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Theoretical study of the elastic breakup of weakly bound nuclei at near-barrier energies
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We have performed continuum discretized coupled channel (CDCC) calculations for collisions of 7Li
projectiles on 59Co, 144Sm, and 208Pb targets at near-barrier energies, to assess the importance of the Coulomb
and the nuclear couplings in the breakup of 7Li, as well as the Coulomb-nuclear interference. We have also
investigated scaling laws, expressing the dependence of the cross sections on the charge and the mass of the
target. This work is complementary to that previously reported by us on the breakup of 6Li. Here we explore
the similarities and differences between the results for the two lithium isotopes. The relevance of the Coulomb
dipole and quadrupole strengths at low energy for the two-cluster projectile is investigated in detail.
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I. INTRODUCTION

Reaction mechanisms in collisions of weakly bound nuclei
have been intensively investigated in the last years [1–7], both
theoretically and experimentally. These mechanisms may be
particularly interesting in collisions of halo nuclei, where the
breakup process and its influence on other reaction channels,
such as fusion, tend to be very strong. However, the processes
involved in collisions of stable weakly bound nuclei, such as
6Li, 7Li, and 9Be, are expected to be qualitatively similar.
On the other hand, the intensities of stable beams are several
orders of magnitude larger than those presently available for
radioactive beams. For this reason, collisions of stable weakly
bound nuclei have been widely studied. Since performing
direct measurements of breakup cross sections is a very hard
task, most experiments determine fusion and elastic cross sec-
tions. Recent experiments have shown that transfer processes
followed by breakup may predominate over direct breakup of
stable weakly bound nuclei at sub-barrier energies [8–11].

In a recent paper [12] we reported continuum discretized
coupled channel (CDCC) calculations for collisions of 6Li
projectiles with 59Co, 144Sm, and 208Pb targets at near-barrier
energies. We have evaluated Coulomb, nuclear, and total
breakup angular distributions, as well as the corresponding
integrated cross sections. We have observed strong Coulomb-
nuclear interference, and found that the nuclear and the
Coulomb components of the breakup cross sections follow
scaling laws. For the same E/VB (energy normalized to the
Coulomb barrier), the nuclear component of the breakup cross
section is proportional to A1/3

T , where AT is the target’s mass
number. An explanation for this behavior was later given by
Hussein et al. [13]. On the other hand, the Coulomb breakup
component was shown to depend linearly on the target’s
atomic number, ZT. In the present paper we complement the
previous work by performing the same kind of analysis for 7Li
projectiles.

As in our previous work, the choice of the 59Co, 144Sm, and
208Pb targets was based on the availability of elastic scattering

data at near-barrier energies. In this way, we were able to
check the reliability of our CDCC model by applying it to
elastic scattering and comparing the theoretical cross sections
with the data.

The paper is organized as follows. In Sec. II the cluster
model is discussed and the differences between the low-energy
responses of 7Li, and 6Li are pointed out. In Sec. III some
details of our CDCC model space are given. In Sec. IV the
results of our calculation are discussed, while Sec. V is devoted
to our conclusions.

II. LOW-ENERGY RESPONSES WITHIN
THE CLUSTER MODEL

There are two important differences between the 6Li and
7Li lithium isotopes. The first is that the breakup threshold
energy, or Q value, of 6Li is about 1 MeV lower than
that of 7Li. They are respectively 1.47 and 2.47 MeV. The
second difference is that 7Li has a non-zero low-energy
dipole strength, in contrast to 6Li. Their dipole responses
are related to their cluster structure (α-t and α-d for 7Li
and 6Li, respectively). In fact, using the cluster model, the
B(Eλ) distribution in the projectile a = c + p, is given by
Refs. [14,15]
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In obtaining the above formula, a cluster wave
function of a Yukawa form is used: φa=c+p(r) =
N0(

√
K/2π ) exp [−Kr]/r , with K = √

2μcpQ/�2, and
where μcp is the reduced mass of the a = c + p system,
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S is the cluster structure spectroscopic factor, and N0 is a
normalization constant which takes into account the finite
range of the c + p potential r0, N0 = exp [Kr0]/

√
1 + Kr0.

