the number of targets
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FIG. 3. (Color online) Beam energy distribution function
D(E,t0) seen by a Sn target 0.5 mg/cm2 thick, for an average
incoming energy of 18.44 MeV in two different conditions: (a) Sn
target directly irradiated by the beam (b) Sn target placed in a stack
after three Sn foils (0.5 mg/cm2 thick) and corresponding 93Nb
(2 mg/cm2thick) catcher foils. See text for details.

in the stack increases. It is important to emphasize that the
energy spread in the distribution shown in Fig. 3 is only due
to the statistical nature of the energy loss process. A further
contribution to the broadening of the energy distribution can
arise from the nonuniformity of the foil thickness, which will
cause an additional spread of the energy distribution inside the
target. A systematic account of such nonuniformities and their
effect on the energy distribution in target stack systems seems
not to have been explicitly reported previously in the literature.
However, for energy regions where the fusion cross-section
decreases rapidly with decreasing energy, the target ER yields
are very sensitive to precise width and shape of the beam
profile. Therefore in the present work an investigation has been
undertaken to analyze the effects of target nonuniformity and
how this affects the determination of the energy distribution
function D(E,t0).

IV. CHARACTERIZATION OF FOILS

A. Surface morphology

The most important issue for the stacked target technique is
the production of quality targets and degrader foils; quality
here refers to uniformity of thickness and stoichiometry.
Production of such quality foils is in the province of surface
science, which has greatly expanded in recent years. The
laying down of a thin layer of one type of material on
another can be obtained by a variety of techniques such as
a chemical deposition, evaporation, or sputtering. In any one
method the condition to achieve a uniform deposit can be quite
complex. For example, the structure of thin films is affected
by different factors, namely by the type of the substrate, the
thickness of the film, the deposition rate, and the temperature
of the substrate [23–27]. For the stacked target technique the
optimum situation is to produce foils of the best mass density
uniformity. However, for a particular production technique and
target material, which could also be an expensive rare isotope
available in limited quantities, obtaining such high uniformity
may not be possible in all cases. Nevertheless, it will be shown
in this paper that, provided certain procedures are followed, it is
possible to use the stacked target technique even if the targets
are considerably nonuniform, providing certain precautions
are followed.

The procedure, developed by the present authors, for the
characterization of foil nonuniformity will be highlighted in
the following. In particular, analyses performed on compos-
ite 120Sn - 93Nb foils, produced by the evaporating 120Sn-
enriched isotope on rolled 93Nb foil substrate, will be reported.
These foils were used for measuring the 6Li + 120Sn fusion
excitation function σfus(E) by the stack technique, reported
in Sec. VI. The targets were manufactured at Laboratori
Nazionali del SudINFN, Catania. The average thickness of
these foils was determined by weighting the foils and by
measuring the energy loss of α particles from an 241Am source
traversing the foils.

For investigating the surface morphology of the targets,
a scanning electron microscope (SEM) Zeiss Supra 25 was
used. The SEM analysis was performed at the Institute of
Microelectronics and Microsystems (CNR-IMM), Catania.
The results are shown in Fig. 4(a) for a 93Nb backing foil
and in Fig. 4(b) for a composite 120Sn - 93Nb foil. The 93Nb
foil has an average thickness of 2 mg/cm2, and its surface
does not show any particular features on the scale of μm. This
observed surface morphology is typical of rolled foils where
small defects seem randomly distributed on the foil surface.
The 120Sn layer has an average thickness of 0.5 mg/cm2

(about 0.7 μm). On its surface it is possible to distinguish
structures of different sizes, which vary from some hundreds
of nm to about 2 μm. The same kind of analysis was also
undertaken on some foils where the 120Sn was evaporated
onto a rolled 165Ho substrate. As for the 93Nb foil, the 165Ho
foil does not have particular structures. The 120Sn surface
for this case shows the same kind of structures as observed
in Fig. 4(b). It is therefore concluded that the surface 120Sn
structures are intrinsic to the properties of 120Sn rather than
the properties of the backing foil. These 120Sn target foils
are clearly not uniform in thickness and therefore present
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FIG. 4. Scanning electon microscope views of the surfaces of a
120Sn target evaporated onto a rolled 93Nb foil: (a) 93Nb side and
(b) 120Sn side. See text for details.

a considerable challenge to deduce D(E,t0) for a particular
reaction of interest. It will be shown below that this challenge
can be met if certain procedures are followed.