The B(Eλ) values are obtained by integrating the above
expression over Ex , to get [16]

B(Eλ) = S N2
0

(
2λ−1

π2

)
(λ!)2(2λ + 1)

(
�

2

μcp

)λ

×
[
ZpAλ

c + (−)λZcA
λ
b

Aλ
a

]2

e2 1

Qλ+1

× (−)2λ+3π

(2λ + 1)! sin [(2λ + 3/2)π ]

2λ+1∏
k=1

(λ + 3/2 − k).

(2)

Thus the dipole B(E1) is given by
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Using Eqs. (3) and (4), and setting SN2
0 = 1, one finds

for 7Li B(E1) � 0.082 fm2e2 and B(E2) � 7.0 fm4e2. On
the other hand, for 6Li we have B(E1) = 0.0 and B(E2) �
53.5 fm4e2. These results imply a larger dipole Coulomb
breakup for 7Li and a larger quadrupole Coulomb breakup
for 6Li. Of course the quadrupole Coulomb breakup cross
section is about 10−3 that of the dipole, owing to the smaller
number of virtual photons in the former. More details can be
found in Ref. [15].

III. THE CDCC MODEL

The most suitable approach to deal with the breakup
process, which feeds to the population of states in the
continuum, is the so called CDCC method [17,18]. In this type
of calculations, the continuum wave functions are grouped
into bins, or wave packets, that can be treated similarly to
the usual bound excited states, since they are described by
square-integrable wave functions. In the present work we
use the same assumptions and methodology of the CDCC
calculations as Refs. [12,19,20]. We assume that 7Li breaks
up directly into an α particle and a tritium nucleus, with
separation energy Sα = 2.47 MeV. To describe the breakup of
the projectile into two charged fragments, we used the cluster
model. We consider that the two clusters are bound in the
ground state of the projectile and that the first bound excited
state has spin 1/2− and excitation energy 0.477 MeV. The
remaining projectile states are all in the discretized continuum.
In all calculations of the present work, we have employed the
code FRESCO [21].

In the standard CDCC method [17,18], the scattering of
a projectile, composed of a core c (the alpha particle in the
present work) and a valence particle p (the triton), by a target

T is modeled by the Hamiltonian

H = Krel(R) + Kint(r) + Vpc + UpT + UcT , (5)

where Krel is the projectile-target relative kinetic motion, Kint

is projectile internal kinetic energy, Vpc is the p-c binding
potential, and UpT and UcT are the p-T and c-T optical
potentials, respectively. These optical potentials are chosen by
the condition of describing the elastic scattering of each cluster
from the target. They have an imaginary part arising both from
fusion of the cluster with the target and from the excitation of
excited states in the target. Thus, the breakup cross sections
obtained in standard CDCC calculations correspond only to
elastic breakup. However, the influence of inelastic breakup
on elastic scattering is taken into account through the action of
the imaginary parts of UpT and UcT at the surface region. To go
beyond the standard CDCC method, treating target excitations
explicitly, one should include in Eq. (5) an additional term
corresponding to the internal Hamiltonian of the target. Strictly
speaking, in addition to this term, one needs to generalize the
fragment-target interactions, in order to include a dependence
on the target degrees of freedom [22]. This procedure, however,
is not used in the present work, where only excited states of
the projectile are included in our channel space.

The sum of the cluster-target potentials of Eq. (5) gives the
total interaction between the projectile and the target. It can be
written as

U (R,r) = UcT (R,r) + UpT (R,r), (6)

where R is the vector joining the centers of mass of the
projectile and the target, and r is the relative position vector
between the two clusters. U (R,r) gives the bare potentials
(diagonal matrix elements), and also all couplings among
the channels (off-diagonal matrix elements in channel space).
This potential contains contributions from Coulomb and from
nuclear forces, and the importance of each contribution can be
assessed by switching off the other.

The discretization of the continuum is as follows: con-
tinuum partial waves up to lmax = 4 waves for a density
of the continuum discretization of 2 bins/MeV (l = 0,1,2);
7.7 bins/MeV and 1.92 bins/MeV below and above the 7/2−
resonance, respectively; 10 bins/MeV inside the resonance;
2.5 bins/MeV and 2 bins/MeV below and above the 5/2−
resonance, respectively; 2.5 bins/MeV inside the resonance;
2 bins/MeV for both 7/2+ and 9/2+ resonances. The projectile
fragments-target potential multipoles up to the term Kmax = 4
were considered. For the interaction α-tritium to generate
the bins, we use an appropriate Woods-Saxon potential to
describe the unbound resonant and nonresonant states [19,20].
For the resonant states, we included a spin-orbit interaction.
To get a finite set of coupled equations, one must truncate the
discretized continuum at some maximal value of the excitation
energy and of the orbital angular momentum of clusters. For
this reason, rigorous convergence tests have to be performed.

IV. NUMERICAL CALCULATIONS

We have performed CDCC calculations for the 7Li + 59Co,
7Li + 144Sm, and 7Li + 208Pb systems, for which elas-
tic scattering data at near-barrier energies are available
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FIG. 1. (Color online) Comparison of elastic scattering data
with predictions from our CDCC calculations for 7Li + 208Pb at
33.0 MeV. Data are from Ref. [25].

(Refs. [23–25], respectively). To take into account the reso-
nances of 7Li, the discretization of the continuum is performed
with bins of variable energy width. We use a very fine mesh
in the resonance region, where the continuum wave function
changes rapidly with the energy, and a mesh with wider spacing
away from the resonance.

For the alpha-target and tritium-target optical potentials
of Eq. (6), we used the double-folding São Paulo potential
[26,27]. The target densities, used in the folding integrals,
were taken from the systematics of the São Paulo potential
[27]. Assuming that charge and matter densities have similar
distributions, the matter density distribution of the triton was
obtained by multiplying by 3 the charge distribution reported
in Ref. [28]. The matter density of the 4He cluster was obtained
through the same procedure. We assumed that the imaginary
parts of the optical potentials have the same radial dependence
of the real part, with a weaker strength. Then, we adopted the
expression, UjT (r) = [1 + 0.78 i]VSPP(r), with j standing for
either the alpha or the tritium cluster, and VSPP(r) standing
for the São Paulo potential. This procedure has been able
to describe the reaction cross section (and consequently the
elastic angular distribution) for many systems in a wide energy
interval [29]. Before calculating breakup cross sections, we
made sure that our CDCC calculations were able to reproduce
elastic scattering data. This is illustrated in Fig. 1, which
shows the theoretical and experimental elastic scattering cross
sections for 7Li - 208Pb scattering at the bombarding energy
Elab = 33 MeV. The agreement is good, except for some small
discrepancies at backward angles. This is quite satisfactory,
if one considers that there is no adjustable parameter in our
calculations.

V. DECOMPOSITION OF THE BREAKUP CROSS
SECTION INTO NUCLEAR, COULOMB, AND

INTERFERENCE PARTS

To study the relative importance of the Coulomb and
the nuclear couplings in the breakup process, we adopt the
following procedures. First, we separate the diagonal and the
off-diagonal parts of the full projectile-target interaction in
channel space. Using the spectral representation, it takes the

form

U (R,r) = Uopt(R,r) + �U (R,r), (7)

where the diagonal and the off-diagonal components are
respectively

Uopt =
∑

i

|φi)(φi |U |φi)(φi | (8)

and

�U =
∑
i �=j

|φi)(φi |U |φj )(φj |. (9)

Above, φi and φj represent both the bound eigenfunctions
of the projectile and its unbound eigenfunctions, within the
continuum discretized approximation. Note that Uopt plays
the role of an optical potential whereas �U is the channel
coupling interaction. Further, we split the coupling potential
into its Coulomb and nuclear components,

�U = �U (C) + �U (N). (10)

Next, we perform three CDCC calculations. In the first we
take into account the full interaction Uopt + �U (C) + �U (N).
The result is the total breakup cross section, σbup. In the
following, we take into account the potential Uopt + �U (C)

(setting �U (N) = 0). In this way, we get the Coulomb breakup
cross section, σ

(C)
bup. Finally, we run a CDCC calculation for

the potential Uopt + �U (N) (setting �U (C) = 0), to obtain the
nuclear breakup cross section, σ

(N)
bup .