B. Determination of the thickness probability distribution w(t)

To investigate quantitatively the nature of foil nonunifor-
mity, a procedure based on the analysis of the energy spectra
of transmitted 241Am α particles has been used. The residual
energy spectra of the α particles traversing the 93Nb substrate
and the 120Sn + 93Nb foil are shown in Figs. 5(a) and 5(b)
(dashed black line); the figures also show the corresponding
spectra obtained from SRIM simulations (continuous red line)
assuming a uniform target of the same measured average
thickness. For the sake of comparison, the spectra have been
normalized so the figure areas below the two histograms are the
same. As can be seen, the simulation spectra do not reproduce
the experimental data, but while in the case of the 93Nb foil
the measured and simulated curves have a Gaussian shape,
although with different widths, in the case of 120Sn + 93Nb
foil, the shape of the experimental distribution is not Gaussian
anymore. The 120Sn thickness (in mg/cm2 and in μm) which
α particles must pass through in order to produce the measured
residual energy is shown on the lower axes. It can be seen that
(i) the zero thickness of the 120Sn corresponds to the average
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FIG. 5. (Color online) Experimental (black dashed line) and sim-
ulated (red line) energy spectra of α particles emitted by an 241Am
source passing through a 93Nb foil (a) and through a 120Sn + 93Nb foil
(b). The simulated spectra are obtained by using the SRIM [22] code.
The lower axes indicates the 120Sn thickness which the α particles
have to pass through to produce the observed residual energy.

thickness of the substrate and (ii) the 120Sn thickness reaches
the values 1.5 mg/cm2 (2 μm), which is compatible with that
expected from surface features observed with the SEM scans
shown in Fig. 4(b).

For determining the 120Sn thickness probability distribution
the following procedure was followed. By using the SRIM code,
residual energy spectra for α particles emitted by an 241Am
source, which traverse a 120Sn + 93Nb foil, were determined
for various 120Sn thicknesses ranging from 0 mg/cm2 to
1.5 mg/cm2. A weight was attributed to each individual
spectrum such that their weighted sum could reproduce the
experimental spectrum. Let n be the number of spectra and
Wj (with j = 1,n) the set of the attributed weights. The Wj
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FIG. 6. (Color online) Experimental (black dashed line) residual
energy spectrum of α particles crossing a 120Sn + 93Nb foil. The red
spectrum is the result of the fit procedure used to extract the 120Sn
thickness probability distribution (see text for details).

were varied, from 0 to 1 in steps of 0.01, in order to obtain
the best match between the simulated and the experimental
spectra. In particular, the chosen weights were the ones which
minimized the χ2 defined as follows:

χ2 =
[

m∑
i=1

(Csum,i − Cexp,i)2

Cexp,i

]/
m, (11)

where m is number of bins of the spectra and Cexp,i and Csum,i

are the number of the counts in the generic bin i in the ex-
perimental and the summed simulated spectrum, respectively.
In particular, Csum,i has been obtained as

∑
j CjiWj , where

Cji are the counts in bin i of the j spectrum. The weights
Wj , obtained as described above, after normalization give the
target thickness probability distribution w(t). In Fig. 6 the
experimental residual energy spectrum of α particles crossing
a single 120Sn + 93Nb foil is shown together with the simulated
one obtained as the result of the minimization procedure. In
Fig. 7 the relative w(t) trend for the 120Sn target is reported as
function of the thickness. The continuous line is a polynomial
fit of the the calculated weight Er . The number of simulated
spectra was chosen as the minimum necessary to obtain a flat
distribution, when each one was given a weight equal to one.1

In the present case, the explored range of interest has been
covered by using five simulated spectra. Such a procedure is
general and can be applied to foils of any thickness distribution.
However, when the residual energy spectra of α particles
crossing the foil have a quasi-Gaussian symmetric shape, as
for 93Nb foils showed in Fig. 4(a), a simplified procedure can

1For the sake of clarity, it may be useful to remark that if a target
is uniform, then w(t) would be a δ function; if the target has a
small random thickness variation, then w(t) would more likely be a
Gaussian-type function centered at the average thickness.
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FIG. 7. 120Sn target thickness distribution.

also be applied. In such cases, the contribution to the FWHM
due to the foil nonuniformity can be determined by using the
following relationship:

FWHM2
exp = FWHM2

coll + FWHM2
res + FWHM2

nonunif, (12)

where FWHMexp is the full width at half maximum of the
experimental transmitted α energy spectra and FWHMcoll,
FWHMres, and FWHMnonunif are, respectively, the FWHM
due to the statistical nature of the energy loss process, the
intrinsic detection resolution (which is about 40 keV), and the
foil thickness nonuniformity. From Eq. (12) it is possible to
determine the FWHMnonunif and thus to estimate the thickness
variation, �t , needed to explain such a straggling by using the
relationship:

�t = FWHMnonunif

(dE/dt)AV
, (13)

where (dE/dt)AV is the average rate of beam energy loss in the
target of thickness t . With this procedure it has been estimated
that the nonuniformities in thickness for 93Nb foils are of the
order of 7% of the average value.

C. Validation of the procedure for determining w(t)

In order to check the procedure developed for determining
the 120Sn thickness probability distribution, measurements
were made of the residual energy spectrum of a 21-MeV 6Li
beam after traversing one and then three target foils. These
measurements were undertaken by placing a detector behind
each target combination. The foils and the detector were placed
at 20◦ with respect to a thin (0.1 mg/cm2) Au target. A 3-mm
collimator was placed in front of the foils in order to reduce
the kinematic broadening of the scattered beam.

The experimental residual energy spectra for the one and
three target foil measurements are shown with the black
continuous line in Figs. 8(a) and 8(b), respectively. As is
possible to see, the beam energy distribution after traversing
the first foil of the stack is not Gaussian. The shape of this
distribution is dominated by the target nonuniformity, as it
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FIG. 8. (Color online) Experimental (black continuous line) and
simulated (red dashed line) residual energy spectra of a 21-MeV 6Li
beam, after traversing one (a) or three (b) 120Sn + 93Nb foils. The
blue dotted lines give the calculated residual energy distributions for
the case where the 120Sn and 93Nb foils are uniformly thick with the
same total thickness as the nonuniform foils. See text for details.

was previously observed for the α-spectra measurements.
Concerning the beam distribution after the third foil of the
stack, its shape is more similar to a Gaussian distribution,
but its width is 3 times wider than the one expected if the
foils were uniform. Presumably, the Gaussian shape for the
three-foil combination is the result of increased randomization
of different thicknesses encountered by the beam as compared
to the transit of just one foil.

By using for each target and catcher the previously
determined w(t), (as discussed above by the α-particle ranging
technique), SRIM simulations were performed to determine
the expected energy spectra for the 21-MeV 6Li beam after
traversing one and three foils; these simulated spectra are
shown as red dashed lines in Figs. 8(a) and 8(b). As one
can clearly see from this figure, the experimental 6Li energy
distribution is very well reproduced by the simulation. It must

be stressed that this agreement is only possible because each
foil was characterized by its own unique w(t) distribution.
The blue dotted lines give the calculated residual energy
distributions for the case where the 120Sn and 93Nb foils
are uniformly thick with the same total thickness as the
nonuniform foils. This comparison is interesting since it gives
a “direct view” of the importance of such nonuniformity
effects.

It is particularly interesting to note that the use of the target
thickness probability distribution, w(t), obtained by using an
α-particle source as discussed in Sec. IV B, was of sufficient
accuracy as to allow reasonable reproduction of the energy
distribution observed with the actual 6Li beam. This is an
important point because, as will be shown in the following,
for the correct determination of the fusion excitation function,
the actual individual target thickness distributions, and not
just the average thicknesses, must be determined for all
targets. However, this work demonstrates that the thickness
probability distribution w(t) can be extracted simply by using
an α-particle source rather than requiring additional beam
time. The good matching between the experimental spectra for
the three-foil system [Fig. 8(b)] gives us confidence that the
procedure to determine the different target w(t) functions is
valid, and the procedure used is accurate enough to determine
the D(E,t0) functions.

V. PROBLEMS AND CHALLENGES RELATED TO THE
USE OF THE STACKED TARGET FOR RIBS

EXPERIMENTS

A. Introduction

For the reason mentioned in the Introduction, the stacked
target technique as been widely used in experiments with RIBs.
Many experiments have been performed where the beam is
passed through a large number of stacked targets and degrader
foils (e.g., ∼ 30 foils in Ref. [11] and up to 24 foils in Ref. [16]).
Moreover, in some cases, in order to compensate for the low
RIB currents, quite thick foils (e.g., 26 mg/cm2 Au targets
[16] and 10 mg/cm2 Al degraders [17]) have been used, with
corresponding large energy variations between the first and
last target of the stack (e.g., ∼10 MeV in Refs. [11,15] and up
to ∼40 MeV in Ref. [16]).

Due to the large number of foils, and/or their nonunifor-
mities, and/or the quality of RIBs used, in many experiments,
targets have been irradiated by beams having rather large
energy dispersion (e.g., up to ∼6 MeV FWHM in Ref. [15],
1.6 MeV FWHM on the first of 16 foils in Ref. [11], ∼2 MeV
FWHM on the first of three targets in Ref. [12], and up to 56
MeV FWHM in Ref. [16]). Generally, in the journal articles
for these multiple/thick target experiments, very limited
quantitative information is given of target nonuniformity,
straggling effects, and incident beam quality. However, these
factors can significantly influence the deduced excitation
functions due to the potentially large beam energy distribution
inside the targets. In order to quantify the magnitudes of these
effects, the results of simulations concerning a possible future
9Li + 120Sn experiment are discussed in Sec. V B.
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The Sec. V C will discuss how these effects could impact
in the interpretation of the previously published data.

B. Simulation study of the 9Li + 120Sn fusion reaction

For this study a simulation was undertaken by investigating
the outcome when a 9Li beam of about 28.1 MeV impinged
on a stack of five targets each composed of 120Sn foils
with an average thickness of 5 mg/cm2, each one followed
by an uniform 93Nb catcher/degrader foil 1.5 mg/cm2 thick.
The results of the simulations were studied for the case
of uniform targets and degrader foils and for the situation
where both targets and foils are nonuniform. Two different
kinds of nonuniformities were investigated; one where a
Gaussian thickness distribution with a FWHM of 20% of
the mean value was considered for the 120Sn targets, and
a second one where the 120Sn targets where assumed to
have a nonuniformity similar to the ones actually observed
experimentally and reported in Sec. IV (i.e., the surface of the
targets is characterized by the presence of structures which
vary from few hundred nm to 2 μm, like the ones shown in
Fig. 4). In the following, this second kind of nonuniformity
will be called polynomial nonuniformity. For both uniform
and nonuniform targets the average thickness is assumed to
be 5 mg/cm2. The 93Nb catcher foils were assumed to have a
Gaussian nonuniformity with a FWHM of 15% of the mean
value. For each target, the mean cross-section that would be
measured in the considered experimental conditions, due to
the energy distribution inside the target, has been calculated
by the following relation:

σmean =
∫ ∞

0 σ (E)D(E,t0)dE∫ ∞
0 D(E,t0)dE

. (14)

The D(E,t0) distributions, for each of the considered cases,
were calculated by using the program SRIM, and it was assumed
that the real fusion cross-section σ (E) is given by a Wong-like
formula [28]:

σ (E) = A

E
ln[1 + eB(E−C)] (15)

with A = 1936 mb MeV, B = 1.83 MeV−1, and C =
18.95 MeV. It is important to note that the difficulty of
relating the measured values of σmean to the actual σ (E)
function, becomes more severe as the slope of σ (E) becomes
steeper. The chosen parameters in Eq. (15) are consistent with
the cross-section slopes of other similar reactions. Figures
9(a) and 9(b) show the entrance and exit beam energy
distributions, respectively, for the first target of the stack.
Figure 9(c) shows the corresponding D(E,t0) functions. The
black continuous, the red dashed, and the blue dotted lines
correspond to the case of uniform, nonuniform Gaussian,
and non-uniform polynomial target thickness distributions.
Figure 10 is the same as Fig. 9 but for the fifth target of
the stack. It can be seen that, as expected, the outgoing energy
distribution for a given target is wider for the nonuniform
cases when compared to the uniform one, while the average
value is the same. Similarly, the energy distributions D(E,t0)
[Figs. 9(c) and 10(c)], even if the average target thickness
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FIG. 9. (Color online) Energy distribution of the beam before (a),
after (b), and inside (c) the first target of the stack considering uniform
(black continuous line), nonuniform Gaussian (red dashed line), and
nonuniform polynomial (blue dotted line) foils. See text for details.

is the same in the three cases, are wider for the nonuniform
targets.

At this point it is important to emphasize the physical factors
that influence the shape of the energy distribution function
D(E,t0). These factors include the shape of the beam energy
distribution entering the target, the beam energy loss in the
target, and the energy straggling of the beam. Inspection of
Figs. 9(c) and 10(c) shows that, as a result of these factors,
D(E,t0) cannot be approximated by assuming it to be a shape
similar to the entrance distribution (i.e., Gaussian), having an
energy width intermediate between the width of the entrance
and the exit energy distributions. It must be stressed that
the best way to determine D(E,t0) is to characterize target
properties, as well as to perform numerical beam energy loss
simulations. In this way it should be possible to quantify all of
the physical factors that influence the shape of D(E,t0) shown
in Figs. 9(c) and 10(c).

In Fig. 11 the σmean given by Eq. (14), which would be
measured using the considered stack of targets, for the uniform
[Fig. 11(a)] and nonuniform target [Fig. 11(b)] cases, is plotted
versus the mean energy Ē (closed symbols) and versus the
effective energy Eeff(open symbols). It should be borne in
mind that the yield values that would be measured for the
three cases differ due to the different energy distributions inside
the targets. The Eeff has been obtained by using Eq. (3) and
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FIG. 10. (Color online) Energy distribution of the beam before
(a), after (b), and inside (c) the fifth target of the stack considering
uniform (black continuous line), nonuniform Gaussian (red dashed
line), and nonuniform polynomial (blue dotted line) foils. See text for
details.

D(E,t0) given by Eq. (4) and Eq. (5) in the case of uniform
and nonuniform target thickness, respectively. In Fig. 11(b) the
up-triangles are the results obtained in the case of Polynomial
nonuniformity of the target, and the squares are the results
obtained for the Gaussian nonuniformity. The continuous line
represents the cross-section of Eq. (15) assumed to represent
the real behavior of the fusion excitation function in the
simulated experiment. As one can see in Fig. 11, at energies
below the Coulomb barrier, the real excitation function is not
reproduced by any of the various representations. Associating
σmean to Ē or to Eeff produces an overestimation or an
underestimation of the real excitation function, respectively,
in agreement with the simple estimation shown in Fig. 2. The
tables in the insets of the Fig. 11 report the ratios between
σmean that would be measured, in the fourth and fifth targets
of the stack, and the values of the starting cross-section σ (E)
calculated at Ē and Eeff . These ratios are larger in the case
of nonuniform targets than for uniform ones due to the wider
energy distributions D(E,t0), as shown in Figs. 9(c) and 10(c).
As can be seen, in the present case, plotting the measured
cross-sections versus Ē or Eeff generates differences up to a
factor of 5 with respect to the real fusion excitation function
σ (E).