This approach has the disadvantage that the Coulomb-
nuclear interference cannot be evaluated directly. It has to
be defined as the difference

�int = σbup − (
σ

(C)
bup + σ

(N)
bup

)
. (11)

TABLE I. Integrated breakup cross sections for 7Li on 59Co,
144Sm, and 208Pb targets at energies close to the Coulomb barriers. The
first column corresponds to the Coulomb component of the breakup,
the next ones to the nuclear component and the total breakup. The
last column should be equal to unity if there were no interference
between the Coulomb and nuclear components. See text for details.

E/VB σC (mb) σN (mb) σbup (mb) (σbup − σN )/σC

7Li + 208Pb
0.84 7.28 0.90 4.51 0.50
1.00 11.20 2.65 10.31 0.68
1.07 16.00 9.18 14.94 0.36
1.30 31.64 11.88 30.48 0.59

7Li + 144Sm
0.84 2.49 0.51 0.88 0.15
1.00 6.21 2.50 5.21 0.44
1.07 6.20 6.57 5.11 −0.24
1.30 16.09 8.78 18.71 0.62

7Li + 59Co
0.84 0.17 0.05 0.23 1.06
1.00 1.12 1.00 2.10 0.98
1.07 1.84 2.09 3.43 0.73
1.30 4.34 7.08 12.04 1.14
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The same approximate procedure as above was employed in
Ref. [30] to discuss elastic breakup of halo nuclei at higher
energies.

We believe that this approximate method of generating the
Coulomb and the nuclear breakup components of the coupled
channels-calculated cross section is reasonable for very light
targets, such as 12C where the nuclear breakup dominates, and

(d)

(c)

(b)

(a)

FIG. 2. (Color online) Total breakup cross sections for 6Li and
7Li projectiles on 59Co, 144Sm, and 208Pb targets, for energies close
to the Coulomb barrier. Results for 6Li were already published in
Ref. [12].

for very heavy targets, such as 208Pb where Coulomb breakup
by far dominates. However, we have no way to know how
accurate the switching-off method is in the case of medium-
mass targets, where both the Coulomb and nuclear components
are equally important.

Table I shows the integrated 7Li breakup cross sections for
the three systems at near-barrier energies. As expected, one
observes that the Coulomb and the nuclear components, as
well as the total breakup cross sections, for the light targets
are much smaller than the corresponding cross sections for
the heavier targets. The interference between the nuclear and
Coulomb breakup amplitudes can be easily observed in the last
column of Table I. In the no-interference limit, the quantity
(σbup − σN )/σC should be equal to 1. The numbers shown in
the table are very different from this limit, which indicates that
there is strong Coulomb-nuclear interference in the breakup of
7Li. The same conclusion was reached in the case of the 6Li
isotope [12].

In Fig. 2 we show the integrated cross sections for the
breakup of 6,7Li on 59Co, 144Sm, and 208Pb targets, at three
near-barrier energies. The cross sections for 7Li are results of
the present calculations whereas those for 6Li were taken from
Ref. [12]. One observes that, for a given projectile and at the
same value of E/VB, the breakup cross sections increase with
the target charge. One sees also that, for each target and at the
same relative energy, the cross sections for 6Li are much larger

(b)

(a)

FIG. 3. (Color online) Ratio between Coulomb and nuclear
breakup as a function of energy for the 6Li and 7Li projectiles on the
59Co, 144Sm, and 208Pb targets.
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than those for 7Li. This is not surprising, since the breakup
threshold energy for 6Li is appreciably smaller than that for
7Li.