The deconvolution procedure discussed in Sec. II D has also
been applied to the present simulated data. For this procedure
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FIG. 11. (Color online) Results of the simulations for the cases
of uniform (a) and nonuniform (b) targets. The continuous black line
shows the real fusion excitation function assumed for the collision
9Li + 120Sn. The open and closed symbols are the experimental
results that would be obtained plotting the measured σmean versus
Ē and Eeff . In (b) the triangles and square symbols are the results
of the simulation performed considering two different kind of
nonuniformities: Gaussian and polynomial. In this figure the results
of the deconvolution procedure, discussed in Sec. II D, cannot be
distinguished from the black line. The blue shaded area represents
the uncertainty associated with the deconvolution procedure. (See the
text for details.)

a typical error on the measured mean cross-section, σmean,
in each of the targets has been supposed to be 15% of the
mean value. This error would originate from experimental
uncertainties associated with detector efficiencies, mean target
thickness, target thickness distribution, etc. As shown in
Fig. 11, the results obtained with this procedure cannot
be distinguished from the continuum line representing the
assumed real cross-section. The shaded area represents the
error band associated with the deconvolution procedure. This
error band has been calculated by applying the standard
error propagation formula (see, e.g., Ref. [29]) to Eq. (15),
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considering the three parameters (A, B, and C) as free
variables. This procedure takes account of the error on the
single variables as well as possible correlations between
the variables of the function through the covariance terms
of the error matrix. This deconvolution procedure has been
performed by using the MINUIT routine [30], which also
provides the error parameters and the covariance terms.

Since, in this case, σmean is not a measured value but the
result of a numerical procedure, the meaningfulness of the
error band has been cross checked in the following way.
By using a Monte Carlo simulation, several sets of five
possible values of cross-sections, si (one for each target),
were determined, extracting each si value from a Gaussian
distribution, centered at the calculated σmean,i value and
having a standard deviation equal to 0.15σmean,i . For each
extracted data set, the deconvolution procedure was applied.
The resulting deconvoluted curves all lie within the shaded area
of Fig. 11, indicating consistency between the two approaches.

In conclusion, plotting the mean cross-section, which
represents what would be measured in a real experiment, as a
function of Ē or Eeff is not representative of the real excitation
fusion function, due to the finite beam energy distribution
inside the targets. The opinion of the present authors is
that the best method for determining the fusion excitation
function is the application of a deconvolution procedure.
Having determined the excitation function, therefore, it would
be possible to determine the Er as outlined in the Appendix.
However, since the excitation function has been determined,
calculation of the Er is somewhat superfluous.

The present authors also underline that these kinds of
problems could also be present if thin targets are used. In
fact, as already mentioned, it is not the target thickness itself
but rather the width of the energy distribution inside the target
D(E,t0) which is the origin of the problem. In fact, under
certain circumstances, large energy widths for D(E,t0) can be
present even with thin targets, e.g., if one has several foils,
and/or thick nonuniform catchers, and/or poor quality RIBs.

To make this clearer, simulations were undertaken for a very
thin uniform 120Sn target irradiated with 9Li beams at fixed
average incoming energy of 17 MeV (see inset of Fig. 12) but
for different FWHM of the incoming Gaussian beam energy
distribution in the range 0.3 to 4 MeV. This range is chosen
because, as mentioned in Sec. V A, experiments have been
performed with energy beam dispersions in the range 26 MeV
FWHM. The average energy loss, in traversing the target, is of
about some hundreds keV. So, even if the target thickness and
the centroid of the incoming beam energy distributions are
always the same, the value of the cross-section σmean obtained
by Eq. (14), that would be measured for the considered target,
will be different for each one of the considered incoming
distributions, due to the different explored beam energy range.
In Fig. 12, the continuous line is the cross-section of Eq. (15)
assumed to represent the real behavior of the fusion excitation
function; the circles and the triangles represent the simulated
value of “measured” cross-section, σmean plotted either versus
Eeff , calculated by Eq. (3), with D(E,t0) given by Eq. (5), or
Ē calculated by Eq. (2), respectively. The σmean and the Eeff

all depend on the FWHM of the incoming 17-MeV beam.
A good agreement between the “real” function and the data

FIG. 12. (Color online) Results of simulations, for the
9Li + 120Sn system, considering beams having Gaussian energy
distribution centered at 17 MeV but with different FWHM (which
varies from 0.3 to 4 MeV), impinging on a thin 120Sn (as sketched in
the inset). The solid curve corresponds to the true cross-section used
for the input to the calculation. The values of the σmean are plotted
as either (σmean, Ē) (triangles) or (σmean, Eeff ) (circles). Each color
represents different values of the FWHM.

could be claimed only for the point obtained for the narrower
incoming energy distribution. All the other data points differ
significantly from the true cross-section at 17 MeV.

As a further example, Fig. 13 shows a conceptually similar
simulation to the one shown in Fig. 12 but relative to three
different D(E,t0) distributions having similar FWHM but
different shapes. As can be seen the presence of the high
energy tail in the Gaussian-like distributions (labeled as A
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FIG. 13. (Color online) Results of simulations, for the
9Li + 120Sn system, relative to three different energy distribution
inside a thin 120Sn target having similar FWHM and different
shapes (showed in the inset). The solid curve corresponds to the true
cross-section used for the input to the calculation. The values of the
mean cross-section σmean are plotted either as (σmean,Ē) (triangles) or
(σmean,Eeff ) (circles).
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and B) generates a non-negligible difference between the true
curve and the inferred data points plotted either versus the
mean energy or effective energy.

C. Consideration on previously published data

So far, different ingenious and difficult sub-barrier fusion
experiments have been performed by different groups using
RIBs (e.g., Refs. [10–12,14–18]). However, problems con-
cerning energy straggling and foil nonuniformities are usually
not explicitly reported. In the light of the present discussion,
the reported fusion excitation functions might in some cases
be affected by the problems presented in this paper since
correctly measured mean cross-sections plotted versus Ē or
Eeff might deviate from the real σfus(E) by non-negligible
amounts. This subsection presents a short overview on some
of the published fusion data measured with RIBs and the stack
activation technique around the Coulomb barrier, trying to
understand if the effects discussed in the present paper might
play any role, and if enough experimental details are provided
in the corresponding papers to evaluate such effects.

As a first example of the possible effects of the beam
energy distribution, the 6He + 206Pb experimental fusion data
of Ref. [15] have been considered, where a beam energy
spread of 6 MeV FWHM is reported after the last target. The
authors underline that the “energy spread distorts significantly
the experimental data” [15]. To estimate the importance of
the distortion effect they averaged a calculated excitation
function with a Gaussian beam energy distribution of 3 MeV
FWHM, concluding that, at the lowest measured energy, this
effect “increases the cross-section by almost two orders of
magnitude” [15]. The authors, however, do not unfold their
experimental data which, therefore, are expected to deviate
from the real fusion excitation function by orders of magnitude.

The 6He + 206Pb fusion has been measured again by a
different group [18] using a beam having a Gaussian energy
dispersion of 1.3 MeV FWHM after the last target and an
average energy loss of about 0.5 MeV inside each of the four
stacked targets. As qualitatively expected due to the lower
beam energy spread, at a fixed Ecm energy the cross-section of
Ref. [18] plotted versus Ē is about an order of magnitude lower
than the one of Ref. [15]. As a final result of their study, the
authors of Ref. [18] plot their measured cross-sections using a
simplified effective energy approach, pointing out that without
this correction “the cross-section become overestimated by a
factor 3” [18]. However, as shown in the current paper, the
effective energy based on the averaging procedure does not
always lead to the correct excitation function. Therefore, the
applied correction procedure for those previously published
works should be reassessed. Moreover, the approach used in
Ref. [18] does not take full account of all aspects of the energy
loss inside the target. It is possible to demonstrate that Eq.
(4) of Ref. [18] is related to Eq. (A10) of the current paper in
the case of zero stopping power and small dependence of the
straggling with energy.

Next the 6He + 197Au fusion data of Ref. [16] have been
considered. For this experiment the typical beam energy
spread associated with each measured cross-section below the
Coulomb barrier is reported to be of the order of ±2.5 MeV

(see Fig. 6 in Ref. [16]). In light of the effects previously
discussed for the 6He on 206Pb with a beam energy spread of
± 3 MeV, non-negligible cross-section averaging effects, at the
lowest measured energies, might be expected also in the Ref.
[16] case. In order to evaluate the possible presence of such
effects, the present authors fitted the 6He + 197Au fusion data
of Ref. [16] with a monotonic curve which was conservatively
assumed to be the actual fusion excitation function of the
system. Then, using Eq. (14), the σmean values that would have
been measured assuming a Gaussian energy distribution inside
the target D(E,t0), with a FWHM = 5 MeV, were calculated.
Results show that, in the center-of-mass energy range between
16 MeV and 18 MeV, the ratio σmean/σ (Ē) ranges from 2.5
to 1.5. This very conservative estimate suggests that fusion
excitation function σ (E) given in Fig. 10 of Ref. [16] is an
overestimation of the real one in the lower beam energy range.

Similar estimates also have been undertaken for the
11Be + 209Bi data of Ref. [12], although the beam energy
distribution is not reported in that paper. Assuming the use
of uniform foils, we estimated that the width of D(E,t0)
associated with the used experimental technique is about 3
MeV. In spite of the rather large D(E,t0), the estimated effects,
obtained applying the deconvolution procedure discussed in
Sec. II D are of the order of the reported error bars. This is
due to the fact that these data are essentially above the barrier
region, where σ (E) is not very steep.

More recently, the 8He + 197Au fusion excitation function
was measured down to the range of 1 mb with a postaccelerated
8He beam of only 105 pps [17]. As stated in Ref. [17], “the
target stacks consisted of two or three Au targets (6 mg/cm2

thick), separated by Al foils (1 mg/cm2 thick) to collect
recoiling residues, and Al foils (from 2 to 10 mg/cm2 thick) to
degrade the beam energy.” The different stacks were irradiated
at energies of 2.34, 2.51, and 3.68 MeV/nucleon. Although
some further information on the irradiated foil can be found in
Ref. [31], unfortunately in the current paper, it is not explained
which foils were irradiated at the different energies, and no
information is given on foil uniformity or beam energy distri-
bution. Therefore, in spite of the fact this was a difficult and
innovative experiment, the problems discussed in this paper are
not explicitly mentioned, and not enough information is given
in the paper [17] to allow the reader to estimate such effects.

The overarching conclusion of these studies is the vital
importance of characterizing target and degrader foils. This
is especially true for experiments where steeply falling cross-
sections below the Coulomb barrier are to be measured. There-
fore the authors of the current paper strongly recommend that
for future publications where such data are presented, enough
information should be included concerning the composition
of the target stacks; in particular, the target and degrader foils
characteristics and their effects on beam energy distributions
and on the extracted excitation functions. In this way others in
the community can easily assess the accuracy of the results.