Using the values of the breakup cross sections given in
Table I and the results of Ref. [12], we can plot the ratio σC/σN

as a function of the relative energy. The results for the targets
considered in our study are shown in Fig. 3, for the breakup

(d)

(c)

(b)

(a)

FIG. 4. 7Li nuclear breakup cross sections as a function of the
target mass, for 59Co, 144Sm, and 208Pb targets.

of 7Li [panel (a)] and for the breakup of 6Li [panel (b)]. One
observes that this ratio decreases as E/VB increases, and that
it is systematically larger than 1, except for the breakup of 7Li
on the lightest target at above-barrier energies (E/VB > 1).
One notices also that, for a given projectile and at a fixed value
of E/VB, the ratio increases with the charge of the target. This

(d)

(c)

(b)

(a)

FIG. 5. 7Li Coulomb breakup cross sections as a function of the
target charge, for 59Co, 144Sm, and 208Pb targets.
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behavior is expected and it has already been observed for 6Li
projectiles [12]. However, the most interesting (and new) result
in Fig. 3 is that this ratio for a given target and a given E/VB

is much larger in the breakup of 7Li than in that of 6Li. This
result should arise from the fact that the low-energy Coulomb
dipole response in the breakup of 7Li is larger than in the
breakup of 6Li. The reason is that the factor [ZpAc − ZcAp]2,
appearing in Eqs. (1) and (3), is equal to 4 for 7Li, whereas in
the case of 6Li it vanishes identically.

A detailed study of Figs. 2 and 3 leads to a very interesting
conclusion. The analysis of Fig. 2 indicated that the breakup
cross sections for 6Li are larger than those for 7Li, even for
the 208Pb target. In this case, the Coulomb breakup dominates,
as can be seen in Table I (for 7Li) and in Ref. [12] (for 6Li).
However, Coulomb breakup depends on two factors. The first
is the low-energy Coulomb dipole response, which vanishes
for 6Li and does not for 7Li. The second is the low breakup
threshold, which is 1 MeV lower in the case of 6Li. Figure 2
indicates that the predominant factor is the lower breakup
threshold of the 6Li projectile. On the other hand, Fig. 3
indicates that the ratios σC/σN are systematically larger for the
7Li projectile. The consistency of the two above conclusions
would require that the nuclear breakup of 6Li be much larger
than that of 7Li. This can be checked by comparing σN for
the two projectiles on the same target and at the same value
of E/VB . Looking at the nuclear breakup cross sections in
Table I (for 7Li) and at those given in Ref. [12] (for 6Li), one
concludes that this condition is satisfied. For example, for the
208Pb target at E/VB = 0.84, the cross sections for the nuclear
breakup of 6Li and for that of 7Li are respectively 8.8 mb and
0.9 mb.

We have also investigated scaling laws in the nuclear and
Coulomb components of 7Li breakup. For this purpose, we
followed the procedures of Ref. [12] in their study of 6Li
breakup. Figure 4 shows plots of σN versus A1/3

T . One observes
that the nuclear components of the breakup cross section at a
fixed value of E/VB increase linearly with A1/3

T , to a good

approximation. On the other hand, Fig. 5 shows plots of σC

versus ZT. One notices that the cross sections increase with
ZT, showing a roughly linear behavior. These findings are
analogous to those of Ref. [12], for the 6Li Lithium isotope.

VI. SUMMARY

In summary, we have extended our investigation of the
elastic breakup of weakly bound nuclei to a two-cluster
projectile with significant dipole strength at low excitation
energy. The current work complements a previous study where
no or very weak dipole strength was found. The isotopes of
lithium, 7Li, studied in the current paper, and 6Li are used for
the purpose of comparison. We have found the same qualitative
behavior in both cases, involving the Coulomb, nuclear, and
interference parts of the breakup cross section; namely, a
strong interference term and similar scaling laws for both
the Coulomb and nuclear components of the breakup cross
section, i.e., increasing linearly with A1/3

T and ZT, respectively,
for the same relative energy. The comparison of 7Li with the
6Li elastic breakup shows that the 6Li total breakup and its
nuclear and Coulomb components are greater than those for
7Li, for the same targets and relative energies, whereas the
ratios of Coulomb to nuclear components are much larger
for 7Li than for the corresponding ones of the 6Li system.
We interpret those results in terms of the smaller breakup Q
value in 6Li and the low-energy Coulomb dipole strengths of
the lithium isotopes. The results also indicate the importance
of the Coulomb breakup through the excitation of higher
multipolarities (quadrupole, octopole, etc.) in the α + d cluster
component of the 6Li wave function.
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