VI. STACKED TARGET EXPERIMENT WITH
A STABLE BEAM

In order to further illuminate the nature of the experimental
challenges, and how they may be addressed in an actual
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experimental situation using stacked targets, the procedures
discussed in this paper have been applied to the study of
the fusion reaction 6Li + 120Sn. Since this is a stable beam
reaction, and therefore a good quantity of data could be
accumulated at low bombarding energy, it is not necessary
to use thick targets. Nevertheless, it will be shown that, in
spite of the use of a good quality stable beam and a stack made
of only four relatively thin targets, the effects discussed in the
present paper are still not negligible.

The 6Li + 120Sn fusion cross-section was measured at
the Laboratori Nazionali del Sud by using a stacked target
activation technique [32]. The yield of the ERs was determined
by an off-line detection of the atomic x-rays emitted following
their electron capture (EC) decay [9,13,14]. Two stacks
made of four 120Sn targets with an average thickness of
0.5 mg/cm2, evaporated on 93Nb catcher foils of 1.5 mg/cm2,
were irradiated by 6Li beams, delivered by the Tandem
Van de Graaff, at Elab = 25 MeV and at Elab = 21 MeV,
respectively. From this data mean cross-section σmean were
deduced. The targets were characterized by determining their
surface morphology as reported in Sec. IV A. From this
information the D(E,t0) functions for each target in the stack
could be determined and the corresponding values of Ē and
Eeff could be calculated. The data points are shown in Fig.
14: The open circles correspond to (σmean,Ē), and the closed
circles correspond to (σmean,Eeff). So it can be seen that even if
the average target thicknesses are thin, the difference in Ē and
Eeff values is not negligible. It is interesting to observe that,
as discussed in Sec. II C, in the case of uniform targets it is
expected that the Eeff energy is always shifted toward higher
values with respect to Ē because of the weighted average
with the exponential increasing cross-section. Instead, in the
presence of target nonuniformities the prediction of this shift
is not straightforward. In fact, the presence of nonuniformities
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FIG. 14. (Color online) 6Li + 120Sn fusion excitation function.
The open and closed symbols are the measured values of the fusion
cross-section plotted versus Ē and Eeff . The continuous black line
shows the result of deconvolution procedure, discussed in Sec. II D;
the blue shaded area represents the uncertainty associated with the
procedure.

reduces the average interaction energy and its effect is to lower
the effective energy. The final value of Eeff is a combination
of these two effects. In the present case Eeff is always smaller
than Ē, but it has to be noticed that this shift differs from
target to target, since it depends on the relative weight of the
two effects, which is specific and unique for each target. In
the same figure, the result of the deconvolution procedure,
discussed in Sec. II D and applied to the present data, is also
reported. As a starting guess function, for the deconvolution
method, the following formula was used:

σ (E) = AEln[1 + eB(E−C)]. (16)

The parameters A, B, and C were varied in order to achieve the
best fit as discussed in Sec. II D. The corresponding parameters
are A = 1.98 ± 0.37 mb MeV−1, B = 1.41 ± 0.14 MeV−1,
and C = 19.37 ± 0.24 MeV. The blue shaded part represents
the uncertainty in the result of the deconvolution procedure.
The deconvolution curve is in good agreement with the
fusion cross-section data plotted against the effective energy
(closed circles), as one could expect, since the targets for
this experiment are quite thin. The fusion cross-section
data plotted against the mean energy (open circles) are
systematically shifted towards higher energies. It is important
to remark that, although in the present case the discussed
effects are relatively small, in the typical experimental
conditions involving RIBs such effects can be extremely
important as shown in previous sections.

Before closing this subsection on the treatment of an actual
experimental data set, it is important to emphasize that the use
of energy loss codes plays a crucial role in any of the discussed
procedures. It is important to bear in mind that, in general, there
could be non-negligible differences in energy loss calculations
performed by different codes. This can generate potential
problems in all data analysis procedures based on energy loss
calculations, as discussed, for example, in Ref. [33] for the case
of resonant elastic scattering experiments. Results of energy
loss calculations should always be critically cross checked and
effects of possible uncertainties estimated.

VII. SUMMARY AND CONCLUSIONS

With the advent of new radioactive ion beam facilities,
either commissioned or under construction, the exploratory
potential for investigating nuclear processes to the outer limits
of nuclear existence is an exciting emerging area of modern
nuclear physics. But such new facilities bring challenges both
for the production of RIBs and the experimental facilities to
exploit these beams. In particular experimental techniques
need to evolve in order to compensate for the inherent low
intensity of these beams.

It has been shown in this paper that the stacked target
technique can be used to great advantage when investigating
nuclear reactions involving RIBs. But, for this old technique to
be successfully used to produce measurable yields with these
beams, multiple thick targets may often be needed. Due to
the large number of stack foils, and/or their nonuniformities,
and/or the quality of RIBs used, in many reported experiments
in the literature targets have been irradiated by beams hav-
ing rather large energy dispersion. Therefore, associating a
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measured average cross-sections with the correct energy is not
a trivial task. Some authors have simply used the mean energy
of Eq. (2); others have used the effective energy of Eq. (3).
However, this paper clearly shows that, in general, neither of
these two methods is well founded. Indeed, when the energy
distribution within a target is large, and the cross-section is
rapidly changing with the energy, these approaches can lead to
significant misinterpretations of the data. From this it would
seem that the use of thick target stacks to investigate nuclear
processes with RIBs is somewhat compromised. However,
it is shown in this paper that accurate information still can
be obtained in such circumstances provided accurate target
characterization is undertaken. In such a way, every target
is then assigned a D(E,t0) function, which specifies how
the cross-section will be integrated over the RIB energy.
It is recommended that the best procedure to infer the
true excitation function is to deconvolute the experimental
yields with the known D(E,t0) function convoluted with
a prior-Bayesian cross-section function. So, in summary,
providing certain precautions are observed, the stacked target
technique can evolve into a very useful experimental tool for
reaction studies of radioactive ion beams. However, for the
reasons discussed in this paper, the present authors strongly
recommend that for future publications where such data are
presented, information should be included concerning the
beam, targets, and degrader foils characteristics, together with
statements of how these characteristics have influenced the
data analysis and error propagation.
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APPENDIX

In this appendix a simplified case will be considered to
show analytically how Ē and Eeff deviate from the energy Er ,
at which the measured mean cross-section σmean corresponds
to σmean = σ (Er ).

Consider a Gaussian incoming beam energy distribution
given by e[−(E−E0)2/(2μ2

0)], where E is the actual energy, E0 the
mean energy, and μ0 is the standard deviation of the energy
distribution, which interacts with a uniform target of thickness
t0. Due to energy losses, the beam will decrease its mean
energy and increase its energy spread as it traverses the target.
Suppose this decrease in mean energy is specified by a simple
linear relationship:

Em = E0 − βt, (A1)

where E0 is the entrance energy, Em is the mean beam energy
after penetrating a distance t into the target, and β is a constant.
The actual normalized energy distribution at depth t into the

target will be given by:

e
− (E−E0+βt)2

2μ2
t

μt

√
2π

, (A2)

where μt is the standard deviation of the energy distribution at
target depth t , which will increase as the beam penetrates the
target. As a first order assumption it is assumed that it varies
as

μ2
t = μ2

0 + at/2, (A3)

where a is a constant. Suppose now that the reaction cross-
section that is producing the radioactive nuclei of interest is
given by:

σ (E) = σ0e
−α(E0−E), (A4)

where σ0 is the cross-section at the entrance energy E0 and
α is taken as a constant. Such exponentially decreasing cross-
sections are typical of fusion reaction processes below the
Coulomb barrier.

The yield, Y , of the product nuclei for the target is therefore:

Y = Nt0NB

t0

∫ t0

0

∫
E

σ0e
−α(E0−E)e

− (E−E0+βt)2

2μ2
t

μt

√
2π

dEdt, (A5)

where Nt0 is the number of atoms per unit area of the target
and NB is the number of beam particles incident on the target.
An average cross-section then can be assigned to this yield:

σmean = Y

Nt0NB

. (A6)

To determine the actual energy Er corresponding to this
deduced mean cross-section, the expression for σmean Eq. (A6)
can be substituted into the true cross-section relationship of
Eq. (A4). The result is

Er = E0 + αμ2
0

2
+

ln 1−e−γ

γ

α
, (A7)

where γ = αt0(β − aα/4). The value of the mean energy Ē
of the beam in the target is given by the following equation:

Ē = E0 − t0β

2
. (A8)

The value of Eeff defined by Eq. (3) can be obtained by the
following expression:

Eeff =
∫ t0

0
1
μt

∫
E

Eσ0e
−α(E0−E)e

− (E−E0+βt)2

2μ2
t dEdt

∫ t0
0

1
μt

∫
E

σ0e−α(E0−E)e
− (E−E0+βt)2

2μ2
t dEdt

. (A9)

The effective energy, Eeff , defined by Eq. (3), and given by Eq.
(A9), becomes:

Eeff = E0 + αμ2
0 −

[1 − (1 + γ )e−γ ]
(

1
α

− a
4β−aα

)
1 − e−γ

. (A10)

The question then arises as to whether the data point (σmean,
Eeff) is actually a point on the true curve σ (E). Clearly, by
comparing Eqs. (A8) and (A10) with respect to Eq. (A7), one
can see that both Ē and Eeff differ from the real expected
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value of the energy Er , and so the data points (σmean,Eeff) or
(σmean,Ē) do not lie on the true curve σ (E).

For an immediate visualization of this important result, for
the case where the a = 0 (i.e., assuming an energy spread
constant within the target) in Eq. (A3), Ē, Eeff , and Er have
been plotted in Fig. 2 as function of the energy loss in the
target. This means that for each particular value of the target

thickness t the respective energy distribution will have always
the same width (i.e., μt = μ0). The slope α of the exponential
trend of the cross-section defined in Eq. (A4) has been chosen
equal to 1.72 MeV−1 (see Appendix for details). As it has been
concluded in Sec. II C, Ē and Eeff can be considered a proper
approximation of Er only in the case of a monoenergetic beam
and very thin targets.
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